1
|
Panganiban J, Kehar M, Ibrahim SH, Hartmann P, Sood S, Hassan S, Ramirez CM, Kohli R, Censani M, Mauney E, Cuda S, Karjoo S. Metabolic dysfunction-associated steatotic liver disease (MASLD) in children with obesity: An Obesity Medicine Association (OMA) and expert joint perspective 2025. OBESITY PILLARS 2025; 14:100164. [PMID: 40230708 PMCID: PMC11995806 DOI: 10.1016/j.obpill.2025.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 04/16/2025]
Abstract
Introduction This Obesity Medicine Association (OMA) Expert Joint Perspective examines steatotic liver disease (SLD), which is composed of metabolic dysfunction-associated steatotic liver disease (MASLD), and metabolic dysfunction-associated steatohepatitis (MASH) in children with obesity. The prevalence of obesity is increasing, rates have tripled since 1963 from 5 % to now 19 % of US children affected in 2018. MASLD, is the most common liver disease seen in children, can be a precursor to the development of Type 2 Diabetes (T2DM) and is the primary reason for liver transplant listing in young adults. We must be vigilant in prevention and treatment of MASLD in childhood to prevent further progression. Methods This joint clinical perspective is based upon scientific evidence, peer and clinical expertise. The medical literature was reviewed via PubMed search and appropriate articles were included in this review. This work was formulated from the collaboration of eight hepatologists/gastroenterologists with MASLD expertise and two physicians from the OMA. Results The authors who are experts in the field, determined sentinel questions often asked by clinicians regarding MASLD in children with obesity. They created a consensus and clinical guideline for clinicians on the screening, diagnosis, and treatment of MASLD associated with obesity in children. Conclusions Obesity and the comorbidity of MASLD is increasing in children, and this is a medical problem that needs to be addressed urgently. It is well known that children with metabolic associated chronic disease often continue to have these chronic diseases as adults, which leads to reduced life expectancy, quality of life, and increasing healthcare needs and financial burden. The authors of this paper recommend healthy weight reduction not only through lifestyle modification but through obesity pharmacotherapy and bariatric surgery. Therefore, this guidance reviews available therapies to achieve healthy weight reduction and reverse MASLD to prevent progressive liver fibrosis, and metabolic disease.
Collapse
Affiliation(s)
| | - Mohit Kehar
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Samar H. Ibrahim
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Division of Gastroenterology, Hepatology & Nutrition, Rady Children’s Hospital San Diego, San Diego, CA, USA
| | - Shilpa Sood
- Division of Pediatric Gastroenterology, Boston Children's Health Physicians, New York Medical College, Valhalla, NY, USA
| | - Sara Hassan
- University of Texas Southwestern, Dallas, TX, United States
| | | | - Rohit Kohli
- Children's Hospital Los Angeles, CA, United States
| | - Marisa Censani
- Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States
| | - Erin Mauney
- Tufts Medical Center, Boston, MA, United States
| | - Suzanne Cuda
- Alamo City Healthy Kids and Families, San Antonio, TX, United States
| | - Sara Karjoo
- Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
- University of South Florida, Tampa, FL, United States
- Florida State University, Tallahassee, FL, United States
| |
Collapse
|
2
|
Ziqubu K, Mazibuko-Mbeje SE, Dludla PV. Regulation of adipokine and batokine secretion by dietary flavonoids, as a prospective therapeutic approach for obesity and its metabolic complications. Biochimie 2025; 230:95-113. [PMID: 39551425 DOI: 10.1016/j.biochi.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Traditionally recognised as the energy reservoir and main site of adaptive thermogenesis, white and brown adipose tissues are complex endocrine organs regulating systemic energy metabolism via the secretion of bioactive molecules, termed "adipokines" and "batokines", respectively. Due to its significant role in regulating whole-body energy metabolism and other physiological processes, adipose tissue has been increasingly explored as a feasible therapeutic target for obesity. Flavonoids are one of the most significant plant polyphenolic compounds holding a great potential as therapeutic agents for combating obesity. However, understanding their mechanisms of action remains largely insufficient to formulate therapeutic theories. This review critically discusses scientific evidence highlighting the role of flavonoids in ameliorating obesity-related metabolic complications, including adipose tissue dysfunction, inflammation, insulin resistance, hepatic steatosis, and cardiovascular comorbidities in part by modulating the release of adipokines and batokines. Further discussion advocates for the use of therapeutics targeting these bioactive molecules as a potential avenue for developing effective treatment for obesity and its adverse metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | | | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
3
|
Zhao K, Zhang H, Ding W, Yu X, Hou Y, Liu X, Li X, Wang X. Adipokines regulate the development and progression of MASLD through organellar oxidative stress. Hepatol Commun 2025; 9:e0639. [PMID: 39878681 PMCID: PMC11781772 DOI: 10.1097/hc9.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices. These adipokines intricately orchestrate regulatory pathways that impact glucose and lipid metabolism, oxidative stress, and mitochondrial function, thereby influencing the evolution of hepatic steatosis and progression to metabolic dysfunction-associated steatohepatitis (MASH). This review examines recent data, underscoring the critical interplay of oxidative stress, reactive oxygen species, and redox signaling in adipokine-mediated mechanisms. The role of various adipokines in regulating the onset and progression of MASLD/MASH through mitochondrial dysfunction and endoplasmic reticulum stress and the underlying mechanisms are discussed. Due to the emerging correlation between adipokines and the development of MASLD positions, these adipokines are potential targets for the development of innovative therapeutic interventions for MASLD management. A comprehensive understanding of the pathogenesis of MASLD/MASH is instrumental for identifying therapies for MASH.
