1
|
Yuan Z, Janmey PA, McCulloch CA. Structure and function of vimentin in the generation and secretion of extracellular vimentin in response to inflammation. Cell Commun Signal 2025; 23:187. [PMID: 40251523 PMCID: PMC12007377 DOI: 10.1186/s12964-025-02194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
The canonical functions of vimentin in cell mechanics and migration have been recently expanded by the discovery of new roles for extracellular vimentin (ECV) in immune responses to infection, injury and cancer. In contrast with the predominantly filamentous form of intracellular vimentin, ECV exists largely as soluble oligomers. The release of ECV from intact cells is dependent on mechanisms that regulate the assembly and disassembly of intracellular vimentin, which are influenced by discrete post-translational modifications. In this review we highlight the processes that promote the conversion of intracellular and insoluble vimentin filaments to ECV and secretion mechanisms. Insights into the regulation of ECV release from stromal and immune cells could provide new diagnostic and therapeutic approaches for assessing and controlling inflammatory diseases.
Collapse
Affiliation(s)
- Zhiyao Yuan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Paul A Janmey
- Dept. of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher A McCulloch
- Faculty of Dentistry, University of Toronto, Room 461, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
2
|
Huang X, Zhao S, Xing Y, Gao X, Miao C, Huang Y, Jiu Y. The unconventional role of vimentin intermediate filaments. Curr Opin Cell Biol 2025; 93:102483. [PMID: 39978207 DOI: 10.1016/j.ceb.2025.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/22/2025]
Abstract
Vimentin, a type III intermediate filament (IF) protein, is well-recognized for its role at the intersection of structural biology and cellular dynamics, influencing various pathways that determine cell fate and function. While these functions have been extensively characterized, there is still limited understanding of vimentin's broader impact beyond its traditional cytoskeletal roles in regulating a spectrum of cellular processes. This review explores the novel and unconventional roles of vimentin, with a focus on its extracellular functions, membrane receptor properties, and regulatory influence on gene expression and cellular metabolism.
Collapse
Affiliation(s)
- Xinyi Huang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuangshuang Zhao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifan Xing
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Xuedi Gao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Chenglin Miao
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Yuhan Huang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
3
|
Hirose S, Osaki T, Kamm RD. Polyploidy of MDA-MB-231 cells drives increased extravasation with enhanced cell-matrix adhesion. APL Bioeng 2025; 9:016105. [PMID: 39974511 PMCID: PMC11836873 DOI: 10.1063/5.0233329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025] Open
Abstract
Metastasis, the leading cause of cancer-related deaths, involves a complex cascade of events, including extravasation. Despite extensive research into metastasis, the mechanisms underlying extravasation remain unclear. Molecular targeted therapies have advanced cancer treatment, yet their efficacy is limited, prompting exploration into novel therapeutic targets. Here, we showed the association of polyploidy in MDA-MB-231 breast cancer cells and their extravasation, using microfluidic systems to reproduce the in vivo microvascular environment. We observed enhanced extravasation in polyploid cells alongside upregulated expression of genes involved in cell-substrate adhesion and cell mechanical dynamics. These findings offer insights into the relationship between polyploidy and extravasation, highlighting potential targets for cancer therapy.
Collapse
Affiliation(s)
- Satomi Hirose
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tatsuya Osaki
- Authors to whom correspondence should be addressed: and
| | - Roger D. Kamm
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
4
|
Yang X, Sun J, Ning Y, Wang J, Xu J, Zhang S. Role of the CTCF/p300 axis in osteochondrogenic-like differentiation of polyploid giant cancer cells with daughter cells. Cell Commun Signal 2024; 22:546. [PMID: 39548585 PMCID: PMC11566548 DOI: 10.1186/s12964-024-01933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Polyploid giant cancer cells (PGCCs) have properties of cancer stem cells (CSCs). PGCCs with daughter cells (PDCs) undergo epithelial-mesenchymal transition and show enhanced cellular plasticity. This study aimed to elucidate the mechanisms underlying the osteo/chondrogenic-like differentiation of PDCs, which may be exploited therapeutically by transdifferentiation into post-mitotic and functional cells. METHODS Cobalt chloride was used to induce PGCC formation in MDA-MB-231 and HEY cells, and PDCs were cultured in osteo/chondrogenic differentiation media. Alcian blue staining was used to confirm osteo/chondrogenic differentiation, and the cell cycle was detected using flow cytometry. The expression of osteo/chondrogenic differentiation-related proteins was compared, and a co-immunoprecipitation assay was used to demonstrate the interactions between proteins. Bioinformatic analysis was used to explore the regulatory mechanism of osteo/chondrogenic differentiation, and a dual-luciferase reporter assay was performed to validate the interaction between transcriptional factors and target genes. Animal xenograft models were used to confirm the osteo/chondrogenic differentiation of PDCs. RESULTS When cultured in osteo/chondrogenic medium, the stemness of PDCs decreased, and the expression of osteo/chondrogenic-related markers increased. This osteo/chondrogenic-like process was regulated by the transforming growth factor-β pathway in a time-dependent manner. A concurrent increase in the expression of histone acetyltransferase p300 and the transcription factor CCCTC-binding factor (CTCF) was observed. Co-immunoprecipitation assays revealed that p300 acetylated the osteo/chondrogenic marker RUNT-related transcription factor 2 (RUNX2). Analysis of chromatin immunoprecipitation sequencing datasets revealed that both CTCF and histone H3 lysine 27 acetylation (H3K27ac) were enriched in the promoter region of E1A-associated protein p300 (P300). The four predicted binding sites for CTCF and P300 were validated using dual-luciferase reporter assays. We examined the interaction between CTCF and H3K27ac and found that these two proteins had a combined effect on the transactivation of P300. CONCLUSION CTCF, in synergy with H3K27ac, amplified the expression of P300, facilitating acetyl group transfer to RUNX2. This acetylation stabilized RUNX2 and promoted osteo/chondrogenic differentiation, thereby reducing the incidence of PDC malignancies.
