1
|
Daud E, Trauzeddel RF, Müller M, Vestjens LTW, Gröschel J, Viezzer D, Hadler T, Blaszczyk E, Jin N, Giese D, Schmitter S, Schulz-Menger J. Assessing reliability and comparability of 4D flow CMR whole heart measurements using retrospective valve tracking: A single-vendor study in the Berlin research network. Magn Reson Imaging 2025; 119:110368. [PMID: 40049254 DOI: 10.1016/j.mri.2025.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION This study investigated intracardiac flow dynamics and assessed the comparability and reliability of 4D flow CMR measurements across multiple sites within the Berlin Research Network for Cardiovascular Magnetic Resonance (BER-CMR) using 3D cine phase-contrast imaging with three-directional velocity encoding in a healthy traveling cohort. METHODS In a prospective multi-site cohort study, 20 healthy volunteers underwent CMR at different sites. Quantitative assessment of Forward flow Volume (FFV), Peak (PV) and Mean Velocity (MV) across the heart's valves were conducted using retrospective valve tracking. FFV of the aortic and pulmonary valves, measured via 4D flow CMR, was compared to each other and to Stroke Volume (SV) from cine imaging. Reliability was assessed using scan-rescan tolerance ranges from a single site, with equivalency assumed if other sites' confidence intervals fell within these ranges. Intra- and interobserver analyses evaluated measurement consistency. RESULTS The final analysis included 19 healthy volunteers. Intersite comparability analysis across all four heart valves revealed a strong reliability for FFV, PV and MV, except for FFV at the mitral valve at two sites and PV at the tricuspid valve at one site. Correlation analysis of SV and FFV of the corresponding ventriculoarterial valves demonstrated good agreement (aortic valve: r = 0.89, P < 0.001; pulmonary valve: r = 0.88, p < 0.001). Inter- and intraobserver analyses yielded good to excellent agreement across all valves (ICC > 0.90, p < 0.001). CONCLUSION 4D flow CMR whole-heart measurements in healthy volunteers were consistent across sites, showing strong agreement despite physiological and technical variability. These findings support future multicenter studies.
Collapse
Affiliation(s)
- Elias Daud
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany; The Cardiology Department, Galilee Medical Center, Azrieli Faculty of Medicine, Bar-Ilan University, Nahariya - Safed, Israel
| | - Ralf Felix Trauzeddel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany; Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Maximilian Müller
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Luc T W Vestjens
- Faculty of Medical Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan Gröschel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany; Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Klinik für Kardiologie, Angiologie und Intensivmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | - Darian Viezzer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Thomas Hadler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Edyta Blaszczyk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc., Cleveland, OH, USA
| | - Daniel Giese
- Magnetic Resonance, Siemens Healthineers AG, Erlangen, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeanette Schulz-Menger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, A Joint Cooperation between Charité - Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany; Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, 13125 Berlin, Germany.
| |
Collapse
|
2
|
Grafton-Clarke C, Assadi H, Li R, Mehmood Z, Hall R, Matthews G, Tsampasian V, Alabed S, Kasmai B, Staff L, Curtin J, Yashoda GK, Sun J, Nair S, Hewson D, Thampi K, Broncano J, Ricci F, Swoboda P, Swift AJ, Vassiliou VS, Geest RJVD, Garg P. Four-dimensional flow provides incremental diagnostic value over echocardiography in aortic stenosis. Open Heart 2025; 12:e003081. [PMID: 40340893 DOI: 10.1136/openhrt-2024-003081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/24/2025] [Indexed: 05/10/2025] Open
Abstract
AIMS Four-dimensional flow cardiovascular MRI (4D flow CMR) has emerged as a promising technique for assessing aortic stenosis (AS). This study aimed to evaluate the agreement between 4D flow CMR and transthoracic echocardiography (TTE) in estimating peak aortic valve (AV) velocities (VPeak), grading AS severity and predicting AV intervention in a real-world setting. METHODS Participants from the PREFER-CMR registry who had consecutive TTE and 4D flow CMR were included. AS severity was graded using established protocols using three echocardiographic parameters (VPeak, AV area and mean pressure gradient) and CMR-derived VPeak. RESULTS The study recruited 30 patients (mean age 75.4 years, 67% male), with 17 undergoing AV intervention. Continuous wave Doppler (CWD) VPeak (3.4 vs 2.6 m/s, p=0.0025) and 4D flow VPeak (4.2 vs 2.7 m/s, p<0.0001) were significantly higher in patients going for AV intervention. VPeak by CWD was significantly lower to 4D flow with a bias of -0.5 (p=0.01) and a correlation of (R=0.55, p=0.002). The Cox-regression analysis reveals that 4D flow VPeak significantly predicts AV intervention (HR=2.51, p<0.01), while CWD VPeak (HR=0.54, p=0.76) shows no significant association; overall model fit is significant (χ²=9.5, p=0.02). CONCLUSION 4D flow CMR-derived VPeak assessment is superior to echocardiographic CWD assessment for predicting timing of AV intervention. TRIAL REGISTRATION NUMBER NCT05114785.