Collapse
Affiliation(s)
- Ke Zhao
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Heng Zhang
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- Central laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenyu Ding
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xiaoshuai Yu
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- Central laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanli Hou
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xihong Liu
- Department of Pathology, The Fourth People’s Hospital of Jinan, Jinan, Shandong, China
| | - Xinhua Li
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xiaolei Wang
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- First school of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
4
|
Economou A, Mallia I, Fioravanti A, Gentileschi S, Nacci F, Bellando Randone S, Lepri G, Guiducci S. The Role of Adipokines between Genders in the Pathogenesis of Osteoarthritis. Int J Mol Sci 2024; 25:10865. [PMID: 39409194 PMCID: PMC11476677 DOI: 10.3390/ijms251910865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive, degenerative joint disease characterized by joint pain, stiffness, and limited movement. It presents significant intra- and inter-individual variability-in particular, between genders. Recent research has increasingly focused on the role of adipokines-especially leptin, adiponectin, and resistin-in the development of OA. Adipokines, peptide hormones primarily secreted by adipose tissue, are involved in crucial physiological processes related to metabolism and immunity. They can also impact bone and cartilage turnover by interacting with joint cells such as osteoblasts, osteoclasts, chondrocytes, and mesenchymal stem cells, thereby linking inflammation with bone cartilage homeostasis. This review aims to elucidate the structure and functions of various adipokines, their serum and synovial levels, and their association with clinical presentation and radiographic progression in OA patients, with a focus on differences between sexes. A narrative literature review was conducted using three databases specifically analyzing sex differences. OA patients generally show elevated serum and synovial levels of leptin, chemerin, and visfatin, as well as high plasma levels of resistin and visfatin. In contrast, synovial levels of adiponectin and omentin are reduced in OA patients compared to healthy individuals, with an inverse relationship to disease severity, suggesting a potential protective role. Resistin and leptin were positively correlated with pain severity and radiographic progression, while adiponectin's role in OA remains controversial. Regarding sex differences, male OA patients exhibited higher serum levels of leptin, chemerin, and omentin compared to healthy controls, with a positive correlation to the BMI and estrogen levels, potentially explaining the sexual dimorphism observed in this condition. Studies on visfatin and lipocalin did not reveal significant differences in synovial or serum levels between the sexes. The role of resistin remains controversial. Adipokines influence the joint microenvironment and contribute to the progression of osteoarthritis (OA). However, the precise biological mechanisms are not yet fully understood due to the complex interactions between the metabolic, mechanical, and immune systems. Further research is needed to clarify their roles in OA and to identify targeted therapies for managing this degenerative disease.
Collapse
Affiliation(s)
- Alessio Economou
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Ilenia Mallia
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Antonella Fioravanti
- Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (A.F.); (S.G.)
| | - Stefano Gentileschi
- Rheumatology Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (A.F.); (S.G.)
| | - Francesca Nacci
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Silvia Bellando Randone
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Gemma Lepri
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| | - Serena Guiducci
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy; (F.N.); (S.B.R.); (G.L.); (S.G.)
