1
|
Matsutake R, Fujimoto T, Ichinose M, Watanabe K, Fujii N, Nishiyasu T. The blood flow and vascular responses in dynamically exercising skeletal muscles evoked by combination of cold stimulation and voluntary apnea in humans. Eur J Appl Physiol 2025; 125:1179-1190. [PMID: 39589449 DOI: 10.1007/s00421-024-05643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/13/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE We evaluated (1) the combined effects of cold stimulation and voluntary breath holding (apnea) on heart rate, blood pressure, blood flow and vascular responses in dynamically exercising muscles in humans, and (2) if some interactions exist between cold stimulation and apnea on the cardiovascular responses. METHODS Nine males and 1 female performed three trials entailing a dynamic two-legged knee extension exercise at a constant workload that elicited heart rates around 100 beats min-1. During the trials the participants performed either: (1) immersed their right hand into ice water maintained at 4 °C (cold pressor test; CPT); (2) performed maximal-duration apnea; and (3) performed a combination of CPT and apnea. Leg blood flow (LBF) and cardiac output (CO) were measured simultaneously using two Doppler ultrasound systems. RESULTS CPT induced a rise in mean arterial pressure (MAP) (P < 0.05) but had no significant effect on CO or exercising leg vascular conductance (LVC). Apnea evoked large pressor responses, bradycardia and decreases in CO, LBF and LVC (all P < 0.05). The increase in MAP induced by combined CPT and apnea was smaller than the sum of those induced separately by CPT or apnea (P < 0.05). Combined CPT and apnea decreased LBF and LVC to a similar extent as apnea alone. CONCLUSION Addition of local cold stimulation to apnea does not enhance pressor responses or vasoconstriction within active muscles. This suggests that maximum voluntary apnea evokes massive vasoconstriction, even within exercising muscles, which cannot be enhanced by additional sympathetic stimulation.
Collapse
Affiliation(s)
- Ryoko Matsutake
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
| | - Tomomi Fujimoto
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | - Kazuhito Watanabe
- Faculty of Education and Human Studies, Akita University, Akita, Japan
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan.
- Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
2
|
Abstract
Pulmonary physiology is significantly altered during underwater exposure, as immersion of the body and increased ambient pressure elicit profound effects on both the cardiovascular and respiratory systems. Thoracic blood pooling, increased breathing gas pressures, and variations in gas volumes alongside ambient pressure changes put the heart and lungs under stress. Normal physiologic function and fitness of the cardiovascular and respiratory systems are prerequisites to safely cope with the challenges of the underwater environment when freediving, or diving with underwater breathing apparatus. Few physicians are trained to understand the physiology and medicine of diving and how to recognize or manage diving injuries. This article provides an overview of the physiologic challenges to the respiratory system during diving, with or without breathing apparatus, and outlines possible health risks and hazards unique to the underwater environment. The underlying pathologic mechanisms of dive-related injuries are reviewed, with an emphasis on pulmonary physiology and pathophysiology.
Collapse
Affiliation(s)
- Kay Tetzlaff
- Department of Sports Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Dolscheid-Pommerich RC, Stoffel-Wagner B, Fimmers R, Eichhorn L. Changes in hormones after apneic hypoxia/hypercapnia - an investigation in voluntary apnea divers. Respir Physiol Neurobiol 2022; 298:103845. [PMID: 35041989 DOI: 10.1016/j.resp.2022.103845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Prolonged apnea is characterized by hypoxia/hypercapnia. Hypoxia can be associated with hormonal dysfunction. We raised the question as to whether steroid hormonal and gonadotropin levels could be influenced by short-term hypoxia/hypercapnia in a model of dry apnea in trained apnea divers. METHODS Adrenal, sex steroid and pituitary hormones were measured in ten trained voluntary apnea divers before, immediately after, 0.5 h and 4 h after a maximal breath-hold. Apnea was carried out under dry conditions. RESULTS Corticosterone, progesterone, cortisol, 17-OH-progesterone, dehydroepiandrosterone and androstenedione showed a significant continuous increase with a maximum at 0.5 h after apnea, followed by a decrease back to or below baseline at 4 h after apnea. Testosterone, estradiol, cortisone and dihydrotestosterone showed a decrease 4 h after apnea. Dehydroepiandrosteronesulfate, luteinizing hormone (LH) and follicle stimulating hormone (FSH) showed no significant changes. CONCLUSION Even a single apnea resulted in two different patterns of hormone response to apnea, with increased adrenal and reduced sex steroid levels, while LH/FSH showed no clear kinetic reaction. Apnea divers might be a suitable clinical model for hypoxic disease.
