1
|
Viezzer D, Fenski M, Grandy TH, Kuhnt J, Hadler T, Lange S, Schulz-Menger J. Reslice3Dto2D: Introduction of a software tool to reformat 3D volumes into reference 2D slices in cardiovascular magnetic resonance imaging. BMC Res Notes 2024; 17:270. [PMID: 39289712 PMCID: PMC11409793 DOI: 10.1186/s13104-024-06931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE Cardiovascular magnetic resonance enables the quantification of functional and morphological parameters with an impact on therapeutical decision making. While quantitative assessment is established in 2D, novel 3D techniques lack a standardized approach. Multi-planar-reformatting functionality in available software relies on visual matching location and often lacks necessary functionalities for further post-processing. Therefore, the easy-to-use Reslice3Dto2D software tool was developed as part of another research project to fill this gap and is now introduced with this work. RESULTS The Reslice3Dto2D reformats 3D data at the exact location of a reference slice with a two-step-based interpolation in order to reflect in-plane discretization and through-plane slice thickness including a slice profile selection. The tool was successfully validated on an artificial dataset and tested on 119 subjects with different underlying pathologies. The exported reformatted data could be imported into three different post-processing software tools. The quantified image sharpness by the Frequency Domain Image Blur Measure was significantly decreased by around 40% on rectangular slice profiles with 7 mm slice thickness compared to 0 mm due to partial volume effects. Consequently, Reslice3Dto2D enables the quantification of 3D data with conventional post-processing tools as well as the comparison of 3D acquisitions with their established 2D version.
Collapse
Affiliation(s)
- Darian Viezzer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany.
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| | - Maximilian Fenski
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Cardiology and Nephrology, Helios Hospital Berlin-Buch, Berlin, Germany
| | - Thomas Hiroshi Grandy
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Cardiology and Nephrology, Helios Hospital Berlin-Buch, Berlin, Germany
| | - Johanna Kuhnt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Thomas Hadler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Steffen Lange
- Faculty for Computer Sciences, Hochschule Darmstadt (University of Applied Sciences), Darmstadt, Germany
| | - Jeanette Schulz-Menger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125, Berlin, Germany
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, Helios Hospital Berlin-Buch, Berlin, Germany
| |
Collapse
|
2
|
Xiao J, Poblete RA, Lerner A, Nguyen PL, Song JW, Sanossian N, Wilcox AG, Song SS, Lyden PD, Saver JL, Wasserman BA, Fan Z. MRI in the Evaluation of Cryptogenic Stroke and Embolic Stroke of Undetermined Source. Radiology 2024; 311:e231934. [PMID: 38652031 PMCID: PMC11070612 DOI: 10.1148/radiol.231934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 04/25/2024]
Abstract
Cryptogenic stroke refers to a stroke of undetermined etiology. It accounts for approximately one-fifth of ischemic strokes and has a higher prevalence in younger patients. Embolic stroke of undetermined source (ESUS) refers to a subgroup of patients with nonlacunar cryptogenic strokes in whom embolism is the suspected stroke mechanism. Under the classifications of cryptogenic stroke or ESUS, there is wide heterogeneity in possible stroke mechanisms. In the absence of a confirmed stroke etiology, there is no established treatment for secondary prevention of stroke in patients experiencing cryptogenic stroke or ESUS, despite several clinical trials, leaving physicians with a clinical dilemma. Both conventional and advanced MRI techniques are available in clinical practice to identify differentiating features and stroke patterns and to determine or infer the underlying etiologic cause, such as atherosclerotic plaques and cardiogenic or paradoxical embolism due to occult pelvic venous thrombi. The aim of this review is to highlight the diagnostic utility of various MRI techniques in patients with cryptogenic stroke or ESUS. Future trends in technological advancement for promoting the adoption of MRI in such a special clinical application are also discussed.
Collapse
Affiliation(s)
- Jiayu Xiao
- From the Departments of Radiology (J.X., A.L., A.G.W., Z.F.),
Neurology (R.A.P., P.L.N., N.S., P.D.L.), Physiology and Neuroscience (P.D.L.),
Biomedical Engineering (Z.F.), and Radiation Oncology (Z.F.), University of
Southern California, 2250 Alcazar St, CSC Room 104, Los Angeles, CA 90033;
Department of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (J.W.S.); Department of Neurology, Cedars-Sinai Medical Center,
Los Angeles, Calif (S.S.S.); Comprehensive Stroke Center and Department of
Neurology, David Geffen School of Medicine, University of California–Los
Angeles, Los Angeles, Calif (J.L.S.); Department of Diagnostic Radiology and
Nuclear Medicine, University of Maryland–Baltimore, Baltimore, Md
(B.A.W.); and Department of Radiology and Radiological Sciences, Johns Hopkins
University, Baltimore, Md (B.A.W.)
| | - Roy A. Poblete
- From the Departments of Radiology (J.X., A.L., A.G.W., Z.F.),
Neurology (R.A.P., P.L.N., N.S., P.D.L.), Physiology and Neuroscience (P.D.L.),
Biomedical Engineering (Z.F.), and Radiation Oncology (Z.F.), University of
Southern California, 2250 Alcazar St, CSC Room 104, Los Angeles, CA 90033;
Department of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (J.W.S.); Department of Neurology, Cedars-Sinai Medical Center,
Los Angeles, Calif (S.S.S.); Comprehensive Stroke Center and Department of
Neurology, David Geffen School of Medicine, University of California–Los
Angeles, Los Angeles, Calif (J.L.S.); Department of Diagnostic Radiology and
Nuclear Medicine, University of Maryland–Baltimore, Baltimore, Md
(B.A.W.); and Department of Radiology and Radiological Sciences, Johns Hopkins
University, Baltimore, Md (B.A.W.)
| | - Alexander Lerner
- From the Departments of Radiology (J.X., A.L., A.G.W., Z.F.),
Neurology (R.A.P., P.L.N., N.S., P.D.L.), Physiology and Neuroscience (P.D.L.),
Biomedical Engineering (Z.F.), and Radiation Oncology (Z.F.), University of
Southern California, 2250 Alcazar St, CSC Room 104, Los Angeles, CA 90033;
Department of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (J.W.S.); Department of Neurology, Cedars-Sinai Medical Center,
Los Angeles, Calif (S.S.S.); Comprehensive Stroke Center and Department of
Neurology, David Geffen School of Medicine, University of California–Los
Angeles, Los Angeles, Calif (J.L.S.); Department of Diagnostic Radiology and
Nuclear Medicine, University of Maryland–Baltimore, Baltimore, Md
(B.A.W.); and Department of Radiology and Radiological Sciences, Johns Hopkins
University, Baltimore, Md (B.A.W.)
| | - Peggy L. Nguyen
- From the Departments of Radiology (J.X., A.L., A.G.W., Z.F.),
Neurology (R.A.P., P.L.N., N.S., P.D.L.), Physiology and Neuroscience (P.D.L.),
Biomedical Engineering (Z.F.), and Radiation Oncology (Z.F.), University of
Southern California, 2250 Alcazar St, CSC Room 104, Los Angeles, CA 90033;
Department of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (J.W.S.); Department of Neurology, Cedars-Sinai Medical Center,
Los Angeles, Calif (S.S.S.); Comprehensive Stroke Center and Department of
Neurology, David Geffen School of Medicine, University of California–Los
Angeles, Los Angeles, Calif (J.L.S.); Department of Diagnostic Radiology and
Nuclear Medicine, University of Maryland–Baltimore, Baltimore, Md
(B.A.W.); and Department of Radiology and Radiological Sciences, Johns Hopkins
University, Baltimore, Md (B.A.W.)
| | - Jae W. Song
- From the Departments of Radiology (J.X., A.L., A.G.W., Z.F.),
Neurology (R.A.P., P.L.N., N.S., P.D.L.), Physiology and Neuroscience (P.D.L.),
Biomedical Engineering (Z.F.), and Radiation Oncology (Z.F.), University of
Southern California, 2250 Alcazar St, CSC Room 104, Los Angeles, CA 90033;
Department of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (J.W.S.); Department of Neurology, Cedars-Sinai Medical Center,
Los Angeles, Calif (S.S.S.); Comprehensive Stroke Center and Department of
Neurology, David Geffen School of Medicine, University of California–Los
Angeles, Los Angeles, Calif (J.L.S.); Department of Diagnostic Radiology and
Nuclear Medicine, University of Maryland–Baltimore, Baltimore, Md
(B.A.W.); and Department of Radiology and Radiological Sciences, Johns Hopkins
University, Baltimore, Md (B.A.W.)
| | - Nerses Sanossian
- From the Departments of Radiology (J.X., A.L., A.G.W., Z.F.),
Neurology (R.A.P., P.L.N., N.S., P.D.L.), Physiology and Neuroscience (P.D.L.),
Biomedical Engineering (Z.F.), and Radiation Oncology (Z.F.), University of
Southern California, 2250 Alcazar St, CSC Room 104, Los Angeles, CA 90033;
Department of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (J.W.S.); Department of Neurology, Cedars-Sinai Medical Center,
Los Angeles, Calif (S.S.S.); Comprehensive Stroke Center and Department of
Neurology, David Geffen School of Medicine, University of California–Los
Angeles, Los Angeles, Calif (J.L.S.); Department of Diagnostic Radiology and
Nuclear Medicine, University of Maryland–Baltimore, Baltimore, Md
(B.A.W.); and Department of Radiology and Radiological Sciences, Johns Hopkins
University, Baltimore, Md (B.A.W.)
| | - Alison G. Wilcox
- From the Departments of Radiology (J.X., A.L., A.G.W., Z.F.),
Neurology (R.A.P., P.L.N., N.S., P.D.L.), Physiology and Neuroscience (P.D.L.),
Biomedical Engineering (Z.F.), and Radiation Oncology (Z.F.), University of
Southern California, 2250 Alcazar St, CSC Room 104, Los Angeles, CA 90033;
Department of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (J.W.S.); Department of Neurology, Cedars-Sinai Medical Center,
Los Angeles, Calif (S.S.S.); Comprehensive Stroke Center and Department of
Neurology, David Geffen School of Medicine, University of California–Los
Angeles, Los Angeles, Calif (J.L.S.); Department of Diagnostic Radiology and
Nuclear Medicine, University of Maryland–Baltimore, Baltimore, Md
(B.A.W.); and Department of Radiology and Radiological Sciences, Johns Hopkins
University, Baltimore, Md (B.A.W.)