Collapse
Affiliation(s)
- Ciaran Grafton-Clarke
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Department of Cardiovascular and Metabolic Health, University of East Anglia, Norwich, UK
| | - Hosamadin Assadi
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Department of Cardiovascular and Metabolic Health, University of East Anglia, Norwich, UK
| | - Rui Li
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Department of Cardiovascular and Metabolic Health, University of East Anglia, Norwich, UK
| | - Zia Mehmood
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Department of Cardiovascular and Metabolic Health, University of East Anglia, Norwich, UK
| | - Rimma Hall
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Gareth Matthews
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Department of Cardiovascular and Metabolic Health, University of East Anglia, Norwich, UK
| | - Vasiliki Tsampasian
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Department of Cardiovascular and Metabolic Health, University of East Anglia, Norwich, UK
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Bahman Kasmai
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Department of Cardiovascular and Metabolic Health, University of East Anglia, Norwich, UK
| | - Laura Staff
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - John Curtin
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | | | - Julia Sun
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Sunil Nair
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - David Hewson
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Kurian Thampi
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Jordi Broncano
- Hospital San Juan de Dios, Santa Cruz de Tenerife, Spain
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, Chieti and University Cardiology Division, Chieti, Italy
| | | | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Vassilios S Vassiliou
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Department of Cardiovascular and Metabolic Health, University of East Anglia, Norwich, UK
| | - Rob J van der Geest
- Department of Radiology, Division of Image Processing, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Pankaj Garg
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Department of Cardiovascular and Metabolic Health, University of East Anglia, Norwich, UK
| |
Collapse
|
3
|
van Schuppen J, van der Hulst AE, den Harder JM, Gottwald LM, van Luijk RD, van den Noort JC, Nelissen JL, Coerkamp CF, Boekholdt SM, Groot PF, Nederveen A, van Ooij P, Planken RN. Prerequisites for Clinical Implementation of Whole-Heart 4D-Flow MRI: A Delphi Analysis. J Magn Reson Imaging 2025; 61:1618-1628. [PMID: 39166882 PMCID: PMC11896919 DOI: 10.1002/jmri.29550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
Whole-heart 4D-flow MRI is a valuable tool for advanced visualization and quantification of blood flow in cardiovascular imaging. Despite advantages over 2D-phase-contrast flow, clinical implementation remains only partially exploited due to many hurdles in all steps, from image acquisition, reconstruction, postprocessing and analysis, clinical embedment, reporting, legislation, and regulation to data storage. The intent of this manuscript was 1) to evaluate the extent of clinical implementation of whole-heart 4D-flow MRI, 2) to identify hurdles hampering clinical implementation, and 3) to reach consensus on requirements for clinical implementation of whole-heart 4D-flow MRI. This study is based on Delphi analysis. This study involves a panel of 18 experts in the field on whole-heart 4D-flow MRI. The experience with and opinions of experts (mean 13 years of experience, interquartile range 6) in the field were aggregated. This study showed that among experts in the cardiovascular field, whole-heart 4D-flow MRI is currently used for both clinical and research purposes. Overall, the panelists agreed that major hurdles currently hamper implementation and utilization. The sequence-specific hurdles identified were long scan time and lack of standardization. Further hurdles included cumbersome and time-consuming segmentation and postprocessing. The study concludes that implementation of whole-heart 4D-flow MRI in clinical routine is feasible, but the implementation process is complex and requires a dedicated, multidisciplinary team. A predefined plan, including risk assessment and technique validation, is essential. The reported consensus statements may guide further tool development and facilitate broader implementation and clinical use. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Joost van Schuppen
- Department of Radiology and Nuclear MedicineAmsterdam UMC, University of AmsterdamThe Netherlands
- Atherosclerosis & Ischemic SyndromesAmsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - Annelies E. van der Hulst
- Emma Children's Hospital, Department of Pediatric CardiologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - J. Michiel den Harder
- Department of Radiology and Nuclear MedicineAmsterdam UMC, University of AmsterdamThe Netherlands
- Medical Imaging Quantification CentreAmsterdam UMC, Academic Medical CenterAmsterdamThe Netherlands
| | - Lukas M Gottwald
- Department of Radiology and Nuclear MedicineAmsterdam UMC, University of AmsterdamThe Netherlands
- Present address:
Philips HealthcareBestThe Netherlands
| | - Raschel D. van Luijk
- Department of Radiology and Nuclear MedicineAmsterdam UMC, University of AmsterdamThe Netherlands
| | - Josien C. van den Noort
- Department of Radiology and Nuclear MedicineAmsterdam UMC, University of AmsterdamThe Netherlands
- Medical Imaging Quantification CentreAmsterdam UMC, Academic Medical CenterAmsterdamThe Netherlands
- Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Jules L. Nelissen
- Department of Radiology and Nuclear MedicineAmsterdam UMC, University of AmsterdamThe Netherlands
| | - Casper F. Coerkamp
- Department of Radiology and Nuclear MedicineAmsterdam UMC, University of AmsterdamThe Netherlands
- Atherosclerosis & Ischemic SyndromesAmsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - S. Matthijs Boekholdt
- Department of CardiologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Paul F.C. Groot
- Department of Radiology and Nuclear MedicineAmsterdam UMC, University of AmsterdamThe Netherlands
| | - Aart Nederveen
- Department of Radiology and Nuclear MedicineAmsterdam UMC, University of AmsterdamThe Netherlands
| | - Pim van Ooij
- Department of Radiology and Nuclear MedicineAmsterdam UMC, University of AmsterdamThe Netherlands
| | - R. Nils Planken
- Department of Radiology and Nuclear MedicineAmsterdam UMC, University of AmsterdamThe Netherlands
- Atherosclerosis & Ischemic SyndromesAmsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | | |
Collapse
|
4
|
Connor B, Takei M, Clark DE, Maskatia SA. Improved quantification of aortic regurgitation with direct regurgitant jet measurement by four-dimensional flow cardiovascular magnetic resonance in complex congenital heart disease. J Cardiovasc Magn Reson 2025; 27:101876. [PMID: 40074040 PMCID: PMC12053713 DOI: 10.1016/j.jocmr.2025.101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Due to the presence of complex flow states and significant jet eccentricity in patients with congenital heart disease (CHD), accurate quantification of aortic regurgitation (AR) using standard echocardiographic or conventional cardiovascular magnetic resonance (CMR) imaging measures remains challenging. Four-dimensional flow (4DF) CMR permits transvalvular flow quantification under non-laminar flow states, although it has not been well validated for AR quantification in CHD. METHODS In 186 patients with moderate or complex CHD, we evaluated the agreement between different methods of AR quantification by 4DF CMR when compared to volumetry. Regurgitant flow volumes were measured (1) conventionally on time-resolved, velocity-encoded 4DF sequences at the aortic annulus, sinotubular junction (STJ), and ascending aorta (AAo), and via (2) direct regurgitant jet quantification 5 mm proximal to the vena contracta. RESULTS Moderate overall agreement in AR quantification was observed between study methods (ρ=0.58-0.73). Compared with conventional flow quantification at the annulus, STJ, and AAo, direct regurgitant jet measurements showed improved correlation with volumetry (ρ=0.76), especially in patients with significant aortic dilation (r=0.95-0.97). In this latter group, regurgitant flow quantification at all other aortic levels resulted in AR severity classifications that were nearly a full grade lower (mean aortic regurgitant fraction difference: 7-12% ± 10-12%; p<0.001). CONCLUSION 4DF CMR permits AR quantification in complex CHD with comparable accuracy to volumetry. Under non-laminar or complex flow states, as observed with significant aortic dilation, direct regurgitant jet measurements may be preferable to regurgitant flow quantification at all other aortic levels.