Collapse
Affiliation(s)
- R C Dolscheid-Pommerich
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
| | - B Stoffel-Wagner
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - R Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - L Eichhorn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
4
|
Elia A, Woods DR, Barlow MJ, Lees MJ, O'Hara JP. Cerebral, cardiac and skeletal muscle stress associated with a series of static and dynamic apnoeas. Scand J Med Sci Sports 2021; 32:233-241. [PMID: 34597427 DOI: 10.1111/sms.14067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE This study sought to explore, for the first time, the effects of repeated maximal static and dynamic apnoeic attempts on the physiological milieu by assessing cerebral, cardiac and striatal muscle stress-related biomarkers in a group of elite breath-hold divers (EBHD). METHODS Sixteen healthy males were recruited (EBHD = 8; controls = 8). On two separate occasions, EBHD performed two sets of five repeated maximal static apnoeas (STA) or five repeated maximal dynamic apnoeas (DYN). Controls performed a static eupnoeic protocol to negate any effects of water immersion and diurnal variation on haematology (CTL). Venous blood samples were drawn at 30, 90, and 180 min after each protocol to determine S100β, neuron-specific enolase (NSE), myoglobin, and high sensitivity cardiac troponin T (hscTNT) concentrations. RESULTS S100β and myoglobin concentrations were elevated following both apnoeic interventions (p < 0.001; p ≤ 0.028, respectively) but not after CTL (p ≥ 0.348). S100β increased from baseline (0.024 ± 0.005 µg/L) at 30 (STA, +149%, p < 0.001; DYN, +166%, p < 0.001) and 90 min (STA, +129%, p < 0.001; DYN, +132%, p = 0.008) following the last apnoeic repetition. Myoglobin was higher than baseline (22.3 ± 2.7 ng/ml) at 30 (+42%, p = 0.04), 90 (+64%, p < 0.001) and 180 min (+49%, p = 0.013) post-STA and at 90 min (+63%, p = 0.016) post-DYN. Post-apnoeic S100β and myoglobin concentrations were higher than CTL (STA, p < 0.001; DYN, p ≤ 0.004). NSE and hscTNT did not change from basal concentrations after the apnoeic (p ≥ 0.146) nor following the eupnoeic (p ≥ 0.553) intervention. CONCLUSIONS This study suggests that a series of repeated maximal static and dynamic apnoeas transiently disrupt the blood-brain barrier and instigate muscle injury but do not induce neuronal-parenchymal damage or myocardial damage.