| | - Shlee S. Song
- From the Departments of Radiology (J.X., A.L., A.G.W., Z.F.),
Neurology (R.A.P., P.L.N., N.S., P.D.L.), Physiology and Neuroscience (P.D.L.),
Biomedical Engineering (Z.F.), and Radiation Oncology (Z.F.), University of
Southern California, 2250 Alcazar St, CSC Room 104, Los Angeles, CA 90033;
Department of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (J.W.S.); Department of Neurology, Cedars-Sinai Medical Center,
Los Angeles, Calif (S.S.S.); Comprehensive Stroke Center and Department of
Neurology, David Geffen School of Medicine, University of California–Los
Angeles, Los Angeles, Calif (J.L.S.); Department of Diagnostic Radiology and
Nuclear Medicine, University of Maryland–Baltimore, Baltimore, Md
(B.A.W.); and Department of Radiology and Radiological Sciences, Johns Hopkins
University, Baltimore, Md (B.A.W.)
| | - Patrick D. Lyden
- From the Departments of Radiology (J.X., A.L., A.G.W., Z.F.),
Neurology (R.A.P., P.L.N., N.S., P.D.L.), Physiology and Neuroscience (P.D.L.),
Biomedical Engineering (Z.F.), and Radiation Oncology (Z.F.), University of
Southern California, 2250 Alcazar St, CSC Room 104, Los Angeles, CA 90033;
Department of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (J.W.S.); Department of Neurology, Cedars-Sinai Medical Center,
Los Angeles, Calif (S.S.S.); Comprehensive Stroke Center and Department of
Neurology, David Geffen School of Medicine, University of California–Los
Angeles, Los Angeles, Calif (J.L.S.); Department of Diagnostic Radiology and
Nuclear Medicine, University of Maryland–Baltimore, Baltimore, Md
(B.A.W.); and Department of Radiology and Radiological Sciences, Johns Hopkins
University, Baltimore, Md (B.A.W.)
| | - Jeffrey L. Saver
- From the Departments of Radiology (J.X., A.L., A.G.W., Z.F.),
Neurology (R.A.P., P.L.N., N.S., P.D.L.), Physiology and Neuroscience (P.D.L.),
Biomedical Engineering (Z.F.), and Radiation Oncology (Z.F.), University of
Southern California, 2250 Alcazar St, CSC Room 104, Los Angeles, CA 90033;
Department of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (J.W.S.); Department of Neurology, Cedars-Sinai Medical Center,
Los Angeles, Calif (S.S.S.); Comprehensive Stroke Center and Department of
Neurology, David Geffen School of Medicine, University of California–Los
Angeles, Los Angeles, Calif (J.L.S.); Department of Diagnostic Radiology and
Nuclear Medicine, University of Maryland–Baltimore, Baltimore, Md
(B.A.W.); and Department of Radiology and Radiological Sciences, Johns Hopkins
University, Baltimore, Md (B.A.W.)
| | - Bruce A. Wasserman
- From the Departments of Radiology (J.X., A.L., A.G.W., Z.F.),
Neurology (R.A.P., P.L.N., N.S., P.D.L.), Physiology and Neuroscience (P.D.L.),
Biomedical Engineering (Z.F.), and Radiation Oncology (Z.F.), University of
Southern California, 2250 Alcazar St, CSC Room 104, Los Angeles, CA 90033;
Department of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (J.W.S.); Department of Neurology, Cedars-Sinai Medical Center,
Los Angeles, Calif (S.S.S.); Comprehensive Stroke Center and Department of
Neurology, David Geffen School of Medicine, University of California–Los
Angeles, Los Angeles, Calif (J.L.S.); Department of Diagnostic Radiology and
Nuclear Medicine, University of Maryland–Baltimore, Baltimore, Md
(B.A.W.); and Department of Radiology and Radiological Sciences, Johns Hopkins
University, Baltimore, Md (B.A.W.)
| | - Zhaoyang Fan
- From the Departments of Radiology (J.X., A.L., A.G.W., Z.F.),
Neurology (R.A.P., P.L.N., N.S., P.D.L.), Physiology and Neuroscience (P.D.L.),
Biomedical Engineering (Z.F.), and Radiation Oncology (Z.F.), University of
Southern California, 2250 Alcazar St, CSC Room 104, Los Angeles, CA 90033;
Department of Radiology, Hospital of the University of Pennsylvania,
Philadelphia, Pa (J.W.S.); Department of Neurology, Cedars-Sinai Medical Center,
Los Angeles, Calif (S.S.S.); Comprehensive Stroke Center and Department of
Neurology, David Geffen School of Medicine, University of California–Los
Angeles, Los Angeles, Calif (J.L.S.); Department of Diagnostic Radiology and
Nuclear Medicine, University of Maryland–Baltimore, Baltimore, Md
(B.A.W.); and Department of Radiology and Radiological Sciences, Johns Hopkins
University, Baltimore, Md (B.A.W.)
| |
Collapse
|
3
|
Dohy Z, Kiss M, Suhai FI, Kunze K, Neji R, Orbán G, Drobni Z, Czimbalmos C, Juhász V, Szabó L, Botnar R, Prieto C, Merkely B, Szegedi N, Vágó H. Feasibility and image quality of bright-blood and black-blood phase-sensitive inversion recovery (BOOST) sequence in clinical practice using for left atrial visualization in patients with atrial fibrillation. Eur Radiol 2024; 34:2689-2698. [PMID: 37804340 PMCID: PMC10957673 DOI: 10.1007/s00330-023-10257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVES Visualizing left atrial anatomy including the pulmonary veins (PVs) is important for planning the procedure of pulmonary vein isolation with ablation in patients with atrial fibrillation (AF). The aims of our study are to investigate the feasibility of the 3D whole-heart bright-blood and black-blood phase-sensitive (BOOST) inversion recovery sequence in patients with AF scheduled for ablation or electro-cardioversion, and to analyze the correlation between image quality and heart rate and rhythm of patients. METHODS BOOST was performed for assessing PVs both with T2 preparation pre-pulse (T2prep) and magnetization transfer preparation (MTC) in 45 patients with paroxysmal or permanent AF scheduled for ablation or electro-cardioversion. Image quality analyses were performed by two independent observers. Qualitative assessment was made using the Likert scale; for quantitative analysis, signal to noise ratios (SNR) and contrast to noise ratios (CNR) were calculated for each PV. Heart rate and rhythm were analyzed based on standard 12-lead ECGs. RESULTS All MTC-BOOST acquisitions achieved diagnostic quality in the PVs, while a significant proportion of T2prep-BOOST images were not suitable for assessing PVs. SNR and CNR values of the MTC-BOOST bright-blood images were higher if patients had sinus rhythm. We found a significant or nearly significant negative correlation between heart rate and the SNR and CNR values of MTC-BOOST bright-blood images. CONCLUSION 3D whole-heart MTC-BOOST bright-blood imaging is suitable for visualizing the PVs in patients with AF, producing diagnostic image quality in 100% of cases. However, image quality was influenced by heart rate and rhythm. CLINICAL RELEVANCE STATEMENT The novel 3D whole-heart BOOST CMR sequence needs no contrast administration and is performed during free-breathing; therefore, it is easy to use for a wide range of patients and is suitable for visualizing the PVs in patients with AF. KEY POINTS • The applicability of the novel 3D whole-heart bright-blood and black-blood phase-sensitive sequence to pulmonary vein imaging in clinical practice is unknown. • Magnetization transfer-bright-blood and black-blood phase-sensitive imaging is suitable for visualizing the pulmonary veins in patients with atrial fibrillation with excellent or good image quality. • Bright-blood and black-blood phase-sensitive cardiac magnetic resonance sequence is easy to use for a wide range of patients as it needs no contrast administration and is performed during free-breathing.
Collapse
Affiliation(s)
- Zsófia Dohy
- Heart and Vascular Centre, Semmelweis University, 68 Varosmajor St, Budapest, H-1122, Hungary
| | - Máté Kiss
- Siemens Healthcare Hungary, Budapest, Hungary
| | - Ferenc Imre Suhai
- Heart and Vascular Centre, Semmelweis University, 68 Varosmajor St, Budapest, H-1122, Hungary
| | | | | | - Gábor Orbán
- Heart and Vascular Centre, Semmelweis University, 68 Varosmajor St, Budapest, H-1122, Hungary
| | - Zsófia Drobni
- Heart and Vascular Centre, Semmelweis University, 68 Varosmajor St, Budapest, H-1122, Hungary
| | - Csilla Czimbalmos
- Heart and Vascular Centre, Semmelweis University, 68 Varosmajor St, Budapest, H-1122, Hungary
| | - Vencel Juhász
- Heart and Vascular Centre, Semmelweis University, 68 Varosmajor St, Budapest, H-1122, Hungary
| | - Liliána Szabó
- Heart and Vascular Centre, Semmelweis University, 68 Varosmajor St, Budapest, H-1122, Hungary
| | - Rene Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Béla Merkely
- Heart and Vascular Centre, Semmelweis University, 68 Varosmajor St, Budapest, H-1122, Hungary
| | - Nándor Szegedi
- Heart and Vascular Centre, Semmelweis University, 68 Varosmajor St, Budapest, H-1122, Hungary
| | - Hajnalka Vágó
- Heart and Vascular Centre, Semmelweis University, 68 Varosmajor St, Budapest, H-1122, Hungary.