Collapse
Affiliation(s)
- Brynn Connor
- Division of Pediatric Cardiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| | - Makoto Takei
- Division of Cardiovascular Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Daniel E Clark
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California, USA; Division of Pediatric Cardiology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Shiraz A Maskatia
- Division of Pediatric Cardiology, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
5
|
Garg P, Pavon AG, Penicka M, Uretsky S. Cardiovascular magnetic resonance imaging in mitral valve disease. Eur Heart J 2025; 46:606-619. [PMID: 39565911 PMCID: PMC11825178 DOI: 10.1093/eurheartj/ehae801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/04/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
This paper describes the role of cardiovascular magnetic resonance (CMR) imaging in assessing patients with mitral valve disease. Mitral regurgitation (MR) is one of the most prevalent valvular heart diseases. It often progresses without significant symptoms, leading to left ventricular overload, dysfunction, frequent decompensated heart failure episodes, and excess mortality. Cardiovascular magnetic resonance assessment is recommended for MR when routine ultrasound imaging information is insufficient or discordant. A well-planned CMR can provide an in-depth assessment of the mitral valve apparatus, leaflet morphology, and papillary muscles. In addition, it can precisely inform the impact of MR on left atrial and ventricular remodelling. The review aims to highlight established and emerging techniques for morphological assessment, flow assessment (including regurgitation and stenosis), myocardial assessment, and haemodynamic assessment of mitral valve disease by CMR. It also proposes a simplified clinical flow chart for CMR assessment of the mitral valve.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, Norfolk, UK
- Cardiology Department, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, Norfolk, UK
| | - Anna Giulia Pavon
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete, 48, 6900 Lugano, Switzerland
| | | | - Seth Uretsky
- Department of Cardiovascular Medicine, Gagnon Cardiovascular Institute, Morristown Medical Center, 100 Madison Avenue, Morristown, NJ 07960, USA
| |
Collapse
|
6
|
Benkhoff M, Barcik M, Mourikis P, Dahlmanns J, Kahmann P, Wollnitzke P, Hering M, Huckenbeck T, Hoppe J, Semleit N, Deister-Jonas J, Zako S, Seel J, Coman C, Barth M, Cramer M, Helten C, Wildeis L, Hu H, Al-Kassis G, Metzen D, Hesse J, Weber J, Dannenberg L, Akhyari P, Lichtenberg A, Quast C, Gerdes N, Zeus T, Borst O, Kelm M, Petzold T, Ahrends R, Levkau B, Polzin A. Targeting Sphingosine-1-Phosphate Signaling to Prevent the Progression of Aortic Valve Disease. Circulation 2025; 151:333-347. [PMID: 39429140 DOI: 10.1161/circulationaha.123.067270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Aortic valve disease (AVD) is associated with high mortality and morbidity. To date, there is no pharmacological therapy available to prevent AVD progression. Because valve calcification is the hallmark of AVD and S1P (sphingosine-1-phosphate) plays an important role in osteogenic signaling, we examined the role of S1P signaling in aortic stenosis disease. METHODS AVD progression and its consequences for cardiac function were examined in a murine wire injury-induced AVD model with and without pharmacological and genetic modulation of S1P production, degradation, and receptor signaling. S1P was measured by liquid chromatography-mass spectrometry. Calcification of human valvular interstitial cells and their response to biomechanical stress were analyzed in the context of S1P signaling. Human explanted aortic valves from patients undergoing aortic valve replacement and cardiovascular magnetic resonance imaging were analyzed for S1P by liquid chromatography-mass spectrometry. RESULTS Raising S1P concentrations in mice with injury-induced AVD by pharmacological inhibition of its sole degrading enzyme S1P lyase vastly enhanced AVD progression and impaired cardiac function resembling human disease. In contrast, low S1P levels caused by SphK1 (sphingosine kinase 1) deficiency potently attenuated AVD progression. We found S1P/S1PR2 (S1P receptor 2) signaling to be responsible for the adverse S1P effect because S1PR2-deficient mice were protected against AVD progression and its deterioration by high S1P. It is important to note that pharmacological S1PR2 inhibition administered after wire injury successfully prevented AVD development. Mechanistically, biomechanical stretch stimulated S1P production by SphK1 in human valvular interstitial cells as measured by C17-S1P generation, whereas S1P/S1PR2 signaling induced their osteoblastic differentiation and calcification through osteogenic RUNX2/OPG signaling and the GSK3β-Wnt-β-catenin pathway. In patients with AVD, stenotic valves exposed to high wall shear stress had higher S1P content and increased SphK1 expression. CONCLUSIONS Increased systemic or local S1P levels lead to increased valvular calcification. S1PR2 antagonists and SphK1 inhibitors may offer feasible pharmacological approaches to human AVD in prophylactic, disease-modifying or relapse-preventing manners.
Collapse
Affiliation(s)
- Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
- Institute of Analytical Chemistry, University of Vienna, Vienna, Austria (M. Benkhoff, C.C., R.A.)
| | - Maike Barcik
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Philipp Mourikis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Jana Dahlmanns
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Paulina Kahmann
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (P.W., J.H., N.S., J.D.-J., B.L.)
| | - Moritz Hering
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Tim Huckenbeck
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Julia Hoppe
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (P.W., J.H., N.S., J.D.-J., B.L.)
| | - Nina Semleit
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (P.W., J.H., N.S., J.D.-J., B.L.)
| | - Jennifer Deister-Jonas
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (P.W., J.H., N.S., J.D.-J., B.L.)
| | - Saif Zako
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Jasmin Seel
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Cristina Coman
- Institute of Analytical Chemistry, University of Vienna, Vienna, Austria (M. Benkhoff, C.C., R.A.)
| | - Mareike Barth
- Department of Cardiac Surgery, University Hospital Aachen, RWTH Aachen University, Germany (M. Barth, P.A.)
| | - Mareike Cramer
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Carolin Helten
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Laura Wildeis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Hao Hu
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Gabrielle Al-Kassis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Daniel Metzen
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Julia Hesse
- Department of Molecular Cardiology, Heinrich Heine University Düsseldorf, Germany (J.H.)
| | - Jessica Weber
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Lisa Dannenberg
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Payam Akhyari
- Department of Cardiac Surgery, University Hospital Aachen, RWTH Aachen University, Germany (M. Barth, P.A.)
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (A.L.)
| | - Christine Quast
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Norbert Gerdes
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
- Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany (N.G., M.K., A.P.)
| | - Tobias Zeus
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
| | - Oliver Borst
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Tübingen, Germany (O.B.)
- Department of Cardiology and Angiology, University of Tübingen, Tübingen, Germany (O.B.)
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
- Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany (N.G., M.K., A.P.)
| | - Tobias Petzold
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany (T.P.)
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Germany (T.P.)
| | - Robert Ahrends
- Institute of Analytical Chemistry, University of Vienna, Vienna, Austria (M. Benkhoff, C.C., R.A.)
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (P.W., J.H., N.S., J.D.-J., B.L.)
| | - Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany (M. Benkhoff, M. Barcik, P.M., J.D., P.K., M.H., T.H., S.Z., J.S., M.C., C.H., L.W., H.H., G.A.-K., D.M., J.W., L.D., C.Q., N.G., T.Z., M.K., A.P.)
- Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany (N.G., M.K., A.P.)