Collapse
Affiliation(s)
- Antonis Elia
- Division of Environmental Physiology, School of Chemistry, Bioengineering and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - David R Woods
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK.,Research and Clinical Innovation, Royal Centre for Defence Medicine, Birmingham, UK
| | | | - Matthew J Lees
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - John P O'Hara
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| |
Collapse
|
5
|
Forsberg I, Mkrtchian S, Ebberyd A, Ullman J, Eriksson LI, Lodenius Å, Jonsson Fagerlund M. Biomarkers for oxidative stress and organ injury during Transnasal Humidified Rapid-Insufflation Ventilatory Exchange compared to mechanical ventilation in adults undergoing microlaryngoscopy: A randomised controlled study. Acta Anaesthesiol Scand 2021; 65:1276-1284. [PMID: 34028012 DOI: 10.1111/aas.13927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 05/10/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Apnoeic oxygenation using Transnasal Humidified Rapid-Insufflation Ventilatory Exchange (THRIVE) during general anaesthesia prolongs the safe apnoeic period. However, there is a gap of knowledge how THRIVE-induced hyperoxia and hypercapnia impact vital organs. The primary aim of this randomised controlled trial was to characterise oxidative stress and, secondary, vital organ function biomarkers during THRIVE compared to mechanical ventilation (MV). METHODS Thirty adult patients, American Society of Anesthesiologists (ASA) 1-2, undergoing short laryngeal surgery under general anaesthesia were randomised to THRIVE, FI O2 1.0, 70 L min-1 during apnoea or MV. Blood biomarkers for oxidative stress, malondialdehyde and TAC and vital organ function were collected (A) preoperatively, (B) at procedure completion and (C) at PACU discharge. RESULTS Mean apnoea time was 17.9 (4.8) min and intubation to end-of-surgery time was 28.1 (12.8) min in the THRIVE and MV group, respectively. Malondialdehyde increased from 11.2 (3.1) to 12.7 (3.1) µM (P = .02) and from 9.5 (2.2) to 11.6 (2.6) µM (P = .003) (A to C) in the THRIVE and MV group, respectively. S100B increased from 0.05 (0.02) to 0.06 (0.02) µg L-1 (P = .005) (A to C) in the THRIVE group. No increase in TAC, CRP, leukocyte count, troponin-T, NTproBNP, creatinine, eGFRcrea or NSE was demonstrated during THRIVE. CONCLUSION While THRIVE and MV was associated with increased oxidative stress, we found no change in cardiac, inflammation or kidney biomarkers during THRIVE. Further evaluation of stress and inflammatory response and cerebral and cardiac function during THRIVE is needed.
Collapse
Affiliation(s)
- Ida‐Maria Forsberg
- Perioperative Medicine and Intensive Care Karolinska University Hospital Stockholm Sweden
- Department of Physiology and Pharmacology Section for Anesthesiology and Intensive Care Medicine Karolinska Institutet Stockholm Sweden
| | - Souren Mkrtchian
- Department of Physiology and Pharmacology Section for Anesthesiology and Intensive Care Medicine Karolinska Institutet Stockholm Sweden
| | - Anette Ebberyd
- Department of Physiology and Pharmacology Section for Anesthesiology and Intensive Care Medicine Karolinska Institutet Stockholm Sweden
| | - Johan Ullman
- Perioperative Medicine and Intensive Care Karolinska University Hospital Stockholm Sweden
- Department of Physiology and Pharmacology Section for Anesthesiology and Intensive Care Medicine Karolinska Institutet Stockholm Sweden
| | - Lars I. Eriksson
- Perioperative Medicine and Intensive Care Karolinska University Hospital Stockholm Sweden
- Department of Physiology and Pharmacology Section for Anesthesiology and Intensive Care Medicine Karolinska Institutet Stockholm Sweden
| | - Åse Lodenius
- Department of Physiology and Pharmacology Section for Anesthesiology and Intensive Care Medicine Karolinska Institutet Stockholm Sweden
| | - Malin Jonsson Fagerlund
- Perioperative Medicine and Intensive Care Karolinska University Hospital Stockholm Sweden
- Department of Physiology and Pharmacology Section for Anesthesiology and Intensive Care Medicine Karolinska Institutet Stockholm Sweden
| |
Collapse
|
6
|
Tetzlaff K, Lemaitre F, Burgstahler C, Luetkens JA, Eichhorn L. Going to Extremes of Lung Physiology-Deep Breath-Hold Diving. Front Physiol 2021; 12:710429. [PMID: 34305657 PMCID: PMC8299524 DOI: 10.3389/fphys.2021.710429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