| |
Collapse
|
5
|
Kiełbowski K, Bakinowska E, Bratborska AW, Pawlik A. The role of adipokines in the pathogenesis of psoriasis - a focus on resistin, omentin-1 and vaspin. Expert Opin Ther Targets 2024; 28:587-600. [PMID: 38965991 DOI: 10.1080/14728222.2024.2375373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin condition with several types of manifestation, including psoriatic arthritis. In recent years, studies have demonstrated multiple molecules and mechanisms that play important roles in the pathophysiology of psoriasis. Studies have been conducted to determine the role of adipokines, bioactive peptides secreted by the adipose tissue, in the pathogenesis of inflammatory diseases. These studies have shown that adipokines are dysregulated in psoriasis and their abnormal expression profile could contribute to the inflammatory mechanisms observed in psoriasis. AREAS COVERED In this review, we discuss the immunomodulatory features of resistin, omentin-1, and vaspin, and discuss their potential involvement in the pathogenesis of psoriasis. EXPERT OPINION The adipokines resistin, omentin, and vaspin appear to be promising therapeutic targets in psoriasis. It is important to seek to block the action of resistin, either by blocking its receptors or by blocking its systemic effects with antibodies. In the case of omentin and vaspin, substances that are receptor mimetics of these adipokines should be sought and studies conducted of their analogues for the treatment of psoriasis. To introduce these therapies into clinical practice, multicentre clinical trials are required to confirm their efficacy and safety after initial studies in animal models.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
6
|
Corona-Meraz FI, Vázquez-Del Mercado M, Sandoval-García F, Robles-De Anda JA, Tovar-Cuevas AJ, Rosales-Gómez RC, Guzmán-Ornelas MO, González-Inostroz D, Peña-Nava M, Martín-Márquez BT. Biomarkers in Systemic Lupus Erythematosus along with Metabolic Syndrome. J Clin Med 2024; 13:1988. [PMID: 38610754 PMCID: PMC11012563 DOI: 10.3390/jcm13071988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic syndrome (MetS) is a group of physiological abnormalities characterized by obesity, insulin resistance (IR), and hypertriglyceridemia, which carry the risk of developing cardiovascular disease (CVD) and type 2 diabetes (T2D). Immune and metabolic alterations have been observed in MetS and are associated with autoimmune development. Systemic lupus erythematosus (SLE) is an autoimmune disease caused by a complex interaction of environmental, hormonal, and genetic factors and hyperactivation of immune cells. Patients with SLE have a high prevalence of MetS, in which elevated CVD is observed. Among the efforts of multidisciplinary healthcare teams to make an early diagnosis, a wide variety of factors have been considered and associated with the generation of biomarkers. This review aimed to elucidate some primary biomarkers and propose a set of assessments to improve the projection of the diagnosis and evolution of patients. These biomarkers include metabolic profiles, cytokines, cardiovascular tests, and microRNAs (miRs), which have been observed to be dysregulated in these patients and associated with outcomes.
Collapse
Affiliation(s)
- Fernanda Isadora Corona-Meraz
- Multidisciplinary Health Research Center, Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara 45425, Jalisco, Mexico; (A.-J.T.-C.); (R.-C.R.-G.); (M.-O.G.-O.)
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
| | - Mónica Vázquez-Del Mercado
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
- Rheumatology Service, Internal Medicine Division, Civil Hospital of Guadalajara “Dr. Juan I. Menchaca”, Guadalajara 44340, Jalisco, Mexico
- Academic Group UDG-CA-703, “Immunology and Rheumatology”, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Flavio Sandoval-García
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
- Academic Group UDG-CA-703, “Immunology and Rheumatology”, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jesus-Aureliano Robles-De Anda
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
| | - Alvaro-Jovanny Tovar-Cuevas
- Multidisciplinary Health Research Center, Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara 45425, Jalisco, Mexico; (A.-J.T.-C.); (R.-C.R.-G.); (M.-O.G.-O.)
| | - Roberto-Carlos Rosales-Gómez
- Multidisciplinary Health Research Center, Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara 45425, Jalisco, Mexico; (A.-J.T.-C.); (R.-C.R.-G.); (M.-O.G.-O.)
| | - Milton-Omar Guzmán-Ornelas
- Multidisciplinary Health Research Center, Department of Biomedical Sciences, University Center of Tonala, University of Guadalajara, Guadalajara 45425, Jalisco, Mexico; (A.-J.T.-C.); (R.-C.R.-G.); (M.-O.G.-O.)
| | - Daniel González-Inostroz
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
| | - Miguel Peña-Nava
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
| | - Beatriz-Teresita Martín-Márquez
- Department of Molecular Biology and Genomics, Institute of Rheumatology and Musculoskeletal System Research, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.V.-D.M.); (F.S.-G.); (J.-A.R.-D.A.); (D.G.-I.); (M.P.-N.)
- Academic Group UDG-CA-703, “Immunology and Rheumatology”, University Center of Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
7
|
Sena CM. Omentin: A Key Player in Glucose Homeostasis, Atheroprotection, and Anti-Inflammatory Potential for Cardiovascular Health in Obesity and Diabetes. Biomedicines 2024; 12:284. [PMID: 38397886 PMCID: PMC10887037 DOI: 10.3390/biomedicines12020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Omentin is an adipokine mainly produced by visceral fat tissue. It has two isoforms, omentin-1 and omentin-2. Omentin-1 is predominantly secreted by visceral adipose tissue, derived specifically from the stromal vascular fraction cells of white adipose tissue (WAT). Levels of omentin-1 are also expressed in other WAT depots, such as epicardial adipose tissue. Omentin-1 exerts several beneficial effects in glucose homeostasis in obesity and diabetes. In addition, research has suggested that omentin-1 may have atheroprotective (protective against the development of atherosclerosis) and anti-inflammatory effects, potentially contributing to cardiovascular health. This review highlights the potential therapeutic targets of omentin-1 in metabolic disorders.
Collapse
Affiliation(s)
- Cristina M Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|