- National Heart and Lung Institute, Imperial College London, London, United Kingdom (A.P.)
| |
Collapse
|
7
|
in de Braekt T, Aben J, Maussen M, van den Bosch HC, Houthuizen P, Roest AA, van den Boogaard PJ, Lamb HJ, Westenberg JJ. Fully Automated Valve Segmentation for Blood Flow Assessment From 4D Flow MRI Including Automated Cardiac Valve Tracking and Transvalvular Velocity Mapping. J Magn Reson Imaging 2025; 61:198-208. [PMID: 38558490 PMCID: PMC11645491 DOI: 10.1002/jmri.29370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Automated 4D flow MRI valvular flow quantification without time-consuming manual segmentation might improve workflow. PURPOSE Compare automated valve segmentation (AS) to manual (MS), and manually corrected automated segmentation (AMS), in corrected atrioventricular septum defect (c-AVSD) patients and healthy volunteers, for assessing net forward volume (NFV) and regurgitation fraction (RF). STUDY TYPE Retrospective. POPULATION 27 c-AVSD patients (median, 23 years; interquartile range, 16-31 years) and 24 healthy volunteers (25 years; 12.5-36.5 years). FIELD STRENGTH/SEQUENCE Whole-heart 4D flow MRI and cine steady-state free precession at 3T. ASSESSMENT After automatic valve tracking, valve annuli were segmented on time-resolved reformatted trans-valvular velocity images by AS, MS, and AMS. NFV was calculated for all valves, and RF for right and left atrioventricular valves (RAVV and LAVV). NFV variation (standard deviation divided by mean NFV) and NFV differences (NFV difference of a valve vs. mean NFV of other valves) expressed internal NFV consistency. STATISTICAL TESTS Comparisons between methods were assessed by Wilcoxon signed-rank tests, and intra/interobserver variability by intraclass correlation coefficients (ICCs). P < 0.05 was considered statistically significant, with multiple testing correction. RESULTS AMS mean analysis time was significantly shorter compared with MS (5.3 ± 1.6 minutes vs. 9.1 ± 2.5 minutes). MS NFV variation (6.0%) was significantly smaller compared with AMS (6.3%), and AS (8.2%). Median NFV difference of RAVV, LAVV, PV, and AoV between segmentation methods ranged from -0.7-1.0 mL, -0.5-2.8 mL, -1.1-3.6 mL, and - 3.1--2.1 mL, respectively. Median RAVV and LAVV RF, between 7.1%-7.5% and 3.8%-4.3%, respectively, were not significantly different between methods. Intraobserver/interobserver agreement for AMS and MS was strong-to-excellent for NFV and RF (ICC ≥0.88). DATA CONCLUSION MS demonstrates strongest internal consistency, followed closely by AMS, and AS. Automated segmentation, with or without manual correction, can be considered for 4D flow MRI valvular flow quantification. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Thomas in de Braekt
- Department of RadiologyCatharina HospitalEindhoventhe Netherlands
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | | | | | | | | | - Arno A.W. Roest
- Department of Pediatric CardiologyLeiden University Medical CenterLeidenthe Netherlands
| | | | - Hildo J. Lamb
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Jos J.M. Westenberg
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
8
|
Urmeneta Ulloa J, Álvarez Vázquez A, Martínez de Vega V, Martínez de Vega L, Andreu-Vázquez C, Thuissard-Vasallo IJ, Recio Rodríguez M, Cabrera JA. Comprehensive 4D-flow cardiac magnetic resonance evaluation of the descending thoracic aorta in aortic regurgitation. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2025; 3:qyaf002. [PMID: 39866378 PMCID: PMC11758371 DOI: 10.1093/ehjimp/qyaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025]
Abstract
Aims To assess the reproducibility of 4D-Flow cardiac magnetic resonance (CMR) parameters in the descending thoracic aorta-DTAo-(regurgitant fraction [RF], end-diastolic reverse flow [EDRF], and holodiastolic flow reversal [HDR]), and the relationship with RF in the sinotubular junction (STJ), and the left ventricular end-diastolic volume index (LVEDVI) in patients with chronic aortic regurgitation (AR). Methods and results A descriptive study of these variables was conducted. A receiver operating characteristic curve was used to determine the optimal cut-off point. Thirty patients had severe AR (RF ≥ 30%, STJ) and 60 mild-to-moderate (RF < 30%). The mean age was 59 ± 17 years. Left ventricular ejection fraction (LVEF) was 56% (53-61%) and LVEDVI was 94 (76-128) mL/m2. Flow in the DTAo at the left inferior pulmonary vein (LIPV) was easily identifiable and measurements were highly reproducible. The intraclass correlation coefficient was 0.969 (95% CI: 0.954-0.980) for RF and 0.929 (95% CI: 0.893-0.952) for EDRF. Flow parameters measured at the LIPV were all significantly greater in the severe AR group: RF (21% vs. 6%, P < 0.001), EDRF (20 vs. 4 mL/s; P < 0.001), and HDR (20% vs. 8%; P < 0.001). Three parameters-presence of HDR, RF ≥ 17%, and EDRF ≥ 7 mL/s at the LIPV-were associated with RF ≥ 30% in the STJ and elevated LVEDVI. Conclusion 4D-flow CMR can reproducibly assess flow in the DTAo in patients with chronic AR. An RF ≥ 17%, EDRF ≥ 7 mL/s, and/or the presence of HDR in the DTAo (LIPV) were associated with an RF ≥ 30% in STJ and elevated LVEDVI.
Collapse
Affiliation(s)
- J Urmeneta Ulloa
- Radiology Department, Hospital Universitario Quirónsalud Madrid, Calle Diego de Velázquez, 1, Madrid 28223, Spain
- Cardiology Department, Hospital Universitario Quirónsalud Madrid, Calle Diego de Velázquez, 1, Madrid 28223, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, C. Tajo, s/n, 28670 Villaviciosa de Odón, Spain
| | - A Álvarez Vázquez
- Radiology Department, Hospital Universitario Quirónsalud Madrid, Calle Diego de Velázquez, 1, Madrid 28223, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, C. Tajo, s/n, 28670 Villaviciosa de Odón, Spain
| | - V Martínez de Vega
- Radiology Department, Hospital Universitario Quirónsalud Madrid, Calle Diego de Velázquez, 1, Madrid 28223, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, C. Tajo, s/n, 28670 Villaviciosa de Odón, Spain
| | - L Martínez de Vega
- Radiology Department, Hospital Universitario Ramón y Cajal, M-607, Km. 9, 100, Fuencarral-El Pardo, Madrid 28034, Spain
| | - C Andreu-Vázquez
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, C. Tajo, s/n, 28670 Villaviciosa de Odón, Spain
| | - I J Thuissard-Vasallo
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, C. Tajo, s/n, 28670 Villaviciosa de Odón, Spain
| | - M Recio Rodríguez
- Radiology Department, Hospital Universitario Quirónsalud Madrid, Calle Diego de Velázquez, 1, Madrid 28223, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, C. Tajo, s/n, 28670 Villaviciosa de Odón, Spain
| | - J A Cabrera
- Cardiology Department, Hospital Universitario Quirónsalud Madrid, Calle Diego de Velázquez, 1, Madrid 28223, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, C. Tajo, s/n, 28670 Villaviciosa de Odón, Spain
| |
Collapse
|
9
|