Breath-hold diving involves environmental challenges, such as water immersion, hydrostatic pressure, and asphyxia, that put the respiratory system under stress. While training and inherent individual factors may increase tolerance to these challenges, the limits of human respiratory physiology will be reached quickly during deep breath-hold dives. Nonetheless, world records in deep breath-hold diving of more than 214 m of seawater have considerably exceeded predictions from human physiology. Investigations of elite breath-hold divers and their achievements revised our understanding of possible physiological adaptations in humans and revealed techniques such as glossopharyngeal breathing as being essential to achieve extremes in breath-hold diving performance. These techniques allow elite athletes to increase total lung capacity and minimize residual volume, thereby reducing thoracic squeeze. However, the inability of human lungs to collapse early during descent enables respiratory gas exchange to continue at greater depths, forcing nitrogen (N2) out of the alveolar space to dissolve in body tissues. This will increase risk of N2 narcosis and decompression stress. Clinical cases of stroke-like syndromes after single deep breath-hold dives point to possible mechanisms of decompression stress, caused by N2 entering the vasculature upon ascent from these deep dives. Mechanisms of neurological injury and inert gas narcosis during deep breath-hold dives are still incompletely understood. This review addresses possible hypotheses and elucidates factors that may contribute to pathophysiology of deep freediving accidents. Awareness of the unique challenges to pulmonary physiology at depth is paramount to assess medical risks of deep breath-hold diving.
Collapse
Affiliation(s)
- Kay Tetzlaff
- Department of Sports Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Frederic Lemaitre
- Faculte des Sciences du Sport et de l'Education Physique, Universite de Rouen, Rouen, France
| | - Christof Burgstahler
- Department of Sports Medicine, University Hospital of Tübingen, Tübingen, Germany
| | | | - Lars Eichhorn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
McKnight JC, Mulder E, Ruesch A, Kainerstorfer JM, Wu J, Hakimi N, Balfour S, Bronkhorst M, Horschig JM, Pernett F, Sato K, Hastie GD, Tyack P, Schagatay E. When the human brain goes diving: using near-infrared spectroscopy to measure cerebral and systemic cardiovascular responses to deep, breath-hold diving in elite freedivers. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200349. [PMID: 34176327 DOI: 10.1098/rstb.2020.0349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Continuous measurements of haemodynamic and oxygenation changes in free living animals remain elusive. However, developments in biomedical technologies may help to fill this knowledge gap. One such technology is continuous-wave near-infrared spectroscopy (CW-NIRS)-a wearable and non-invasive optical technology. Here, we develop a marinized CW-NIRS system and deploy it on elite competition freedivers to test its capacity to function during deep freediving to 107 m depth. We use the oxyhaemoglobin and deoxyhaemoglobin concentration changes measured with CW-NIRS to monitor cerebral haemodynamic changes and oxygenation, arterial saturation and heart rate. Furthermore, using concentration changes in oxyhaemoglobin engendered by cardiac pulsation, we demonstrate the ability to conduct additional feature exploration of cardiac-dependent haemodynamic changes. Freedivers showed cerebral haemodynamic changes characteristic of apnoeic diving, while some divers also showed considerable elevations in venous blood volumes close to the end of diving. Some freedivers also showed pronounced arterial deoxygenation, the most extreme of which resulted in an arterial saturation of 25%. Freedivers also displayed heart rate changes that were comparable to diving mammals both in magnitude and patterns of change. Finally, changes in cardiac waveform associated with heart rates less than 40 bpm were associated with changes indicative of a reduction in vascular compliance. The success here of CW-NIRS to non-invasively measure a suite of physiological phenomenon in a deep-diving mammal highlights its efficacy as a future physiological monitoring tool for human freedivers as well as free living animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Collapse
Affiliation(s)
- J Chris McKnight
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK.,Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Eric Mulder
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Alexander Ruesch
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Jana M Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.,Neuroscience Institute, Carnegie Mellon University, 4400 Forbes Ave., Pittsburgh, PA 15213, USA