Collapse
Affiliation(s)
- Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Jie Sun
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Jiangping Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Jing Xu
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China.
| |
Collapse
|
5
|
Mirzayans R, Murray D. Amitotic Cell Division, Malignancy, and Resistance to Anticancer Agents: A Tribute to Drs. Walen and Rajaraman. Cancers (Basel) 2024; 16:3106. [PMID: 39272964 PMCID: PMC11394378 DOI: 10.3390/cancers16173106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Cell division is crucial for the survival of living organisms. Human cells undergo three types of cell division: mitosis, meiosis, and amitosis. The former two types occur in somatic cells and germ cells, respectively. Amitosis involves nuclear budding and occurs in cells that exhibit abnormal nuclear morphology (e.g., polyploidy) with increased cell size. In the early 2000s, Kirsten Walen and Rengaswami Rajaraman and his associates independently reported that polyploid human cells are capable of producing progeny via amitotic cell division, and that a subset of emerging daughter cells proliferate rapidly, exhibit stem cell-like properties, and can contribute to tumorigenesis. Polyploid cells that arise in solid tumors/tumor-derived cell lines are referred to as polyploid giant cancer cells (PGCCs) and are known to contribute to therapy resistance and disease recurrence following anticancer treatment. This commentary provides an update on some of these intriguing discoveries as a tribute to Drs. Walen and Rajaraman.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - David Murray
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
6
|
Liu P, Wang L, Yu H. Polyploid giant cancer cells: origin, possible pathways of formation, characteristics, and mechanisms of regulation. Front Cell Dev Biol 2024; 12:1410637. [PMID: 39055650 PMCID: PMC11269155 DOI: 10.3389/fcell.2024.1410637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Polyploid giant cancer cells (PGCCs) are characterized by the presence of either a single enlarged nucleus or multiple nuclei and are closely associated with tumor progression and treatment resistance. These cells contribute significantly to cellular heterogeneity and can arise from various stressors, including radiation, chemotherapy, hypoxia, and environmental factors. The formation of PGCCs can occur through mechanisms such as endoreplication, cell fusion, cytokinesis failure, mitotic slippage, or cell cannibalism. Notably, PGCCs exhibit traits similar to cancer stem cells (CSCs) and generate highly invasive progeny through asymmetric division. The presence of PGCCs and their progeny is pivotal in conferring resistance to chemotherapy and radiation, as well as facilitating tumor recurrence and metastasis. This review provides a comprehensive analysis of the origins, potential formation mechanisms, stressors, unique characteristics, and regulatory pathways of PGCCs, alongside therapeutic strategies targeting these cells. The objective is to enhance the understanding of PGCC initiation and progression, offering novel insights into tumor biology.
Collapse
Affiliation(s)
- Pan Liu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Beifang Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lili Wang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Hirose S, Osaki T, Kamm RD. Polyploidy of MDA-MB-231 cells drives increased extravasation with enhanced cell-matrix adhesion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601261. [PMID: 39005381 PMCID: PMC11244921 DOI: 10.1101/2024.06.28.601261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Metastasis, the leading cause of cancer-related deaths, involves a complex cascade of events, including extravasation. Despite extensive research into metastasis, the mechanisms underlying extravasation remain unclear. Molecular targeted therapies have advanced cancer treatment, yet their efficacy is limited, prompting exploration into novel therapeutic targets. Here, we showed the association of polyploidy in MDA-MB-231 breast cancer cells and their extravasation, using microfluidic systems to reproduce the in vivo microvascular environment. We observed enhanced extravasation in polyploid cells alongside upregulated expression of genes involved in cell-substrate adhesion and cell mechanical dynamics. These findings offer insights into the relationship between polyploidy and extravasation, highlighting potential targets for cancer therapy.