Gorecka M, Cole C, Bissell MM, Craven TP, Chew PG, Dobson LE, Brown LAE, Paton MF, Higgins DM, Thirunavukarasu S, Sharrack N, Javed W, Kotha S, Giannoudi M, Procter H, Parent M, Kidambi A, Swoboda PP, Plein S, Levelt E, Garg P, Greenwood JP. 4D Flow Cardiac MR in Primary Mitral Regurgitation. J Magn Reson Imaging 2024; 60:2378-2392. [PMID: 38344930 DOI: 10.1002/jmri.29284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Four-dimensional-flow cardiac MR (4DF-MR) offers advantages in primary mitral regurgitation. The relationship between 4DF-MR-derived mitral regurgitant volume (MR-Rvol) and the post-operative left ventricular (LV) reverse remodeling has not yet been established. PURPOSE To ascertain if the 4DF-MR-derived MR-Rvol correlates with the LV reverse remodeling in primary mitral regurgitation. STUDY TYPE Prospective, single-center, two arm, interventional vs. nonintervention observational study. POPULATION Forty-four patients (male N = 30; median age 68 [59-75]) with at least moderate primary mitral regurgitation; either awaiting mitral valve surgery (repair [MVr], replacement [MVR]) or undergoing "watchful waiting" (WW). FIELD STRENGTH/SEQUENCE 5 T/Balanced steady-state free precession (bSSFP) sequence/Phase contrast imaging/Multishot echo-planar imaging pulse sequence (five shots). ASSESSMENT Patients underwent transthoracic echocardiography (TTE), phase-contrast MR (PMRI), 4DF-MR and 6-minute walk test (6MWT) at baseline, and a follow-up PMRI and 6MWT at 6 months. MR-Rvol was quantified by PMRI, 4DF-MR, and TTE by one observer. The pre-operative MR-Rvol was correlated with the post-operative decrease in the LV end-diastolic volume index (LVEDVi). STATISTICAL TESTS Included Student t-test/Mann-Whitney test/Fisher's exact test, Bland-Altman plots, linear regression analysis and receiver operating characteristic curves. Statistical significance was defined as P < 0.05. RESULTS While Bland-Altman plots demonstrated similar bias between all the modalities, the limits of agreement were narrower between 4DF-MR and PMRI (bias 15; limits of agreement -36 mL to 65 mL), than between 4DF-MR and TTE (bias -8; limits of agreement -106 mL to 90 mL) and PMRI and TTE (bias -23; limits of agreement -105 mL to 59 mL). Linear regression analysis demonstrated a significant association between the MR-Rvol and the post-operative decrease in the LVEDVi, when the MR-Rvol was quantified by PMRI and 4DF-MR, but not by TTE (P = 0.73). 4DF-MR demonstrated the best diagnostic performance for reduction in the post-operative LVEDVi with the largest area under the curve (4DF-MR 0.83; vs. PMRI 0.78; and TTE 0.51; P = 0.89). DATA CONCLUSION This study demonstrates the potential clinical utility of 4DF-MR in the assessment of primary mitral regurgitation. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Miroslawa Gorecka
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | | | - Malenka M Bissell
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Thomas P Craven
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Pei G Chew
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Laura E Dobson
- Department of Cardiology, Wythenshawe Hospital, Manchester University NHS Trust, Manchester, UK
| | - Louise A E Brown
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Maria F Paton
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | | | | | - Noor Sharrack
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Wasim Javed
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sindhoora Kotha
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Marilena Giannoudi
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Henry Procter
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Martine Parent
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | | | - Peter P Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Eylem Levelt
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Pankaj Garg
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - John P Greenwood
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Grafton-Clarke C, Ramachenderam L, Matthews G, Broncano J, Garg P. How can Four-Dimensional Magnetic Resonance Imaging Improve the Diagnosis of Heart Disease? Br J Hosp Med (Lond) 2024; 85:1-18. [PMID: 39618231 DOI: 10.12968/hmed.2024.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This review describes the evolution and enhanced diagnostic capabilities introduced by four-dimensional (4D) flow cardiac magnetic resonance (CMR) in cardiovascular imaging. It charts the historical advancements from echocardiography through to two-dimensional phase-contrast magnetic resonance imaging (2D-PC MRI), culminating in the adoption of 4D flow MRI. This technique affords exhaustive, time-resolved, three-dimensional visualisations of intracardiac and vascular blood flow, refining the accuracy of cardiovascular assessments over traditional methods, especially in complex anatomical settings. The review elaborates on the capacity of 4D flow MRI to offer unparalleled insights into flow dynamics, vessel wall interactions, and cardiac function, thereby enhancing disease detection, risk stratification, and therapeutic evaluations. It accentuates the impact of 4D flow MRI on modern cardiological practices, highlighting its pivotal role in advancing diagnostics and patient management in the context of diverse cardiovascular pathologies.
Collapse
Affiliation(s)
- Ciaran Grafton-Clarke
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospitals, Norwich, UK
| | | | - Gareth Matthews
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospitals, Norwich, UK
| | | | - Pankaj Garg
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospitals, Norwich, UK
| |
Collapse
|
11
|
Sjöberg P, Lala T, Wittgren J, Jin N, Hedström E, Töger J. Image reconstruction impacts haemodynamic parameters derived from 4D flow magnetic resonance imaging with compressed sensing. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2024; 2:qyae137. [PMID: 39776817 PMCID: PMC11705387 DOI: 10.1093/ehjimp/qyae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Aims 4D blood flow measurements by cardiac magnetic resonance imaging (CMR) can be used to simplify blood flow assessment. Compressed sensing (CS) can provide better flow measurements than conventional parallel imaging (PI), but clinical validation is needed. This study aimed to validate stroke volume (SV) measurements by 4D-CS in healthy volunteers and patients while also investigating the influence of the CS image reconstruction parameter λ on haemodynamic parameters. Methods and results Healthy participants (n = 9; 20-62 years) underwent CMR with 2D, 4D-CS, and 4D-PI flow. Patients (n = 30, 17 with congenital heart defect; 2-75 years) had 4D-CS added to their clinical examination. Impact of λ was assessed by reconstructing 4D-CS data for six different λ values. In healthy volunteers, 4D-CS and 4D-PI SV differed by 0.4 ± 6.5 mL [0.6 ± 9.1%; intraclass correlation coefficient (ICC) 0.98], and 4D-CS and 2D flow by 0.9 ± 7.0 mL (0.9 ± 10.6%; ICC 0.98). In patients, 4D-CS and 2D flow differed by -1.3 ± 6.0 mL (-7.2 ± 20%; ICC 0.97). SV was not dependent on λ in patients (P = 0.75) but an increase in λ by 0.001 led to increased differences between 4D-CS and 4D-PI of -0.4% (P = 0.0021) in healthy participants. There were significant differences for ventricular kinetic energy (systole: P < 0.0001; diastole: P < 0.0001) and haemodynamic forces (systole: P < 0.0001; diastole: P < 0.0001), where error increased with increasing λ values in both healthy participants and patients. Conclusion 4D flow CMR with CS can be used clinically to assess SV in paediatric and adult patients. Ventricular kinetic energy and haemodynamic forces are however sensitive to the change in reconstruction parameter λ, and it is therefore important to validate advanced blood flow measurements before comparing data between scanners and centres.