| |
Collapse
|
4
|
Gertz RJ, Wagner A, Sokolowski M, Lennartz S, Gietzen C, Grunz JP, Goertz L, Kaya K, ten Freyhaus H, Persigehl T, Bunck AC, Doerner J, Naehle CP, Maintz D, Weiss K, Katemann C, Pennig L. Compressed SENSE accelerated 3D single-breath-hold late gadolinium enhancement cardiovascular magnetic resonance with isotropic resolution: clinical evaluation. Front Cardiovasc Med 2023; 10:1305649. [PMID: 38099228 PMCID: PMC10720442 DOI: 10.3389/fcvm.2023.1305649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Aim The purpose of this study was to investigate the clinical application of Compressed SENSE accelerated single-breath-hold LGE with 3D isotropic resolution compared to conventional LGE imaging acquired in multiple breath-holds. Material & Methods This was a retrospective, single-center study including 105 examinations of 101 patients (48.2 ± 16.8 years, 47 females). All patients underwent conventional breath-hold and 3D single-breath-hold (0.96 × 0.96 × 1.1 mm3 reconstructed voxel size, Compressed SENSE factor 6.5) LGE sequences at 1.5 T in clinical routine for the evaluation of ischemic or non-ischemic cardiomyopathies. Two radiologists independently evaluated the left ventricle (LV) for the presence of hyperenhancing lesions in each sequence, including localization and transmural extent, while assessing their scar edge sharpness (SES). Confidence of LGE assessment, image quality (IQ), and artifacts were also rated. The impact of LV ejection fraction (LVEF), heart rate, body mass index (BMI), and gender as possible confounders on IQ, artifacts, and confidence of LGE assessment was evaluated employing ordinal logistic regression analysis. Results Using 3D single-breath-hold LGE readers detected more hyperenhancing lesions compared to conventional breath-hold LGE (n = 246 vs. n = 216 of 1,785 analyzed segments, 13.8% vs. 12.1%; p < 0.0001), pronounced at subendocardial, midmyocardial, and subepicardial localizations and for 1%-50% of transmural extent. SES was rated superior in 3D single-breath-hold LGE (4.1 ± 0.8 vs. 3.3 ± 0.8; p < 0.001). 3D single-breath-hold LGE yielded more artifacts (3.8 ± 1.0 vs. 4.0 ± 3.8; p = 0.002) whereas IQ (4.1 ± 1.0 vs. 4.2 ± 0.9; p = 0.122) and confidence of LGE assessment (4.3 ± 0.9 vs. 4.3 ± 0.8; p = 0.374) were comparable between both techniques. Female gender negatively influenced artifacts in 3D single-breath-hold LGE (p = 0.0028) while increased heart rate led to decreased IQ in conventional breath-hold LGE (p = 0.0029). Conclusions In clinical routine, Compressed SENSE accelerated 3D single-breath-hold LGE yields image quality and confidence of LGE assessment comparable to conventional breath-hold LGE while providing improved delineation of smaller LGE lesions with superior scar edge sharpness. Given the fast acquisition of 3D single-breath-hold LGE, the technique holds potential to drastically reduce the examination time of CMR.
Collapse
Affiliation(s)
- Roman Johannes Gertz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anton Wagner
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Diagnostic and Interventional Radiology, Krankenhaus der Augustinerinnen, Cologne, Germany
| | - Marcel Sokolowski
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carsten Gietzen
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Lukas Goertz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kenan Kaya
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henrik ten Freyhaus
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Christian Bunck
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jonas Doerner
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Kontraste Radiologie-Praxis Köln West, Cologne, Germany
| | - Claas Philip Naehle
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Radiologische Allianz Hamburg, Hamburg, Germany
| | - David Maintz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | - Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Voges I, Krupickova S. Transcatheter Pulmonary Valve Replacement Candidacy: Is Cardiovascular Magnetic Resonance Angiography Enough? Am J Cardiol 2023; 207:507-508. [PMID: 37802700 DOI: 10.1016/j.amjcard.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Affiliation(s)
- Inga Voges
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany; German Centre for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Kiel, Germany.
| | - Sylvia Krupickova
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom; National Heart and Lung Institute, Imperial College, London, United Kingdom; Department of Pediatric Cardiology, Royal Brompton Hospital, part of Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
6
|
Orbán G, Dohy Z, Suhai FI, Nagy AI, Salló Z, Boga M, Kiss M, Kunze K, Neji R, Botnar R, Prieto C, Gellér L, Merkely B, Vágó H, Szegedi N. Use of a new non-contrast-enhanced BOOST cardiac MR sequence before electrical cardioversion or ablation of atrial fibrillation-a pilot study. Front Cardiovasc Med 2023; 10:1177347. [PMID: 37396587 PMCID: PMC10311645 DOI: 10.3389/fcvm.2023.1177347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Left atrial appendage (LAA) thrombus is the most common source of embolization in atrial fibrillation (AF). Transesophageal echocardiography (TEE) is the gold standard method for LAA thrombus exclusion. Our pilot study aimed to compare the efficacy of a new non-contrast-enhanced cardiac magnetic resonance (CMR) sequence (BOOST) with TEE for the detection of LAA thrombus and to evaluate the usefulness of BOOST images for planning radiofrequency catheter ablation (RFCA) compared with left atrial (LA) contrast-enhanced computed tomography (CT). We also attempted to assess the patients' subjective experiences with TEE and CMR. Methods Patients with AF undergoing either electrical cardioversion or RFCA were enrolled. Participants underwent pre-procedural TEE and CMR scans to evaluate LAA thrombus status and pulmonary vein anatomy. Patient experiences with TEE and CMR were assessed using a questionnaire developed by our team. Some patients scheduled for RFCA also had pre-procedural LA contrast-enhanced CT. In such cases, the operating physician was asked to subjectively define the quality of the CT and CMR scan on a scale of 1-10 (1 = worst, 10 = best) and comment on CMR's usefulness in RFCA planning. Results Seventy-one patients were enrolled. In 94.4%, both TEE and CMR excluded, and in 1 patient, both modalities reported the presence of LAA thrombus. In 1 patient, TEE was inconclusive, but CMR excluded LAA thrombus. In 2 patients, CMR could not exclude the presence of thrombus, but in 1 of those cases, TEE was also indecisive. During TEE, 67%, during CMR, only 1.9% of patients reported pain (p < 0.0001), and 89% would prefer CMR in case of a repeat examination. The quality of the left atrial contrast-enhanced CT scans was better compared with the image quality of the CMR BOOST sequence [8 (7-9) vs. 6 (5-7), p < 0.0001]. Still, the CMR images were useful for procedural planning in 91% of cases. Conclusion The new CMR BOOST sequence provides appropriate image quality for ablation planning. The sequence might be useful for excluding larger LAA thrombi; however, its accuracy in detecting smaller thrombi is limited. Most patients preferred CMR over TEE in this indication.
Collapse
Affiliation(s)
- Gábor Orbán
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zsófia Dohy
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Anikó Ilona Nagy
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zoltán Salló
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Márton Boga
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Máté Kiss
- Siemens Healthcare Hungary, Budapest, Hungary
| | - Karl Kunze
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Radhouene Neji
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Rene Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - László Gellér
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Hajnalka Vágó
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Nándor Szegedi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Allen JJ, Keegan J, Mathew G, Conway M, Jenkins S, Pennell DJ, Nielles-Vallespin S, Gatehouse P, Babu-Narayan SV. Fully-modelled blood-focused variable inversion times for 3D late gadolinium-enhanced imaging. Magn Reson Imaging 2023; 98:44-54. [PMID: 36581215 DOI: 10.1016/j.mri.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Variable heart rate during single-cycle inversion-recovery Late Gadolinium-Enhanced (LGE) scanning degrades image quality, which can be mitigated using Variable Inversion Times (VTIs) in real-time response to R-R interval changes. We investigate in vivo and in simulations an extension of a single-cycle VTI method previously applied in 3D LGE imaging, that now fully models the longitudinal magnetisation (fmVTI). METHODS The VTI and fmVTI methods were used to perform 3D LGE scans for 28 3D LGE patients, with qualitative image quality scores assigned for left atrial wall clarity and total ghosting. Accompanying simulations of numerical phantom images were assessed in terms of ghosting of normal myocardium, blood, and myocardial scar. RESULTS The numerical simulations for fmVTI showed a significant decrease in blood ghosting (VTI: 410 ± 710, fmVTI: 68 ± 40, p < 0.0005) and scar ghosting (VTI: 830 ± 1300, fmVTI: 510 ± 730, p < 0.02). Despite this, there was no significant change in qualitative image quality scores, either for left atrial wall clarity (VTI: 2.0 ± 1.0, fmVTI: 1.8 ± 1.0, p > 0.1) or for total ghosting (VTI: 1.9 ± 1.0, fmVTI: 2.0 ± 1.0, p > 0.7). CONCLUSIONS Simulations indicated reduced ghosting with the fmVTI method, due to reduced Mz variability in the blood signal. However, other sources of phase-encode ghosting and blurring appeared to dominate and obscure this finding in the patient studies available.