| | - Jingyi Wu
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Naser Hakimi
- Artinis Medical Systems BV, Einsteinweg 17, 6662 PW Elst, The Netherlands
| | - Steve Balfour
- Sea Mammal Research Unit Instrumentation Group, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Mathijs Bronkhorst
- Artinis Medical Systems BV, Einsteinweg 17, 6662 PW Elst, The Netherlands
| | - Jörn M Horschig
- Artinis Medical Systems BV, Einsteinweg 17, 6662 PW Elst, The Netherlands
| | - Frank Pernett
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Gordon D Hastie
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Peter Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Erika Schagatay
- Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Swedish Winter Sport Research Center (SWSRC), Mid Sweden University, Östersund, Sweden
| |
Collapse
|
8
|
Physiology, pathophysiology and (mal)adaptations to chronic apnoeic training: a state-of-the-art review. Eur J Appl Physiol 2021; 121:1543-1566. [PMID: 33791844 PMCID: PMC8144079 DOI: 10.1007/s00421-021-04664-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
Breath-hold diving is an activity that humans have engaged in since antiquity to forage for resources, provide sustenance and to support military campaigns. In modern times, breath-hold diving continues to gain popularity and recognition as both a competitive and recreational sport. The continued progression of world records is somewhat remarkable, particularly given the extreme hypoxaemic and hypercapnic conditions, and hydrostatic pressures these athletes endure. However, there is abundant literature to suggest a large inter-individual variation in the apnoeic capabilities that is thus far not fully understood. In this review, we explore developments in apnoea physiology and delineate the traits and mechanisms that potentially underpin this variation. In addition, we sought to highlight the physiological (mal)adaptations associated with consistent breath-hold training. Breath-hold divers (BHDs) are evidenced to exhibit a more pronounced diving-response than non-divers, while elite BHDs (EBHDs) also display beneficial adaptations in both blood and skeletal muscle. Importantly, these physiological characteristics are documented to be primarily influenced by training-induced stimuli. BHDs are exposed to unique physiological and environmental stressors, and as such possess an ability to withstand acute cerebrovascular and neuronal strains. Whether these characteristics are also a result of training-induced adaptations or genetic predisposition is less certain. Although the long-term effects of regular breath-hold diving activity are yet to be holistically established, preliminary evidence has posed considerations for cognitive, neurological, renal and bone health in BHDs. These areas should be explored further in longitudinal studies to more confidently ascertain the long-term health implications of extreme breath-holding activity.
Collapse
|
9
|
Cardiac hypoxic resistance and decreasing lactate during maximum apnea in elite breath hold divers. Sci Rep 2021; 11:2545. [PMID: 33510292 PMCID: PMC7844051 DOI: 10.1038/s41598-021-81797-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
Breath-hold divers (BHD) enduring apnea for more than 4 min are characterized by resistance to release of reactive oxygen species, reduced sensitivity to hypoxia, and low mitochondrial oxygen consumption in their skeletal muscles similar to northern elephant seals. The muscles and myocardium of harbor seals also exhibit metabolic adaptations including increased cardiac lactate-dehydrogenase-activity, exceeding their hypoxic limit. We hypothesized that the myocardium of BHD possesses similar adaptive mechanisms. During maximum apnea 15O-H2O-PET/CT (n = 6) revealed no myocardial perfusion deficits but increased myocardial blood flow (MBF). Cardiac MRI determined blood oxygen level dependence oxygenation (n = 8) after 4 min of apnea was unaltered compared to rest, whereas cine-MRI demonstrated increased left ventricular wall thickness (LVWT). Arterial blood gases were collected after warm-up and maximum apnea in a pool. At the end of the maximum pool apnea (5 min), arterial saturation decreased to 52%, and lactate decreased 20%. Our findings contrast with previous MR studies of BHD, that reported elevated cardiac troponins and decreased myocardial perfusion after 4 min of apnea. In conclusion, we demonstrated for the first time with 15O-H2O-PET/CT and MRI in elite BHD during maximum apnea, that MBF and LVWT increases while lactate decreases, indicating anaerobic/fat-based cardiac-metabolism similar to diving mammals.