Collapse
Affiliation(s)
- Pia Sjöberg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund 221 00, Sweden
- Department of Clinical Physiology, Skåne University Hospital, Lund 221 85, Sweden
| | - Tania Lala
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund 221 00, Sweden
- Biomedical Engineering, Lund University, Lund, Sweden
| | - Johan Wittgren
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund 221 00, Sweden
- Department of Clinical Physiology, Skåne University Hospital, Lund 221 85, Sweden
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc., Cleveland, OH, USA
| | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund 221 00, Sweden
- Department of Clinical Physiology, Skåne University Hospital, Lund 221 85, Sweden
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Radiology, Skåne University Hospital, Lund, Sweden
| | - Johannes Töger
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund 221 00, Sweden
- Department of Clinical Physiology, Skåne University Hospital, Lund 221 85, Sweden
- Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Silva Ferreira MV, Soares CSP, Araujo-Filho JDAB, Dantas RN, Torres RVA, Morais TC, Avila LFR, Ishikawa W, Nomura CH, Rajiah PS, Parga Filho J. Mitral Annular Disease at Cardiac MRI: What to Know and Look For. Radiographics 2024; 44:e230156. [PMID: 38870043 DOI: 10.1148/rg.230156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Accurate evaluation of the mitral valve (MV) apparatus is essential for understanding the mechanisms of MV disease across various clinical scenarios. The mitral annulus (MA) is a complex and crucial structure that supports MV function; however, conventional imaging techniques have limitations in fully capturing the entirety of the MA. Moreover, recognizing annular changes might aid in identifying patients who may benefit from advanced cardiac imaging and interventions. Multimodality cardiovascular imaging plays a major role in the diagnosis, prognosis, and management of MV disease. Transthoracic echocardiography is the first-line modality for evaluation of the MA, but it has limitations. Cardiac MRI (CMR) has emerged as a robust imaging modality for assessing annular changes, with distinct advantages over other imaging techniques, including accurate flow and volumetric quantification and assessment of variations in the measurements and shape of the MA during the cardiac cycle. Mitral annular disjunction (MAD) is defined as atrial displacement of the hinge point of the MV annulus away from the ventricular myocardium, a condition that is now more frequently diagnosed and studied owing to recent technical advances in cardiac imaging. However, several unresolved issues regarding MAD, such as the functional significance of pathologic disjunction and how this disjunction advances in the clinical course, require further investigation. The authors review the role of CMR in the assessment of MA disease, with a focus on MAD and its functional implications in MV prolapse and mitral regurgitation. ©RSNA, 2024 Supplemental material is available for this article. See the invited commentary by Stojanovska and Fujikura in this issue.
Collapse
Affiliation(s)
- Marcus Vinicius Silva Ferreira
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, Sao Paulo, SP 01308-050, Brazil (M.V.S.F., C.S.P.S., J.dA.B.A.F., R.N.D., R.V.A.T., T.C.M., L.F.R.A., C.H.N., J.P.F.); Department of Radiology, Hospital Israelita Albert Einstein, Sao Paulo, SP 05652-900, Brazil (W.I.); and Department of Radiology, Mayo Clinic, Rochester, MN 55905 (P.S.R.)
| | - Clarice Santos Parreira Soares
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, Sao Paulo, SP 01308-050, Brazil (M.V.S.F., C.S.P.S., J.dA.B.A.F., R.N.D., R.V.A.T., T.C.M., L.F.R.A., C.H.N., J.P.F.); Department of Radiology, Hospital Israelita Albert Einstein, Sao Paulo, SP 05652-900, Brazil (W.I.); and Department of Radiology, Mayo Clinic, Rochester, MN 55905 (P.S.R.)
| | - Jose de Arimateia Batista Araujo-Filho
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, Sao Paulo, SP 01308-050, Brazil (M.V.S.F., C.S.P.S., J.dA.B.A.F., R.N.D., R.V.A.T., T.C.M., L.F.R.A., C.H.N., J.P.F.); Department of Radiology, Hospital Israelita Albert Einstein, Sao Paulo, SP 05652-900, Brazil (W.I.); and Department of Radiology, Mayo Clinic, Rochester, MN 55905 (P.S.R.)
| | - Roberto Nery Dantas
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, Sao Paulo, SP 01308-050, Brazil (M.V.S.F., C.S.P.S., J.dA.B.A.F., R.N.D., R.V.A.T., T.C.M., L.F.R.A., C.H.N., J.P.F.); Department of Radiology, Hospital Israelita Albert Einstein, Sao Paulo, SP 05652-900, Brazil (W.I.); and Department of Radiology, Mayo Clinic, Rochester, MN 55905 (P.S.R.)
| | - Roberto Vitor Almeida Torres
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, Sao Paulo, SP 01308-050, Brazil (M.V.S.F., C.S.P.S., J.dA.B.A.F., R.N.D., R.V.A.T., T.C.M., L.F.R.A., C.H.N., J.P.F.); Department of Radiology, Hospital Israelita Albert Einstein, Sao Paulo, SP 05652-900, Brazil (W.I.); and Department of Radiology, Mayo Clinic, Rochester, MN 55905 (P.S.R.)
| | - Thamara Carvalho Morais
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, Sao Paulo, SP 01308-050, Brazil (M.V.S.F., C.S.P.S., J.dA.B.A.F., R.N.D., R.V.A.T., T.C.M., L.F.R.A., C.H.N., J.P.F.); Department of Radiology, Hospital Israelita Albert Einstein, Sao Paulo, SP 05652-900, Brazil (W.I.); and Department of Radiology, Mayo Clinic, Rochester, MN 55905 (P.S.R.)
| | - Luis Francisco Rodrigues Avila
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, Sao Paulo, SP 01308-050, Brazil (M.V.S.F., C.S.P.S., J.dA.B.A.F., R.N.D., R.V.A.T., T.C.M., L.F.R.A., C.H.N., J.P.F.); Department of Radiology, Hospital Israelita Albert Einstein, Sao Paulo, SP 05652-900, Brazil (W.I.); and Department of Radiology, Mayo Clinic, Rochester, MN 55905 (P.S.R.)
| | - Walther Ishikawa
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, Sao Paulo, SP 01308-050, Brazil (M.V.S.F., C.S.P.S., J.dA.B.A.F., R.N.D., R.V.A.T., T.C.M., L.F.R.A., C.H.N., J.P.F.); Department of Radiology, Hospital Israelita Albert Einstein, Sao Paulo, SP 05652-900, Brazil (W.I.); and Department of Radiology, Mayo Clinic, Rochester, MN 55905 (P.S.R.)
| | - Cesar Higa Nomura
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, Sao Paulo, SP 01308-050, Brazil (M.V.S.F., C.S.P.S., J.dA.B.A.F., R.N.D., R.V.A.T., T.C.M., L.F.R.A., C.H.N., J.P.F.); Department of Radiology, Hospital Israelita Albert Einstein, Sao Paulo, SP 05652-900, Brazil (W.I.); and Department of Radiology, Mayo Clinic, Rochester, MN 55905 (P.S.R.)
| | - Prabhakar Shantha Rajiah
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, Sao Paulo, SP 01308-050, Brazil (M.V.S.F., C.S.P.S., J.dA.B.A.F., R.N.D., R.V.A.T., T.C.M., L.F.R.A., C.H.N., J.P.F.); Department of Radiology, Hospital Israelita Albert Einstein, Sao Paulo, SP 05652-900, Brazil (W.I.); and Department of Radiology, Mayo Clinic, Rochester, MN 55905 (P.S.R.)