Collapse
Affiliation(s)
- Jack J Allen
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital. Part of Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jennifer Keegan
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital. Part of Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - George Mathew
- Royal Brompton Hospital. Part of Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Miriam Conway
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital. Part of Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Sophie Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital. Part of Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Dudley J Pennell
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital. Part of Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Sonia Nielles-Vallespin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital. Part of Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Peter Gatehouse
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital. Part of Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| | - Sonya V Babu-Narayan
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital. Part of Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
8
|
Oikonomou E, Theofilis P, Lampsas S, Katsarou O, Kalogeras K, Marinos G, Tsatsaragkou A, Anastasiou A, Lysandrou A, Gounaridi MI, Gialamas I, Vavuranakis MA, Tousoulis D, Vavuranakis M, Siasos G. Current Concepts and Future Applications of Non-Invasive Functional and Anatomical Evaluation of Coronary Artery Disease. Life (Basel) 2022; 12:1803. [PMID: 36362957 PMCID: PMC9696378 DOI: 10.3390/life12111803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Over the last decades, significant advances have been achieved in the treatment of coronary artery disease (CAD). Proper non-invasive diagnosis and appropriate management based on functional information and the extension of ischemia or viability remain the cornerstone in the fight against adverse CAD events. Stress echocardiography and single photon emission computed tomography are often used for the evaluation of ischemia. Advancements in non-invasive imaging modalities such as computed tomography (CT) coronary angiography and cardiac magnetic resonance imaging (MRI) have not only allowed non-invasive imaging of coronary artery lumen but also provide additional functional information. Other characteristics regarding the plaque morphology can be further evaluated with the latest modalities achieving a morpho-functional evaluation of CAD. Advances in the utilization of positron emission tomography (PET), as well as software advancements especially regarding cardiac CT, may provide additional prognostic information to a more evidence-based treatment decision. Since the armamentarium on non-invasive imaging modalities has evolved, the knowledge of the capabilities and limitations of each imaging modality should be evaluated in a case-by-case basis to achieve the best diagnosis and treatment decision. In this review article, we present the most recent advances in the noninvasive anatomical and functional evaluation of CAD.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Ourania Katsarou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Aikaterini Tsatsaragkou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Antonios Lysandrou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria-Ioanna Gounaridi
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Ioannis Gialamas
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Michael-Andrew Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiovascular Division, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
9
|
Androulakis E, Mohiaddin R, Bratis K. Magnetic resonance coronary angiography in the era of multimodality imaging. Clin Radiol 2022; 77:e489-e499. [DOI: 10.1016/j.crad.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
|
10
|
Ismail TF, Strugnell W, Coletti C, Božić-Iven M, Weingärtner S, Hammernik K, Correia T, Küstner T. Cardiac MR: From Theory to Practice. Front Cardiovasc Med 2022; 9:826283. [PMID: 35310962 PMCID: PMC8927633 DOI: 10.3389/fcvm.2022.826283] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading single cause of morbidity and mortality, causing over 17. 9 million deaths worldwide per year with associated costs of over $800 billion. Improving prevention, diagnosis, and treatment of CVD is therefore a global priority. Cardiovascular magnetic resonance (CMR) has emerged as a clinically important technique for the assessment of cardiovascular anatomy, function, perfusion, and viability. However, diversity and complexity of imaging, reconstruction and analysis methods pose some limitations to the widespread use of CMR. Especially in view of recent developments in the field of machine learning that provide novel solutions to address existing problems, it is necessary to bridge the gap between the clinical and scientific communities. This review covers five essential aspects of CMR to provide a comprehensive overview ranging from CVDs to CMR pulse sequence design, acquisition protocols, motion handling, image reconstruction and quantitative analysis of the obtained data. (1) The basic MR physics of CMR is introduced. Basic pulse sequence building blocks that are commonly used in CMR imaging are presented. Sequences containing these building blocks are formed for parametric mapping and functional imaging techniques. Commonly perceived artifacts and potential countermeasures are discussed for these methods. (2) CMR methods for identifying CVDs are illustrated. Basic anatomy and functional processes are described to understand the cardiac pathologies and how they can be captured by CMR imaging. (3) The planning and conduct of a complete CMR exam which is targeted for the respective pathology is shown. Building blocks are illustrated to create an efficient and patient-centered workflow. Further strategies to cope with challenging patients are discussed. (4) Imaging acceleration and reconstruction techniques are presented that enable acquisition of spatial, temporal, and parametric dynamics of the cardiac cycle. The handling of respiratory and cardiac motion strategies as well as their integration into the reconstruction processes is showcased. (5) Recent advances on deep learning-based reconstructions for this purpose are summarized. Furthermore, an overview of novel deep learning image segmentation and analysis methods is provided with a focus on automatic, fast and reliable extraction of biomarkers and parameters of clinical relevance.
Collapse
Affiliation(s)
- Tevfik F. Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Cardiology Department, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Wendy Strugnell
- Queensland X-Ray, Mater Hospital Brisbane, Brisbane, QLD, Australia
| | - Chiara Coletti
- Magnetic Resonance Systems Lab, Delft University of Technology, Delft, Netherlands
| | - Maša Božić-Iven
- Magnetic Resonance Systems Lab, Delft University of Technology, Delft, Netherlands
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | | | - Kerstin Hammernik
- Lab for AI in Medicine, Technical University of Munich, Munich, Germany
- Department of Computing, Imperial College London, London, United Kingdom
| | - Teresa Correia
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Centre of Marine Sciences, Faro, Portugal
| | - Thomas Küstner
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Whitaker J, Neji R, Kim S, Connolly A, Aubriot T, Calvo JJ, Karim R, Roney CH, Murfin B, Richardson C, Morgan S, Ismail TF, Harrison J, de Vos J, Aalders MCG, Williams SE, Mukherjee R, O'Neill L, Chubb H, Tschabrunn C, Anter E, Camporota L, Niederer S, Roujol S, Bishop MJ, Wright M, Silberbauer J, Razavi R, O'Neill M. Late Gadolinium Enhancement Cardiovascular Magnetic Resonance Assessment of Substrate for Ventricular Tachycardia With Hemodynamic Compromise. Front Cardiovasc Med 2021; 8:744779. [PMID: 34765656 PMCID: PMC8576410 DOI: 10.3389/fcvm.2021.744779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The majority of data regarding tissue substrate for post myocardial infarction (MI) VT has been collected during hemodynamically tolerated VT, which may be distinct from the substrate responsible for VT with hemodynamic compromise (VT-HC). This study aimed to characterize tissue at diastolic locations of VT-HC in a porcine model. Methods: Late Gadolinium Enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging was performed in eight pigs with healed antero-septal infarcts. Seven pigs underwent electrophysiology study with venous arterial-extra corporeal membrane oxygenation (VA-ECMO) support. Tissue thickness, scar and heterogeneous tissue (HT) transmurality were calculated at the location of the diastolic electrograms of mapped VT-HC. Results: Diastolic locations had median scar transmurality of 33.1% and a median HT transmurality 7.6%. Diastolic activation was found within areas of non-transmural scar in 80.1% of cases. Tissue activated during the diastolic component of VT circuits was thinner than healthy tissue (median thickness: 5.5 mm vs. 8.2 mm healthy tissue, p < 0.0001) and closer to HT (median distance diastolic tissue: 2.8 mm vs. 11.4 mm healthy tissue, p < 0.0001). Non-scarred regions with diastolic activation were closer to steep gradients in thickness than non-scarred locations with normal EGMs (diastolic locations distance = 1.19 mm vs. 9.67 mm for non-diastolic locations, p < 0.0001). Sites activated late in diastole were closest to steep gradients in tissue thickness. Conclusions: Non-transmural scar, mildly decreased tissue thickness, and steep gradients in tissue thickness represent the structural characteristics of the diastolic component of reentrant circuits in VT-HC in this porcine model and could form the basis for imaging criteria to define ablation targets in future trials.
Collapse
Affiliation(s)
- John Whitaker
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom.,Siemens Healthcare, Frimley, United Kingdom
| | - Steven Kim
- Abbott Medical, St Paul, MN, United States
| | - Adam Connolly
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | | | - Justo Juliá Calvo
- Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Rashed Karim
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Caroline H Roney
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Brendan Murfin
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Carla Richardson
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Stephen Morgan
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Tevfik F Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom.,Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - James Harrison
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Judith de Vos
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maurice C G Aalders
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom.,Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Rahul Mukherjee
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Louisa O'Neill
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Henry Chubb
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Cory Tschabrunn
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Elad Anter
- Cleveland Clinic, Cleveland, OH, United States
| | - Luigi Camporota
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Matthew Wright
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - John Silberbauer
- Brighton and Sussex University Hospitals NHS Trust, Brighton, United Kingdom
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - Mark O'Neill
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| |
Collapse
|
12
|
Image Quality and Reliability of a Novel Dark-Blood Late Gadolinium Enhancement Sequence in Ischemic Cardiomyopathy. J Thorac Imaging 2021; 35:326-333. [PMID: 32845112 DOI: 10.1097/rti.0000000000000448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this study was to assess the reliability of a 2D dark-blood phase-sensitive late gadolinium enhancement sequence (2D-DBPSLGE) compared with 2D phase-sensitive inversion recovery late gadolinium enhancement sequence (2D-BBPSLGE) in patients with ischemic cardiomyopathy (ICM). MATERIALS AND METHODS A total of 73 patients with a clinical history of ICM were prospectively enrolled. The following endpoints were evaluated: (a) comparison of image quality between 2D-BBPSLGE and 2D-DBPSLGE for differentiation between blood pool-late gadolinium enhancement (LGE), remote myocardium-LGE, and blood pool-remote myocardium; (b) diagnostic accuracy of 2D-DBPSLGE compared with gold standard 2D-BBPSLGE for the evaluation of infarcted segments; (c) diagnostic accuracy of 2D-DBPSLGE for the evaluation of microvascular obstruction (MVO); (d) comparison of transmurality index between 2D-BBPSLGE and 2D-DBPSLGE; (e) comparison of papillary muscle hyperenhancement between 2D-BBPSLGE and 2D-DBPSLGE; inter-reader agreement for depiction of hyperenhanced segments in both LGE sequences. Data were analyzed using paired t test, Wilcoxon test, and McNemar test, and η coefficient and intercorrelation coefficient (ICC). RESULTS Image quality was superior for 2D-DBPSLGE for differentiation of blood pool-LGE (P<0.001). 2D-DBPSLGE, compared with 2D-BBPSLGE, showed a sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of 96.93%, 99.89%, 99.71%, 98.78, and 99.04%, respectively. Concerning MVO detection, 2D-DBPSLGE showed a sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of 66.67%, 100.00%, 100.00%, 80.95%, and 86.21%, respectively. 2D-DBPSLGE underestimated the transmurality (P=0.007) and identified papillary muscle hyperenhancement (P<0.001). Both LGE sequences showed comparable interobserver agreement for the evaluation of infarcted areas (2D-BBPSLGE: ICC 0.99;2D-DBPSLGE: ICC 0.99). CONCLUSIONS Compared with 2D-BBPSLGE, 2D-DBPSLGE sequences provide better differentiation between LGE and blood-pool, while underestimating LGE trasmurality and the presence of MVO.