Collapse
|
10
|
Morra S, Gauthey A, Hossein A, Rabineau J, Racape J, Gorlier D, Migeotte PF, le Polain de Waroux JB, van de Borne P. Influence of sympathetic activation on myocardial contractility measured with ballistocardiography and seismocardiography during sustained end-expiratory apnea. Am J Physiol Regul Integr Comp Physiol 2020; 319:R497-R506. [PMID: 32877240 DOI: 10.1152/ajpregu.00142.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ballistocardiography (BCG) and seismocardiography (SCG) assess vibrations produced by cardiac contraction and blood flow, respectively, through micro-accelerometers and micro-gyroscopes. BCG and SCG kinetic energies (KE) and their temporal integrals (iK) during a single heartbeat are computed in linear and rotational dimensions. Our aim was to test the hypothesis that iK from BCG and SCG are related to sympathetic activation during maximal voluntary end-expiratory apnea. Multiunit muscle sympathetic nerve traffic [burst frequency (BF), total muscular sympathetic nerve activity (tMSNA)] was measured by microneurography during normal breathing and apnea (n = 28, healthy men). iK of BCG and SCG were simultaneously recorded in the linear and rotational dimension, along with oxygen saturation ([Formula: see text]) and systolic blood pressure (SBP). The mean duration of apneas was 25.4 ± 9.4 s. SBP, BF, and tMSNA increased during the apnea compared with baseline (P = 0.01, P = 0.002,and P = 0.001, respectively), whereas [Formula: see text] decreased (P = 0.02). At the end of the apnea compared with normal breathing, changes in iK computed from BCG were related to changes of tMSNA and BF only in the linear dimension (r = 0.85, P < 0.0001; and r = 0.72, P = 0.002, respectively), whereas changes in linear iK of SCG were related only to changes of tMSNA (r = 0.62, P = 0.01). We conclude that maximal end expiratory apnea increases cardiac kinetic energy computed from BCG and SCG, along with sympathetic activity. The novelty of the present investigation is that linear iK of BCG is directly and more strongly related to the rise in sympathetic activity than the SCG, mainly at the end of a sustained apnea, likely because the BCG is more affected by the sympathetic and hemodynamic effects of breathing cessation. BCG and SCG may prove useful to assess sympathetic nerve changes in patients with sleep disturbances.NEW & NOTEWORTHY Ballistocardiography (BCG) and seismocardiography (SCG) assess vibrations produced by cardiac contraction and blood flow, respectively, through micro-accelerometers and micro-gyroscopes. Kinetic energies (KE) and their temporal integrals (iK) during a single heartbeat are computed from the BCG and SCG waveforms in a linear and a rotational dimension. When compared with normal breathing, during an end-expiratory voluntary apnea, iK increased and was positively related to sympathetic nerve traffic rise assessed by microneurography. Further studies are needed to determine whether BCG and SCG can probe sympathetic nerve changes in patients with sleep disturbances.