| | - Jose Parga Filho
- From the Department of Radiology, Hospital Sirio-Libanes, Rua Adma Jafet, 91, Sao Paulo, SP 01308-050, Brazil (M.V.S.F., C.S.P.S., J.dA.B.A.F., R.N.D., R.V.A.T., T.C.M., L.F.R.A., C.H.N., J.P.F.); Department of Radiology, Hospital Israelita Albert Einstein, Sao Paulo, SP 05652-900, Brazil (W.I.); and Department of Radiology, Mayo Clinic, Rochester, MN 55905 (P.S.R.)
| |
Collapse
|
13
|
Rooijakkers MJP, El Messaoudi S, Stens NA, van Wely MH, Habets J, Brink M, Rodwell L, Giese D, van der Geest RJ, van Royen N, Nijveldt R. Assessment of paravalvular regurgitation after transcatheter aortic valve replacement using 2D multi-velocity encoding and 4D flow cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging 2024; 25:929-936. [PMID: 38306632 PMCID: PMC11210991 DOI: 10.1093/ehjci/jeae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
AIMS To compare the novel 2D multi-velocity encoding (venc) and 4D flow acquisitions with the standard 2D flow acquisition for the assessment of paravalvular regurgitation (PVR) after transcatheter aortic valve replacement (TAVR) using cardiac magnetic resonance (CMR)-derived regurgitant fraction (RF). METHODS AND RESULTS In this prospective study, patients underwent CMR 1 month after TAVR for the assessment of PVR, for which 2D multi-venc and 4D flow were used, in addition to standard 2D flow. Scatterplots and Bland-Altman plots were used to assess correlation and visualize agreement between techniques. Reproducibility of measurements was assessed with intraclass correlation coefficients. The study included 21 patients (mean age ± SD 80 ± 5 years, 9 men). The mean RF was 11.7 ± 10.0% when standard 2D flow was used, 10.6 ± 7.0% when 2D multi-venc flow was used, and 9.6 ± 7.3% when 4D flow was used. There was a very strong correlation between the RFs assessed with 2D multi-venc and standard 2D flow (r = 0.88, P < 0.001), and a strong correlation between the RFs assessed with 4D flow and standard 2D flow (r = 0.74, P < 0.001). Bland-Altman plots revealed no substantial bias between the RFs (2D multi-venc: 1.3%; 4D flow: 0.3%). Intra-observer and inter-observer reproducibility for 2D multi-venc flow were 0.98 and 0.97, respectively, and 0.92 and 0.90 for 4D flow, respectively. CONCLUSION Two-dimensional multi-venc and 4D flow produce an accurate quantification of PVR after TAVR. The fast acquisition of the 2D multi-venc sequence and the free-breathing acquisition with retrospective plane selection of the 4D flow sequence provide useful advantages in clinical practice, especially in the frail TAVR population.
Collapse
Affiliation(s)
- Maxim J P Rooijakkers
- Department of Cardiology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Saloua El Messaoudi
- Department of Cardiology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Niels A Stens
- Department of Cardiology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marleen H van Wely
- Department of Cardiology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Jesse Habets
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Haaglanden Medical Centre, The Hague, The Netherlands
| | - Monique Brink
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Laura Rodwell
- Department of Health Sciences, Section Biostatistics, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Daniel Giese
- Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Germany
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Rob J van der Geest
- Department of Medical Imaging, Leiden University Medical Centre, Leiden, The Netherlands
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Chinawa JM, Chinawa AT, Chukwu BF, Onyia JT. Assessment of descending aortic blood flow velocities with continuous wave Doppler echocardiography among healthy Children in South East Nigeria. Malawi Med J 2024; 36:1-6. [PMID: 39086365 PMCID: PMC11287811 DOI: 10.4314/mmj.v36i.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Background The descending aorta velocity is important predictor of aortic disease in children and can be very helpful in some clinical and surgical decision making. Aim The purpose of this study is to assess the normative values of descending aorta velocity among children from South-East Nigeria. It also aimed to assess the correlation between age, body surface area and mean velocity across the descending aorta. Methods This is a cross-sectional study where the descending aorta velocity of one hundred and eleven children were enrolled consecutively using digitized two-dimensional and Doppler echocardiography. Results A total of 111 children had echocardiography to study their cardiac structures and compute their mean scores of their descending aorta velocity. The mean velocity across the descending aorta was 1.3±0.2m/s with maximum and minimum velocities of 2.06 and 0.84cm respectively. The mean descending aorta velocity in males (1.37±0.24 m/s) was significantly higher than that in females (1.24±0.18); (Student T test 3.09, p = 0.03). There was no correlation between age and mean velocity across the descending aorta (Pearson correlation coefficient; -0.03, p = 0.7) nor between body surface area and descending aorta velocity (correlation coefficient 0.01, p= 0.8). Conclusions The presented normalized values of the descending aorta velocity using a digitized two-dimensional and Doppler echocardiography among healthy children will serve as a reference values for further studies and can be applied for clinical and surgical use in children with various cardiac anomalies.
Collapse
Affiliation(s)
- Josephat M Chinawa
- Department of Paediatrics, College of Medicine, University of Nigeria Ituku/Ozalla and University of Nigeria Teaching Hospital Ituku/Ozalla, Enugu, Enugu State, Nigeria
| | - Awoere T Chinawa
- Department of Community Medicine, ESUCOM, Parklane Enugu, Enugu State, Nigeria
| | | | - Jude T Onyia
- Department of Community Medicine, ESUCOM, Parklane Enugu, Enugu State, Nigeria
| |
Collapse
|
15
|
Sachdeva R, Armstrong AK, Arnaout R, Grosse-Wortmann L, Han BK, Mertens L, Moore RA, Olivieri LJ, Parthiban A, Powell AJ. Novel Techniques in Imaging Congenital Heart Disease: JACC Scientific Statement. J Am Coll Cardiol 2024; 83:63-81. [PMID: 38171712 PMCID: PMC10947556 DOI: 10.1016/j.jacc.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024]
Abstract
Recent years have witnessed exponential growth in cardiac imaging technologies, allowing better visualization of complex cardiac anatomy and improved assessment of physiology. These advances have become increasingly important as more complex surgical and catheter-based procedures are evolving to address the needs of a growing congenital heart disease population. This state-of-the-art review presents advances in echocardiography, cardiac magnetic resonance, cardiac computed tomography, invasive angiography, 3-dimensional modeling, and digital twin technology. The paper also highlights the integration of artificial intelligence with imaging technology. While some techniques are in their infancy and need further refinement, others have found their way into clinical workflow at well-resourced centers. Studies to evaluate the clinical value and cost-effectiveness of these techniques are needed. For techniques that enhance the value of care for congenital heart disease patients, resources will need to be allocated for education and training to promote widespread implementation.