Collapse
|
13
|
Toupin S, Pezel T, Bustin A, Cochet H. Whole-Heart High-Resolution Late Gadolinium Enhancement: Techniques and Clinical Applications. J Magn Reson Imaging 2021; 55:967-987. [PMID: 34155715 PMCID: PMC9292698 DOI: 10.1002/jmri.27732] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
In cardiovascular magnetic resonance, late gadolinium enhancement (LGE) has become the cornerstone of myocardial tissue characterization. It is widely used in clinical routine to diagnose and characterize the myocardial tissue in a wide range of ischemic and nonischemic cardiomyopathies. The recent growing interest in imaging left atrial fibrosis has led to the development of novel whole‐heart high‐resolution late gadolinium enhancement (HR‐LGE) techniques. Indeed, conventional LGE is acquired in multiple breath‐holds with limited spatial resolution: ~1.4–1.8 mm in plane and 6–8 mm slice thickness, according to the Society for Cardiovascular Magnetic Resonance standardized guidelines. Such large voxel size prevents its use in thin structures such as the atrial or right ventricular walls. Whole‐heart 3D HR‐LGE images are acquired in free breathing to increase the spatial resolution (up to 1.3 × 1.3 × 1.3 mm3) and offer a better detection and depiction of focal atrial fibrosis. The downside of this increased resolution is the extended scan time of around 10 min, which hampers the spread of HR‐LGE in clinical practice. Initially introduced for atrial fibrosis imaging, HR‐LGE interest has evolved to be a tool to detect small scars in the ventricles and guide ablation procedures. Indeed, the detection of scars, nonvisible with conventional LGE, can be crucial in the diagnosis of myocardial infarction with nonobstructed coronary arteries, in the detection of the arrhythmogenic substrate triggering ventricular arrhythmia, and improve the confidence of clinicians in the challenging diagnoses such as the arrhythmogenic right ventricular cardiomyopathy. HR‐LGE also offers a precise visualization of left ventricular scar morphology that is particularly useful in planning ablation procedures and guiding them through the fusion of HR‐LGE images with electroanatomical mapping systems. In this narrative review, we attempt to summarize the technical particularities of whole‐heart HR‐LGE acquisition and provide an overview of its clinical applications with a particular focus on the ventricles.
Collapse
Affiliation(s)
- Solenn Toupin
- Siemens Healthcare France, Saint-Denis, France.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.,Université de Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Théo Pezel
- Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Cardiology, Lariboisiere Hospital, APHP, University of Paris, Paris, France
| | - Aurélien Bustin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.,Université de Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Hubert Cochet
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.,Université de Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Bordeaux University Hospital (CHU), Pessac, France
| |
Collapse
|
14
|
Milotta G, Munoz C, Kunze KP, Neji R, Figliozzi S, Chiribiri A, Hajhosseiny R, Masci PG, Prieto C, Botnar RM. 3D whole-heart grey-blood late gadolinium enhancement cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 2021; 23:62. [PMID: 34024276 PMCID: PMC8142497 DOI: 10.1186/s12968-021-00751-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To develop a free-breathing whole-heart isotropic-resolution 3D late gadolinium enhancement (LGE) sequence with Dixon-encoding, which provides co-registered 3D grey-blood phase-sensitive inversion-recovery (PSIR) and complementary 3D fat volumes in a single scan of < 7 min. METHODS A free-breathing 3D PSIR LGE sequence with dual-echo Dixon readout with a variable density Cartesian trajectory with acceleration factor of 3 is proposed. Image navigators are acquired to correct both inversion recovery (IR)-prepared and reference volumes for 2D translational respiratory motion, enabling motion compensated PSIR reconstruction with 100% respiratory scan efficiency. An intermediate PSIR reconstruction is performed between the in-phase echoes to estimate the signal polarity which is subsequently applied to the IR-prepared water volume to generate a water grey-blood PSIR image. The IR-prepared water volume is obtained using a water/fat separation algorithm from the corresponding dual-echo readout. The complementary fat-volume is obtained after water/fat separation of the reference volume. Ten patients (6 with myocardial scar) were scanned with the proposed water/fat grey-blood 3D PSIR LGE sequence at 1.5 T and compared to breath-held grey-blood 2D LGE sequence in terms of contrast ratio (CR), contrast-to-noise ratio (CNR), scar depiction, scar transmurality, scar mass and image quality. RESULTS Comparable CRs (p = 0.98, 0.40 and 0.83) and CNRs (p = 0.29, 0.40 and 0.26) for blood-myocardium, scar-myocardium and scar-blood respectively were obtained with the proposed free-breathing 3D water/fat LGE and 2D clinical LGE scan. Excellent agreement for scar detection, scar transmurality, scar mass (bias = 0.29%) and image quality scores (from 1: non-diagnostic to 4: excellent) of 3.8 ± 0.42 and 3.6 ± 0.69 (p > 0.99) were obtained with the 2D and 3D PSIR LGE approaches with comparable total acquisition time (p = 0.29). Similar agreement in intra and inter-observer variability were obtained for the 2D and 3D acquisition respectively. CONCLUSION The proposed approach enabled the acquisition of free-breathing motion-compensated isotropic-resolution 3D grey-blood PSIR LGE and fat volumes. The proposed approach showed good agreement with conventional 2D LGE in terms of CR, scar depiction and scan time, while enabling free-breathing acquisition, whole-heart coverage, reformatting in arbitrary views and visualization of both water and fat information.
Collapse
Affiliation(s)
- Giorgia Milotta
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital (3rd Floor - Lambeth Wing), Westminster Bridge Road, London, SE1 7EH, UK.
| | - Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital (3rd Floor - Lambeth Wing), Westminster Bridge Road, London, SE1 7EH, UK
| | - Karl P Kunze
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital (3rd Floor - Lambeth Wing), Westminster Bridge Road, London, SE1 7EH, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital (3rd Floor - Lambeth Wing), Westminster Bridge Road, London, SE1 7EH, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Stefano Figliozzi
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital (3rd Floor - Lambeth Wing), Westminster Bridge Road, London, SE1 7EH, UK
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital (3rd Floor - Lambeth Wing), Westminster Bridge Road, London, SE1 7EH, UK
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital (3rd Floor - Lambeth Wing), Westminster Bridge Road, London, SE1 7EH, UK
| | - Pier Giorgio Masci
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital (3rd Floor - Lambeth Wing), Westminster Bridge Road, London, SE1 7EH, UK
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital (3rd Floor - Lambeth Wing), Westminster Bridge Road, London, SE1 7EH, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital (3rd Floor - Lambeth Wing), Westminster Bridge Road, London, SE1 7EH, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Pennig L, Lennartz S, Wagner A, Sokolowski M, Gajzler M, Ney S, Laukamp KR, Persigehl T, Bunck AC, Maintz D, Weiss K, Naehle CP, Doerner J. Clinical application of free-breathing 3D whole heart late gadolinium enhancement cardiovascular magnetic resonance with high isotropic spatial resolution using Compressed SENSE. J Cardiovasc Magn Reson 2020; 22:89. [PMID: 33327958 PMCID: PMC7745391 DOI: 10.1186/s12968-020-00673-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/15/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) represents the gold standard for assessment of myocardial viability. The purpose of this study was to investigate the clinical potential of Compressed SENSE (factor 5) accelerated free-breathing three-dimensional (3D) whole heart LGE with high isotropic spatial resolution (1.4 mm3 acquired voxel size) compared to standard breath-hold LGE imaging. METHODS This was a retrospective, single-center study of 70 consecutive patients (45.8 ± 18.1 years, 27 females; February-November 2019), who were referred for assessment of left ventricular myocardial viability and received free-breathing and breath-hold LGE sequences at 1.5 T in clinical routine. Two radiologists independently evaluated global and segmental LGE in terms of localization and transmural extent. Readers scored scans regarding image quality (IQ), artifacts, and diagnostic confidence (DC) using 5-point scales (1 non-diagnostic-5 excellent/none). Effects of heart rate and body mass index (BMI) on IQ, artifacts, and DC were evaluated with ordinal logistic regression analysis. RESULTS Global LGE (n = 33) was identical for both techniques. Using free-breathing LGE (average scan time: 04:33 ± 01:17 min), readers detected more hyperenhanced lesions (28.2% vs. 23.5%, P < .05) compared to breath-hold LGE (05:15 ± 01:23 min, P = .0104), pronounced at subepicardial localization and for 1-50% of transmural extent. For free-breathing LGE, readers graded scans with good/excellent IQ in 80.0%, with low-impact/no artifacts in 78.6%, and with good/high DC in 82.1% of cases. Elevated BMI was associated with increased artifacts (P = .0012) and decreased IQ (P = .0237). Increased heart rate negatively influenced artifacts (P = .0013) and DC (P = .0479) whereas IQ (P = .3025) was unimpaired. CONCLUSIONS In a clinical setting, free-breathing Compressed SENSE accelerated 3D high isotropic spatial resolution whole heart LGE provides good to excellent image quality in 80% of scans independent of heart rate while enabling improved depiction of small and particularly non-ischemic hyperenhanced lesions in a shorter scan time than standard breath-hold LGE.