Collapse
Affiliation(s)
- Sofia Morra
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Anais Gauthey
- Department of Cardiology, Saint-Luc hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Amin Hossein
- Laboratory of Physics and Physiology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jérémy Rabineau
- Laboratory of Physics and Physiology, Université Libre de Bruxelles, Brussels, Belgium
| | - Judith Racape
- Research Centre in Epidemiology, Biostatistics and Clinical Research. School of Public Health. Université Libre de Bruxelles, Brussels, Belgium
| | - Damien Gorlier
- Laboratory of Physics and Physiology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Philippe van de Borne
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
11
|
Hematologic changes after short term hypoxia in non-elite apnea divers under voluntary dry apnea conditions. PLoS One 2020; 15:e0237673. [PMID: 32790747 PMCID: PMC7425904 DOI: 10.1371/journal.pone.0237673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/30/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose This study investigated the acute changes in full spectrum differential blood cell count including reticulocytes and immature reticulocytes after a voluntary maximal dry apnea in non-elite divers. Aim of the present study is to obtain information on important regulatory compensation mechanisms and to provide insights into apneic regulatory processes. Methods Ten apnea divers performed a voluntary dry mean apnea time of 317 sec [SD ±111 sec]. Differential blood cell count including reticulocytes was measured before and immediately after a single maximal breath-hold. To evaluate kinetics, blood samples were also taken after 30 min and 4 h. Value distributions are presented with dot plots. P-values were calculated using a mixed linear model for time dependency. Four difference values were compared to baseline values with Dunnett’s procedure. Results Significant changes were found in red blood cell parameters for erythrocytes, red cell distribution width, hematocrit, hemoglobin, MCV, reticulocytes and immature reticulocytes, and in white blood cell parameters for leucocytes, lymphocytes, immature granulocytes, monocytes, basophile granulocytes, neutrophil granulocytes and eosinophil granulocytes and for thrombocytes. Conclusion Adaptive mechanisms regarding cell counts in elite apnea divers are not readily transferable to non-elite recreational sportspersons. Divers and physicians should be aware of the limited adaptive performance of humans in the case of extended apnea.
Collapse
|
12
|
Costalat G, Godin B, Balmain BN, Moreau C, Brotherton E, Billaut F, Lemaitre F. Autonomic regulation of the heart and arrhythmogenesis in trained breath-hold divers. Eur J Sport Sci 2020; 21:439-449. [PMID: 32223533 DOI: 10.1080/17461391.2020.1749313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractBreath-hold divers are known to develop cardiac autonomic changes and brady-arrthymias during prolonged breath-holding (BH). The effects of BH-induced hypoxemia were investigated upon both cardiac autonomic status and arrhythmogenesis by comparing breath-hold divers (BHDs) to non-divers (NDs). Eighteen participants (9 BHDs, 9 NDs) performed a maximal voluntary BH with face immersion. BHDs were asked to perform an additional BH at water surface to increase the degree of hypoxemia. Beat-to-beat changes in heart rate (HR), short-term fractal scaling exponent (DFAα1), the number of arrhythmic events [premature ventricular contractions (PVCs), premature atrial contractions (PACs)] and peripheral oxygen saturation (SpO2) were recorded during and immediately following BH. The corrected QT-intervals (QTc) were analyzed pre- and post-acute BH. A regression-based model was used to split BH into a normoxic (NX) and a hypoxemic phase (HX). During the HX phase of BH, BHDs showed a progressive decrease in DFAα1 during BH with face immersion (p < 0.01) and BH with whole-body immersion (p < 0.01) whereas NDs did not (p > 0.05). In addition, BHDs had more arrhythmic events during the HX of BH with whole-body immersion when compared to the corresponding NX phase (5.9 ± 6.7 vs 0.4 ± 1.3; p < 0.05; respectively). The number of PVCs was negatively correlated with SpO2 during BH with whole-body immersion (r = -0.72; p < 0.05). The hypoxemic stage of voluntary BH is concomitant with significant cardiac autonomic changes toward a synergistic sympathetic and parasympathetic stimulation. Co-activation led ultimately to increased bradycardic response and cardiac electrophysiological disturbances.