Collapse
|
8
|
Zheng M, Tian S, Zhou X, Yan M, Zhou M, Yu Y, Zhang Y, Wang X, Li N, Ren L, Zhang S. MITF regulates the subcellular location of HIF1α through SUMOylation to promote the invasion and metastasis of daughter cells derived from polyploid giant cancer cells. Oncol Rep 2024; 51:63. [PMID: 38456491 PMCID: PMC10940875 DOI: 10.3892/or.2024.8722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
High concentrations of cobalt chloride (CoCl2) can induce the formation of polyploid giant cancer cells (PGCCs) in various tumors, which can produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric division. To study the role of hypoxia‑inducible factor (HIF) 1α in the formation of PGCCs, colon cancer cell lines Hct116 and LoVo were used as experimental subjects. Western blotting, nuclear and cytoplasmic protein extraction and immunocytochemical experiments were used to compare the changes in the expression and subcellular localization of HIF1α, microphthalmia‑associated transcription factor (MITF), protein inhibitor of activated STAT protein 4 (PIAS4) and von Hippel‑Lindau disease tumor suppressor (VHL) after treatment with CoCl2. The SUMOylation of HIFα was verified by co‑immunoprecipitation assay. After inhibiting HIF1α SUMOylation, the changes in proliferation, migration and invasion abilities of Hct116 and LoVo were compared by plate colony formation, wound healing and Transwell migration and invasion. In addition, lysine sites that led to SUMOylation of HIF1α were identified through site mutation experiments. The results showed that CoCl2 can induce the formation of PGCCs with the expression level of HIF1α higher in treated cells than in control cells. HIF1α was primarily located in the cytoplasm of control cell. Following CoCl2 treatment, the subcellular localization of HIF1α was primarily in the nuclei of PGCCs with daughter cells (PDCs). After treatment with SUMOylation inhibitors, the nuclear HIF1α expression in PDCs decreased. Furthermore, their proliferation, migration and invasion abilities also decreased. After inhibiting the expression of MITF, the expression of HIF1α decreased. MITF can regulate HIF1α SUMOylation. Expression and subcellular localization of VHL and HIF1α did not change following PIAS4 knockdown. SUMOylation of HIF1α occurs at the amino acid sites K391 and K477 in PDCs. After mutation of the two sites, nuclear expression of HIF1α in PDCs was reduced, along with a significant reduction in the proliferation, migration and invasion abilities. In conclusion, the post‑translation modification regulated the subcellular location of HIF1α and the nuclear expression of HIF1α promoted the proliferation, migration and invasion abilities of PDCs. MITF could regulate the transcription and protein levels of HIF1α and participate in the regulation of HIF1α SUMOylation.
Collapse
Affiliation(s)
- Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Shifeng Tian
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Xinyue Zhou
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Mingming Zhou
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yongjun Yu
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Yue Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xiaorui Wang
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Na Li
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institution and Hospital, Tianjin 300090, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| |
Collapse
|
9
|
Pajares MA, Pérez-Sala D. Type III intermediate filaments in redox interplay: key role of the conserved cysteine residue. Biochem Soc Trans 2024; 52:849-860. [PMID: 38451193 PMCID: PMC11088922 DOI: 10.1042/bst20231059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Intermediate filaments (IFs) are cytoskeletal elements involved in mechanotransduction and in the integration of cellular responses. They are versatile structures and their assembly and organization are finely tuned by posttranslational modifications. Among them, type III IFs, mainly vimentin, have been identified as targets of multiple oxidative and electrophilic modifications. A characteristic of most type III IF proteins is the presence in their sequence of a single, conserved cysteine residue (C328 in vimentin), that is a hot spot for these modifications and appears to play a key role in the ability of the filament network to respond to oxidative stress. Current structural models and experimental evidence indicate that this cysteine residue may occupy a strategic position in the filaments in such a way that perturbations at this site, due to chemical modification or mutation, impact filament assembly or organization in a structure-dependent manner. Cysteine-dependent regulation of vimentin can be modulated by interaction with divalent cations, such as zinc, and by pH. Importantly, vimentin remodeling induced by C328 modification may affect its interaction with cellular organelles, as well as the cross-talk between cytoskeletal networks, as seems to be the case for the reorganization of actin filaments in response to oxidants and electrophiles. In summary, the evidence herein reviewed delineates a complex interplay in which type III IFs emerge both as targets and modulators of redox signaling.
Collapse
Affiliation(s)
- María A. Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
10
|
Jiao Y, Yu Y, Zheng M, Yan M, Wang J, Zhang Y, Zhang S. Dormant cancer cells and polyploid giant cancer cells: The roots of cancer recurrence and metastasis. Clin Transl Med 2024; 14:e1567. [PMID: 38362620 PMCID: PMC10870057 DOI: 10.1002/ctm2.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs.
Collapse
Affiliation(s)
- Yuqi Jiao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yongjun Yu
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Minying Zheng
- Department of PathologyTianjin Union Medical CenterNankai UniversityTianjinChina
| | - Man Yan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiangping Wang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- Department of PathologyTianjin Union Medical CenterTianjinChina
| |
Collapse
|