Collapse
Affiliation(s)
- Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
- Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, Weyertal 115b, 50931, Cologne, Germany
| | - Anton Wagner
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Marcel Sokolowski
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Matej Gajzler
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Svenja Ney
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Kai Roman Laukamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- Department of Radiology, University Hospitals Cleveland Medical Center, 11000 Euclid Ave, Cleveland, OH, 44106, USA
- Department of Radiology, Case Western Reserve University, 11000 Euclid Ave, Cleveland, OH, 44106, USA
| | - Thorsten Persigehl
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Alexander Christian Bunck
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - David Maintz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Kilian Weiss
- Philips GmbH, Röntgenstraße 22, 22335, Hamburg, Germany
| | - Claas Philip Naehle
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Jonas Doerner
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| |
Collapse
|
16
|
Correia T, Ginami G, Rashid I, Nordio G, Hajhosseiny R, Ismail TF, Neji R, Botnar RM, Prieto C. Accelerated high-resolution free-breathing 3D whole-heart T 2-prepared black-blood and bright-blood cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2020; 22:88. [PMID: 33317570 PMCID: PMC7737390 DOI: 10.1186/s12968-020-00691-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The free-breathing 3D whole-heart T2-prepared Bright-blood and black-blOOd phase SensiTive inversion recovery (BOOST) cardiovascular magnetic resonance (CMR) sequence was recently proposed for simultaneous bright-blood coronary CMR angiography and black-blood late gadolinium enhancement (LGE) imaging. This sequence enables simultaneous visualization of cardiac anatomy, coronary arteries and fibrosis. However, high-resolution (< 1.4 × 1.4 × 1.4 mm3) fully-sampled BOOST requires long acquisition times of ~ 20 min. METHODS In this work, we propose to extend a highly efficient respiratory-resolved motion-corrected reconstruction framework (XD-ORCCA) to T2-prepared BOOST to enable high-resolution 3D whole-heart coronary CMR angiography and black-blood LGE in a clinically feasible scan time. Twelve healthy subjects were imaged without contrast injection (pre-contrast BOOST) and 10 patients with suspected cardiovascular disease were imaged after contrast injection (post-contrast BOOST). A quantitative analysis software was used to compare accelerated pre-contrast BOOST against the fully-sampled counterpart (vessel sharpness and length of the left and right coronary arteries). Moreover, three cardiologists performed diagnostic image quality scoring for clinical 2D LGE and both bright- and black-blood 3D BOOST imaging using a 4-point scale (1-4, non-diagnostic-fully diagnostic). A two one-sided test of equivalence (TOST) was performed to compare the pre-contrast BOOST images. Nonparametric TOST was performed to compare post-contrast BOOST image quality scores. RESULTS The proposed method produces images from 3.8 × accelerated non-contrast-enhanced BOOST acquisitions with comparable vessel length and sharpness to those obtained from fully- sampled scans in healthy subjects. Moreover, in terms of visual grading, the 3D BOOST LGE datasets (median 4) and the clinical 2D counterpart (median 3.5) were found to be statistically equivalent (p < 0.05). In addition, bright-blood BOOST images allowed for visualization of the proximal and middle left anterior descending and right coronary sections with high diagnostic quality (mean score > 3.5). CONCLUSIONS The proposed framework provides high-resolution 3D whole-heart BOOST images from a single free-breathing acquisition in ~ 7 min.
Collapse
Affiliation(s)
- Teresa Correia
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
| | - Giulia Ginami
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
| | - Imran Rashid
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
| | - Giovanna Nordio
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
| | - Tevfik F. Ismail
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King’s College London, Lambeth Wing, St Thomas’ Hospital, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Hajhosseiny R, Bustin A, Munoz C, Rashid I, Cruz G, Manning WJ, Prieto C, Botnar RM. Coronary Magnetic Resonance Angiography: Technical Innovations Leading Us to the Promised Land? JACC Cardiovasc Imaging 2020; 13:2653-2672. [PMID: 32199836 DOI: 10.1016/j.jcmg.2020.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Coronary artery disease remains the leading cause of cardiovascular morbidity and mortality. Invasive X-ray angiography and coronary computed tomography angiography are established gold standards for coronary luminography. However, they expose patients to invasive complications, ionizing radiation, and iodinated contrast agents. Among a number of imaging modalities, coronary cardiovascular magnetic resonance (CMR) angiography may be used in some cases as an alternative for the detection and monitoring of coronary arterial stenosis, with advantages including its versatility, excellent soft tissue characterization, and avoidance of ionizing radiation and iodinated contrast agents. In this review, we explore the recent advances in motion correction, image acceleration, and reconstruction technologies that are bringing coronary CMR angiography closer to widespread clinical implementation.
Collapse
Affiliation(s)
- Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Aurelien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Imran Rashid
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gastao Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Warren J Manning
- Department of Medicine (Cardiovascular Division) and Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Escuela de Ingeniería, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Escuela de Ingeniería, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Munoz C, Bustin A, Neji R, Kunze KP, Forman C, Schmidt M, Hajhosseiny R, Masci PG, Zeilinger M, Wuest W, Botnar RM, Prieto C. Motion-corrected 3D whole-heart water-fat high-resolution late gadolinium enhancement cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 2020; 22:53. [PMID: 32684167 PMCID: PMC7370486 DOI: 10.1186/s12968-020-00649-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/17/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Conventional 2D inversion recovery (IR) and phase sensitive inversion recovery (PSIR) late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) have been widely incorporated into routine CMR for the assessment of myocardial viability. However, reliable suppression of fat signal, and increased isotropic spatial resolution and volumetric coverage within a clinically feasible scan time remain a challenge. In order to address these challenges, this work proposes a highly efficient respiratory motion-corrected 3D whole-heart water/fat LGE imaging framework. METHODS An accelerated IR-prepared 3D dual-echo acquisition and motion-corrected reconstruction framework for whole-heart water/fat LGE imaging was developed. The acquisition sequence includes 2D image navigators (iNAV), which are used to track the respiratory motion of the heart and enable 100% scan efficiency. Non-rigid motion information estimated from the 2D iNAVs and from the data itself is integrated into a high-dimensional patch-based undersampled reconstruction technique (HD-PROST), to produce high-resolution water/fat 3D LGE images. A cohort of 20 patients with known or suspected cardiovascular disease was scanned with the proposed 3D water/fat LGE approach. 3D water LGE images were compared to conventional breath-held 2D LGE images (2-chamber, 4-chamber and stack of short-axis views) in terms of image quality (1: full diagnostic to 4: non-diagnostic) and presence of LGE findings. RESULTS Image quality was considered diagnostic in 18/20 datasets for both 2D and 3D LGE magnitude images, with comparable image quality scores (2D: 2.05 ± 0.72, 3D: 1.88 ± 0.90, p-value = 0.62) and overall agreement in LGE findings. Acquisition time for isotropic high-resolution (1.3mm3) water/fat LGE images was 8.0 ± 1.4 min (3-fold acceleration, 60-88 slices covering the whole heart), while 2D LGE images were acquired in 5.6 ± 2.2 min (12-18 slices, including pauses between breath-holds) albeit with a lower spatial resolution (1.40-1.75 mm in-plane × 8 mm slice thickness). CONCLUSION A novel framework for motion-corrected whole-heart 3D water/fat LGE imaging has been introduced. The method was validated in patients with known or suspected cardiovascular disease, showing good agreement with conventional breath-held 2D LGE imaging, but offering higher spatial resolution, improved volumetric coverage and good image quality from a free-breathing acquisition with 100% scan efficiency and predictable scan time.
Collapse
Affiliation(s)
- Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK.
| | - Aurelien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
- MR Research Collaborations, Siemens Healthcare, Frimley, UK
| | - Karl P Kunze
- MR Research Collaborations, Siemens Healthcare, Frimley, UK
| | - Christoph Forman
- Cardiovascular MR Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Michaela Schmidt
- Cardiovascular MR Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Pier-Giorgio Masci
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Martin Zeilinger
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Wolfgang Wuest
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| |
Collapse
|
19
|
A multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography. Magn Reson Imaging 2020; 70:155-167. [DOI: 10.1016/j.mri.2020.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
|
20
|
Henningsson M, Carlhäll CJ. Inflow artifact reduction using an adaptive flip-angle navigator restore pulse for late gadolinium enhancement of the left atrium. Magn Reson Med 2020; 84:3308-3315. [PMID: 32459007 DOI: 10.1002/mrm.28334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/06/2022]
Abstract
PURPOSE Late gadolinium enhancement (LGE) of the left atrium is susceptible to artifacts arising from the right pulmonary veins, caused by inflowing blood tagged by the navigator restore pulse. The purpose of this study was to evaluate a new method to reduce the inflow artifact using an adaptive flip-angle restore pulse. METHODS A low-restore angle reduces the inflow artifact but may lead to a poor navigator SNR. The proposed approach aims to determine the patient-specific restore angle, which optimizes the trade-off between inflow artifacts and navigator SNR. Three-dimensional LGE with adaptive navigator restore (3D LGEA ) was implemented by incrementing the flip angle of the restore pulse from a starting value of 0°, based on the navigator normalized cross-correlation. Magnetic resonance imaging experiments were performed on a 1.5T scanner. The value of 3D LGEA was compared with 3D LGE with a constant 180° restore pulse (3D LGE180 ) in 22 patients with heart diseases. The values of 3D LGEA and 3D LGE180 were compared in terms of pulmonary vein blood signal relative to reference blood in the descending aorta (PVrel ) and visual scoring to determine level of motion artifacts using a 4-point scale (1 = severe artifacts; 4 = no artifacts). RESULTS The value of PVrel was significantly lower for 3D LGEA than for 3D LGE180 (1.16 ± 0.23 vs. 1.59 ± 0.29, P < .001). Furthermore, visual scoring of the motion artifacts yielded no difference (P = .78). CONCLUSION Adaptively adjusting the navigator restore flip angle based on the navigator normalized cross-correlation reduces the 3D LGE inflow artifact without affecting image quality or the scan time.
Collapse
Affiliation(s)
- Markus Henningsson
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Carl-Johan Carlhäll
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Clinical Physiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
21
|
Hajhosseiny R, Bahaei TS, Prieto C, Botnar RM. Molecular and Nonmolecular Magnetic Resonance Coronary and Carotid Imaging. Arterioscler Thromb Vasc Biol 2020; 39:569-582. [PMID: 30760017 DOI: 10.1161/atvbaha.118.311754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerosis is the leading cause of cardiovascular morbidity and mortality. Over the past 2 decades, increasing research attention is converging on the early detection and monitoring of atherosclerotic plaque. Among several invasive and noninvasive imaging modalities, magnetic resonance imaging (MRI) is emerging as a promising option. Advantages include its versatility, excellent soft tissue contrast for plaque characterization and lack of ionizing radiation. In this review, we will explore the recent advances in multicontrast and multiparametric imaging sequences that are bringing the aspiration of simultaneous arterial lumen, vessel wall, and plaque characterization closer to clinical feasibility. We also discuss the latest advances in molecular magnetic resonance and multimodal atherosclerosis imaging.