Collapse
Affiliation(s)
- Guillaume Costalat
- Faculty of Sport Sciences, APERE laboratory, EA 3300, University of Picardie Jules Verne, France
| | | | - Bryce N Balmain
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Clara Moreau
- CHU Sainte Justine - Brain and Child Development, University of Montreal, Canada
| | - Emily Brotherton
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Francois Billaut
- Département de kinésiologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Frederic Lemaitre
- Faculty of Sport Sciences, CETAPS laboratory, EA 3832, Normandy University, France
| |
Collapse
|
13
|
Manning WJ. Journal of Cardiovascular Magnetic Resonance: 2017/2018 in review. J Cardiovasc Magn Reson 2019; 21:79. [PMID: 31884956 PMCID: PMC6936125 DOI: 10.1186/s12968-019-0594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
There were 89 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2017, including 76 original research papers, 4 reviews, 5 technical notes, 1 guideline, and 3 corrections. The volume was down slightly from 2017 with a corresponding 15% decrease in manuscript submissions from 405 to 346 and thus reflects a slight increase in the acceptance rate from 25 to 26%. The decrease in submissions for the year followed the initiation of the increased author processing charge (APC) for Society for Cardiovascular Magnetic Resonance (SCMR) members for manuscripts submitted after June 30, 2018. The quality of the submissions continues to be high. The 2018 JCMR Impact Factor (which is published in June 2019) was slightly lower at 5.1 (vs. 5.46 for 2017; as published in June 2018. The 2018 impact factor means that on average, each JCMR published in 2016 and 2017 was cited 5.1 times in 2018. Our 5 year impact factor was 5.82.In accordance with Open-Access publishing guidelines of BMC, the JCMR articles are published on-line in a continuus fashion in the chronologic order of acceptance, with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful for the JCMR audience to annually summarize the publications into broad areas of interest or themes, so that readers can view areas of interest in a single article in relation to each other and contemporaneous JCMR publications. In this publication, the manuscripts are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought within the journal. In addition, as in the past two years, I have used this publication to also convey information regarding the editorial process and as a "State of our JCMR."This is the 12th year of JCMR as an open-access publication with BMC (formerly known as Biomed Central). The timing of the JCMR transition to the open access platform was "ahead of the curve" and a tribute to the vision of Dr. Matthias Friedrich, the SCMR Publications Committee Chair and Dr. Dudley Pennell, the JCMR editor-in-chief at the time. The open-access system has dramatically increased the reading and citation of JCMR publications and I hope that you, our authors, will continue to send your very best, high quality manuscripts to JCMR for consideration. It takes a village to run a journal and I thank our very dedicated Associate Editors, Guest Editors, Reviewers for their efforts to ensure that the review process occurs in a timely and responsible manner. These efforts have allowed the JCMR to continue as the premier journal of our field. This entire process would also not be possible without the dedication and efforts of our managing editor, Diana Gethers. Finally, I thank you for entrusting me with the editorship of the JCMR as I begin my 4th year as your editor-in-chief. It has been a tremendous experience for me and the opportunity to review manuscripts that reflect the best in our field remains a great joy and highlight of my week!
Collapse
Affiliation(s)
- Warren J Manning
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
14
|
Anderson W, Murray P, Hertweck K. Dive Medicine: Current Perspectives and Future Directions. Curr Sports Med Rep 2019; 18:129-135. [PMID: 30969238 DOI: 10.1249/jsr.0000000000000583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As SCUBA diving continues to rapidly grow in the United States and worldwide, physicians should have a fundamental working knowledge to provide care for an injured diver. SCUBA divers are faced with many hazards at depths that are normally well compensated for at sea level. Pressure gradients, changes in the partial pressure of inhaled gases and gas solubility can have disastrous effects to the diver if not managed properly. Many safety measures in SCUBA diving are governed by the laws of physics, but some have come under scrutiny. This has prompted increased research concerning in water recompression and flying after diving. This article will give physicians an understanding of the dangers divers encounter and the current treatment recommendations. We will also explore some controversies in diving medicine.
Collapse
Affiliation(s)
- Wayne Anderson
- Morton Plant Mease Family Medicine Residency Program, Department of Family Medicine, University of South Florida College of Medicine, Tampa, FL
| | | | | |
Collapse
|