Collapse
Affiliation(s)
- Reza Hajhosseiny
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (R.H., T.S.B., C.P., R.M.B.).,National Heart and Lung Institute, Imperial College London, United Kingdom (R.H.)
| | - Tamanna S Bahaei
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (R.H., T.S.B., C.P., R.M.B.)
| | - Claudia Prieto
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (R.H., T.S.B., C.P., R.M.B.).,Escuela de Ingeniería, Pontificia Universidad Catolica de Chile, Santiago, Chile (C.P., R.M.B.)
| | - René M Botnar
- From the School of Biomedical Engineering and Imaging Sciences, King's College London, United Kingdom (R.H., T.S.B., C.P., R.M.B.).,Escuela de Ingeniería, Pontificia Universidad Catolica de Chile, Santiago, Chile (C.P., R.M.B.)
| |
Collapse
|
22
|
Manning WJ. Journal of Cardiovascular Magnetic Resonance: 2017/2018 in review. J Cardiovasc Magn Reson 2019; 21:79. [PMID: 31884956 PMCID: PMC6936125 DOI: 10.1186/s12968-019-0594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
There were 89 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2017, including 76 original research papers, 4 reviews, 5 technical notes, 1 guideline, and 3 corrections. The volume was down slightly from 2017 with a corresponding 15% decrease in manuscript submissions from 405 to 346 and thus reflects a slight increase in the acceptance rate from 25 to 26%. The decrease in submissions for the year followed the initiation of the increased author processing charge (APC) for Society for Cardiovascular Magnetic Resonance (SCMR) members for manuscripts submitted after June 30, 2018. The quality of the submissions continues to be high. The 2018 JCMR Impact Factor (which is published in June 2019) was slightly lower at 5.1 (vs. 5.46 for 2017; as published in June 2018. The 2018 impact factor means that on average, each JCMR published in 2016 and 2017 was cited 5.1 times in 2018. Our 5 year impact factor was 5.82.In accordance with Open-Access publishing guidelines of BMC, the JCMR articles are published on-line in a continuus fashion in the chronologic order of acceptance, with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful for the JCMR audience to annually summarize the publications into broad areas of interest or themes, so that readers can view areas of interest in a single article in relation to each other and contemporaneous JCMR publications. In this publication, the manuscripts are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought within the journal. In addition, as in the past two years, I have used this publication to also convey information regarding the editorial process and as a "State of our JCMR."This is the 12th year of JCMR as an open-access publication with BMC (formerly known as Biomed Central). The timing of the JCMR transition to the open access platform was "ahead of the curve" and a tribute to the vision of Dr. Matthias Friedrich, the SCMR Publications Committee Chair and Dr. Dudley Pennell, the JCMR editor-in-chief at the time. The open-access system has dramatically increased the reading and citation of JCMR publications and I hope that you, our authors, will continue to send your very best, high quality manuscripts to JCMR for consideration. It takes a village to run a journal and I thank our very dedicated Associate Editors, Guest Editors, Reviewers for their efforts to ensure that the review process occurs in a timely and responsible manner. These efforts have allowed the JCMR to continue as the premier journal of our field. This entire process would also not be possible without the dedication and efforts of our managing editor, Diana Gethers. Finally, I thank you for entrusting me with the editorship of the JCMR as I begin my 4th year as your editor-in-chief. It has been a tremendous experience for me and the opportunity to review manuscripts that reflect the best in our field remains a great joy and highlight of my week!
Collapse
Affiliation(s)
- Warren J Manning
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
23
|
Zhang Z, Sun W, Lan L, Zheng Y, Xu J, Du Y, Xu H, Chen Q. Feasibility study of highly accelerated phase‐sensitive inversion recovery myocardial viability imaging using simultaneous multislice and parallel imaging techniques. J Magn Reson Imaging 2019; 50:1964-1972. [PMID: 31115953 DOI: 10.1002/jmri.26795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Zhehao Zhang
- Institute for Medical Imaging Technology, School of Biomedical EngineeringShanghai Jiao Tong University Shanghai China
- Shanghai United Imaging Healthcare Co., Ltd. Shanghai China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China
| | - Lan Lan
- Department of Radiology, Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China
| | | | - Jian Xu
- UIH America Inc Houston Texas USA
| | - Yiping Du
- Institute for Medical Imaging Technology, School of Biomedical EngineeringShanghai Jiao Tong University Shanghai China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China
| | - Qun Chen
- Shanghai United Imaging Healthcare Co., Ltd. Shanghai China
| |
Collapse
|
24
|
Munoz C, Neji R, Kunze KP, Nekolla SG, Botnar RM, Prieto C. Respiratory- and cardiac motion-corrected simultaneous whole-heart PET and dual phase coronary MR angiography. Magn Reson Med 2019; 81:1671-1684. [PMID: 30320931 PMCID: PMC6492195 DOI: 10.1002/mrm.27517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE To develop a framework for efficient and simultaneous acquisition of motion-compensated whole-heart coronary MR angiography (CMRA) and left ventricular function by MR and myocardial integrity by PET on a 3T PET-MR system. METHODS An acquisition scheme based on a dual-phase CMRA sequence acquired simultaneously with cardiac PET data has been developed. The framework is integrated with a motion-corrected image reconstruction approach, so that non-rigid respiratory and cardiac deformation fields estimated from MR images are used to correct both the CMRA (respiratory motion correction for each cardiac phase) and the PET data (respiratory and cardiac motion correction). The proposed approach was tested in a cohort of 8 healthy subjects and 6 patients with coronary artery disease. Left ventricular (LV) function estimated from motion-corrected dual-phase CMRA was compared to the gold standard estimated from a stack of 2D CINE images for the healthy subjects. Relative increase of signal in motion-corrected PET images compared to uncorrected images was computed for standard 17-segment polar maps for each patient. RESULTS Motion-corrected dual-phase CMRA images allow for visualization of the coronary arteries in both systole and diastole for all healthy subjects and cardiac patients. LV functional indices from healthy subjects result in good agreement with the reference method, underestimating stroke volume by 3.07 ± 3.26 mL and ejection fraction by 0.30 ± 1.01%. Motion correction improved delineation of the myocardium in PET images, resulting in an increased 18 F-FDG signal of up to 28% in basal segments of the myocardial wall compared to uncorrected images. CONCLUSION The proposed motion-corrected dual-phase CMRA and cardiac PET produces co-registered good quality images in both modalities in a single efficient examination of ~13 min.
Collapse
Affiliation(s)
- Camila Munoz
- King’s College London, School of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
| | - Radhouene Neji
- King’s College London, School of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
- Siemens Healthcare, MR Research CollaborationsFrimleyUnited Kingdom
| | - Karl P. Kunze
- Technische Universität München, Nuklearmedizinische Klinik und PoliklinikMunichGermany
| | - Stephan G. Nekolla
- Technische Universität München, Nuklearmedizinische Klinik und PoliklinikMunichGermany
- DZHK (Deutsches Zentrum für Herz‐Kreislauf‐Forschung e.V.), partner site Munich Heart AllianceMunichGermany
| | - Rene M. Botnar
- King’s College London, School of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
- Pontificia Universidad Catolica de Chile, Escuela de IngenieriaSantiagoChile
| | - Claudia Prieto
- King’s College London, School of Biomedical Engineering and Imaging SciencesLondonUnited Kingdom
- Pontificia Universidad Catolica de Chile, Escuela de IngenieriaSantiagoChile
| |
Collapse
|
25
|
Tang CX, Petersen SE, Sanghvi MM, Lu GM, Zhang LJ. Cardiovascular magnetic resonance imaging for amyloidosis: The state-of-the-art. Trends Cardiovasc Med 2019; 29:83-94. [DOI: 10.1016/j.tcm.2018.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
|
26
|
Ginami G, Lòpez K, Mukherjee RK, Neji R, Munoz C, Roujol S, Mountney P, Razavi R, Botnar RM, Prieto C. Non-contrast enhanced simultaneous 3D whole-heart bright-blood pulmonary veins visualization and black-blood quantification of atrial wall thickness. Magn Reson Med 2019; 81:1066-1079. [PMID: 30230609 PMCID: PMC6492092 DOI: 10.1002/mrm.27472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Pre-interventional assessment of atrial wall thickness (AWT) and of subject-specific variations in the anatomy of the pulmonary veins may affect the success rate of RF ablation procedures for the treatment of atrial fibrillation (AF). This study introduces a novel non-contrast enhanced 3D whole-heart sequence providing simultaneous information on the cardiac anatomy-including both the arterial and the venous system-(bright-blood volume) and AWT (black-blood volume). METHODS The proposed MT-prepared bright-blood and black-blood phase sensitive inversion recovery (PSIR) BOOST framework acquires 2 differently weighted bright-blood volumes in an interleaved fashion. The 2 data sets are then combined in a PSIR-like reconstruction to obtain a complementary black-blood volume for atrial wall visualization. Image-based navigation and non-rigid respiratory motion correction are exploited for 100% scan efficiency and predictable acquisition time. The proposed approach was evaluated in 11 healthy subjects and 4 patients with AF scheduled for RF ablation. RESULTS Improved depiction of the cardiac venous system was obtained in comparison to a T2 -prepared BOOST implementation, and quantified AWT was shown to be in good agreement with previously reported measurements obtained in healthy subjects (right atrium AWT: 2.54 ± 0.87 mm, left atrium AWT: 2.51 ± 0.61 mm). Feasibility for MT-prepared BOOST acquisitions in patients with AF was demonstrated. CONCLUSION The proposed motion-corrected MT-prepared BOOST sequence provides simultaneous non-contrast pulmonary vein depiction as well as black-blood visualization of atrial walls. The proposed sequence has a large spectrum of potential clinical applications and further validation in patients is warranted.
Collapse
Affiliation(s)
- Giulia Ginami
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Karina Lòpez
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Rahul K. Mukherjee
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- MR Research Collaborations, Siemens Healthcare LimitedFrimleyUnited Kingdom
| | - Camila Munoz
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Peter Mountney
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Medical Imaging TechnologiesSiemens HealthineersPrincetonNew Jersey
| | - Reza Razavi
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - René M. Botnar
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
27
|
Manning WJ. Journal of Cardiovascular Magnetic Resonance 2017. J Cardiovasc Magn Reson 2018; 20:89. [PMID: 30593280 PMCID: PMC6309095 DOI: 10.1186/s12968-018-0518-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
There were 106 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2017, including 92 original research papers, 3 reviews, 9 technical notes, and 1 Position paper, 1 erratum and 1 correction. The volume was similar to 2016 despite an increase in manuscript submissions to 405 and thus reflects a slight decrease in the acceptance rate to 26.7%. The quality of the submissions continues to be high. The 2017 JCMR Impact Factor (which is published in June 2018) was minimally lower at 5.46 (vs. 5.71 for 2016; as published in June 2017), which is the second highest impact factor ever recorded for JCMR. The 2017 impact factor means that an average, each JCMR paper that were published in 2015 and 2016 was cited 5.46 times in 2017.In accordance with Open-Access publishing of Biomed Central, the JCMR articles are published on-line in continuus fashion and in the chronologic order of acceptance, with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful to annually summarize the publications into broad areas of interest or theme, so that readers can view areas of interest in a single article in relation to each other and other contemporary JCMR articles. In this publication, the manuscripts are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought within the journal. In addition, I have elected to use this format to convey information regarding the editorial process to the readership.I hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your very best, high quality manuscripts to JCMR for consideration. I thank our very dedicated Associate Editors, Guest Editors, and Reviewers for their efforts to ensure that the review process occurs in a timely and responsible manner and that the JCMR continues to be recognized as the forefront journal of our field. And finally, I thank you for entrusting me with the editorship of the JCMR as I begin my 3rd year as your editor-in-chief. It has been a tremendous learning experience for me and the opportunity to review manuscripts that reflect the best in our field remains a great joy and highlight of my week!
Collapse
Affiliation(s)
- Warren J Manning
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
28
|
Chen Z, Sun B, Duan Q, Xue Y, Chen L. 3.0T Contrast-enhanced whole-heart coronary magnetic resonance angiography for simultaneous coronary artery angiography and myocardial viability in chronic myocardial infarction: A single-center preliminary study. Medicine (Baltimore) 2018; 97:e13138. [PMID: 30407340 PMCID: PMC6250500 DOI: 10.1097/md.0000000000013138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To evaluate the accuracy of contrast-enhanced whole-heart magnetic resonance coronary angiography at 3.0T for assessing significant stenosis (≥50% lumen diameter reduction) in patients with myocardial infarction, by using conventional coronary artery angiography as the reference standard, and also test the performance of that for the detection and assessment of chronic myocardial infarction (MI), compared with standard delayed-enhancement coronary magnetic resonance (DE-CMR) for the determination of infarct size.We studied 42 consecutive patients (37 men, 5 women, mean age 58.5 ± 10.7 years) with MI scheduled for conventional coronary angiography. Contrast-enhanced whole-heart coronary magnetic resonance angiography (CMRA) was employed after sublingual nitroglycerin (NTG) with the abdominal banding rolled tightly along the side of ribs. Finally, a 3D phase-sensitive inversion-recovery gradient-echo (3D-PSIR-GRE) sequence was performed during free breathing. The assessment of MI sizes on WH-CMRA reconstructed images and 3D-PSIR-GRE images were compared using a paired student t test.The acquisition of CMRA was completed in 40 (95.2%) of 42 patients, with an imaging time averaged at 9.5 ± 3.1 minutes. The average navigator efficiency was 47%. The sensitivity, specificity, and positive and negative predictive values of whole-heart CMRA for the detection of significant lesions on a segment-by-segment analysis were 91.7% (95% confidence interval [CI] 83.8-96.1), 84.0% (95% CI 80.0-87.4), 57.9% (95% CI 50.0-65.8), 97.7% (95% CI 95.3-98.9), respectively, and on a patient-based analysis 93.5% (95% CI 77.2-98.9), 88.9% (95% CI 50.7-99.4), 96.7% (95% CI 80.9-99.8), and 80.0% (95% CI 44.2-96.5), respectively. Infarcts were generally higher on the CE-CMRA technique compared with the standard technique (18.0 ± 7.2 cm vs 16.1 ± 6.4 cm; P < .0001).Contrast-enhanced whole-heart CMRA with 3.0-T not only may permit reliable detection of significant obstructive coronary artery disease in patients with myocardial infarction, but also could identify and quantify the volume of myocardial infarction. This technique could be considered the preferred approach in patients who could not overcome longer scanning times or unable to hold their breath instead of delayed-enhancement magnetic resonance imaging for detection of infarcted myocardium. However, compared with standard imaging, the volume of myocardial infarction is slightly overestimated.
Collapse
Affiliation(s)
| | | | | | | | - Lianglong Chen
- Department of Cardiology, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
29
|
Munoz C, Kunze KP, Neji R, Vitadello T, Rischpler C, Botnar RM, Nekolla SG, Prieto C. Motion-corrected whole-heart PET-MR for the simultaneous visualisation of coronary artery integrity and myocardial viability: an initial clinical validation. Eur J Nucl Med Mol Imaging 2018; 45:1975-1986. [PMID: 29754161 PMCID: PMC6132558 DOI: 10.1007/s00259-018-4047-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE Cardiac PET-MR has shown potential for the comprehensive assessment of coronary heart disease. However, image degradation due to physiological motion remains a challenge that could hinder the adoption of this technology in clinical practice. The purpose of this study was to validate a recently proposed respiratory motion-corrected PET-MR framework for the simultaneous visualisation of myocardial viability (18F-FDG PET) and coronary artery anatomy (coronary MR angiography, CMRA) in patients with chronic total occlusion (CTO). METHODS A cohort of 14 patients was scanned with the proposed PET-CMRA framework. PET and CMRA images were reconstructed with and without the proposed motion correction approach for comparison purposes. Metrics of image quality including visible vessel length and sharpness were obtained for CMRA for both the right and left anterior descending coronary arteries (RCA, LAD), and relative increase in 18F-FDG PET signal after motion correction for standard 17-segment polar maps was computed. Resulting coronary anatomy by CMRA and myocardial integrity by PET were visually compared against X-ray angiography and conventional Late Gadolinium Enhancement (LGE) MRI, respectively. RESULTS Motion correction increased CMRA visible vessel length by 49.9% and 32.6% (RCA, LAD) and vessel sharpness by 12.3% and 18.9% (RCA, LAD) on average compared to uncorrected images. Coronary lumen delineation on motion-corrected CMRA images was in good agreement with X-ray angiography findings. For PET, motion correction resulted in an average 8% increase in 18F-FDG signal in the inferior and inferolateral segments of the myocardial wall. An improved delineation of myocardial viability defects and reduced noise in the 18F-FDG PET images was observed, improving correspondence to subendocardial LGE-MRI findings compared to uncorrected images. CONCLUSION The feasibility of the PET-CMRA framework for simultaneous cardiac PET-MR imaging in a short and predictable scan time (~11 min) has been demonstrated in 14 patients with CTO. Motion correction increased visible length and sharpness of the coronary arteries by CMRA, and improved delineation of the myocardium by 18F-FDG PET, resulting in good agreement with X-ray angiography and LGE-MRI.
Collapse
Affiliation(s)
- Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Karl P Kunze
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK
- MR Research Collaborations, Siemens Healthcare, Frimley, UK
| | - Teresa Vitadello
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | - Christoph Rischpler
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK
- Escuela de Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Stephan G Nekolla
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.) partner site Munich Heart Alliance, Munich, Germany
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK
- Escuela de Ingenieria, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
30
|
Bustin A, Ginami G, Cruz G, Correia T, Ismail TF, Rashid I, Neji R, Botnar RM, Prieto C. Five-minute whole-heart coronary MRA with sub-millimeter isotropic resolution, 100% respiratory scan efficiency, and 3D-PROST reconstruction. Magn Reson Med 2018; 81:102-115. [PMID: 30058252 PMCID: PMC6617822 DOI: 10.1002/mrm.27354] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/23/2018] [Accepted: 04/19/2018] [Indexed: 01/08/2023]
Abstract
Purpose To enable whole‐heart 3D coronary magnetic resonance angiography (CMRA) with isotropic sub‐millimeter resolution in a clinically feasible scan time by combining respiratory motion correction with highly accelerated variable density sampling in concert with a novel 3D patch‐based undersampled reconstruction (3D‐PROST). Methods An undersampled variable density spiral‐like Cartesian trajectory was combined with 2D image‐based navigators to achieve 100% respiratory efficiency and predictable scan time. 3D‐PROST reconstruction integrates structural information from 3D patch neighborhoods through sparse representation, thereby exploiting the redundancy of the 3D anatomy of the coronary arteries in an efficient low‐rank formulation. The proposed framework was evaluated in a static resolution phantom and in 10 healthy subjects with isotropic resolutions of 1.2 mm3 and 0.9 mm3 and undersampling factors of ×5 and ×9. 3D‐PROST was compared against fully sampled (1.2 mm3 only), conventional parallel imaging, and compressed sensing reconstructions. Results Phantom and in vivo (1.2 mm3) reconstructions were in excellent agreement with the reference fully sampled image. In vivo average acquisition times (min:s) were 7:57 ± 1:18 (×5) and 4:35 ± 0:44 (×9) for 0.9 mm3 resolution. Sub‐millimeter 3D‐PROST resulted in excellent depiction of the left and right coronary arteries including small branch vessels, leading to further improvements in vessel sharpness and visible vessel length in comparison with conventional reconstruction techniques. Image quality rated by 2 experts demonstrated that 3D‐PROST provides good image quality and is robust even at high acceleration factors. Conclusion The proposed approach enables free‐breathing whole‐heart 3D CMRA with isotropic sub‐millimeter resolution in <5 min and achieves improved coronary artery visualization in a short and predictable scan time.
Collapse
Affiliation(s)
- Aurélien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Giulia Ginami
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gastão Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Teresa Correia
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Tevfik F Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Imran Rashid
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|