Collapse
Affiliation(s)
- Ritu Sachdeva
- Department of Pediatrics, Division of Pediatric Cardiology, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| | - Aimee K Armstrong
- The Heart Center, Nationwide Children's Hospital, Department of Pediatrics, Division of Cardiology, Ohio State University, Columbus, Ohio, USA
| | - Rima Arnaout
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Lars Grosse-Wortmann
- Division of Cardiology, Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, USA
| | - B Kelly Han
- Division of Cardiology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Luc Mertens
- Division of Cardiology, Department of Pediatrics, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryan A Moore
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura J Olivieri
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anitha Parthiban
- Department of Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Sodhi A, Markl M, Popescu AR, Griffin LM, Robinson JD, Rigsby CK. Highly accelerated compressed sensing 4D flow MRI in congenital and acquired heart disease: comparison of aorta and main pulmonary artery flow parameters with conventional 4D flow MRI in children and young adults. Pediatr Radiol 2023; 53:2597-2607. [PMID: 37882844 DOI: 10.1007/s00247-023-05788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Four-dimensional flow (4D flow) MRI has become a clinically utilized cardiovascular flow assessment tool. However, scans can be lengthy and may require anesthesia in younger children. Adding compressed sensing can decrease scan time, but its impact on hemodynamic data accuracy needs additional assessment. OBJECTIVE To compare 4D flow hemodynamics acquired with and without compressed sensing. MATERIALS AND METHODS Twenty-seven patients (median age: 13 [IQR: 9.5] years) underwent conventional and compressed sensing cardiovascular 4D flow following informed consent. Conventional 4D flow was performed using parallel imaging and an acceleration factor of 2. Compressed sensing 4D flow was performed with an acceleration factor of 7.7. Regions of interest were placed to compare flow parameters in the ascending aorta and main pulmonary artery. Paired Student's t-tests, Wilcoxon signed-rank tests, Bland-Altman plots, and intraclass correlation coefficients were conducted. A P-value of < 0.05 was considered statistically significant. RESULTS Mean scan acquisition time was reduced by 59% using compressed sensing (3.4 vs. 8.2 min, P < 0.001). Flow quantification was similar for compressed sensing and conventional 4D flow for the ascending aorta net flow: 47 vs. 49 ml/beat (P = 0.28); forward flow: 49 vs. 50 ml/beat (P = 0.07), and main pulmonary artery net flow: 49 vs. 51 ml/beat (P = 0.18); forward flow: 50 vs. 55 ml/beat (P = 0.07). Peak systolic velocity was significantly underestimated by compressed sensing 4D flow in the ascending aorta: 114 vs. 128 cm/s (P < 0.001) and main pulmonary artery: 106 vs. 112 cm/s (P = 0.02). CONCLUSION For both the aorta and main pulmonary artery, compressed sensing 4D flow provided equivalent net and forward flow values compared to conventional 4D flow but underestimated peak systolic velocity. By reducing scan time, compressed sensing 4D flow may decrease the need for anesthesia and increase scanner output without significantly compromising data integrity.
Collapse
Affiliation(s)
- Aparna Sodhi
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue #9, Chicago, IL, 60611, USA.
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL, USA
| | - Andrada R Popescu
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue #9, Chicago, IL, 60611, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lindsay M Griffin
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue #9, Chicago, IL, 60611, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joshua D Robinson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Cardiology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cynthia K Rigsby
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue #9, Chicago, IL, 60611, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
17
|
Wieben O, Roberts GS, Corrado PA, Johnson KM, Roldán-Alzate A. Four-Dimensional Flow MR Imaging: Technique and Advances. Magn Reson Imaging Clin N Am 2023; 31:433-449. [PMID: 37414470 DOI: 10.1016/j.mric.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
4D Flow MRI is an advanced imaging technique for comprehensive non-invasive assessment of the cardiovascular system. The capture of the blood velocity vector field throughout the cardiac cycle enables measures of flow, pulse wave velocity, kinetic energy, wall shear stress, and more. Advances in hardware, MRI data acquisition and reconstruction methodology allow for clinically feasible scan times. The availability of 4D Flow analysis packages allows for more widespread use in research and the clinic and will facilitate much needed multi-center, multi-vendor studies in order to establish consistency across scanner platforms and to enable larger scale studies to demonstrate clinical value.
Collapse
Affiliation(s)
- Oliver Wieben
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Suite 1127, Madison, WI 53705-2275, USA; Department of Radiology, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Suite 1127, Madison, WI 53705-2275, USA.
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705-2275, USA
| | - Philip A Corrado
- Accuray Incorporated, 1414 Raleigh Road, Suite 330, DurhamChapel Hill, NC 27517, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 1133, Madison, WI 53705-2275, USA; Department of Radiology, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Room 1133, Madison, WI 53705-2275, USA
| | - Alejandro Roldán-Alzate
- Department of Mechanical Engineering, University of Wisconsin-Madison, Room: 3035, 1513 University Avenue, Madison, WI 53706, USA; Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
18
|
Maroun A, Quinn S, Dushfunian D, Weiss EK, Allen BD, Carr JC, Markl M. Clinical Applications of Four-Dimensional Flow MRI. Magn Reson Imaging Clin N Am 2023; 31:451-460. [PMID: 37414471 DOI: 10.1016/j.mric.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Four-dimensional flow MRI is a powerful phase contrast technique used for assessing three-dimensional (3D) blood flow dynamics. By acquiring a time-resolved velocity field, it enables flexible retrospective analysis of blood flow that can include qualitative 3D visualization of complex flow patterns, comprehensive assessment of multiple vessels, reliable placement of analysis planes, and calculation of advanced hemodynamic parameters. This technique provides several advantages over routine two-dimensional flow imaging techniques, allowing it to become part of clinical practice at major academic medical centers. In this review, we present the current state-of-the-art cardiovascular, neurovascular, and abdominal applications.
Collapse
Affiliation(s)
- Anthony Maroun
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA.
| | - Sandra Quinn
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - David Dushfunian
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - Elizabeth K Weiss
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - Bradley D Allen
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - James C Carr
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - Michael Markl
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Assadi H, Li R, Grafton-Clarke C, Uthayachandran B, Alabed S, Maiter A, Archer G, Swoboda PP, Sawh C, Ryding A, Nelthorpe F, Kasmai B, Ricci F, van der Geest RJ, Flather M, Vassiliou VS, Swift AJ, Garg P. Automated 4D flow cardiac MRI pipeline to derive peak mitral inflow diastolic velocities using short-axis cine stack: two centre validation study against echocardiographic pulse-wave doppler. BMC Cardiovasc Disord 2023; 23:24. [PMID: 36647000 PMCID: PMC9843884 DOI: 10.1186/s12872-023-03052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Measurement of peak velocities is important in the evaluation of heart failure. This study compared the performance of automated 4D flow cardiac MRI (CMR) with traditional transthoracic Doppler echocardiography (TTE) for the measurement of mitral inflow peak diastolic velocities. METHODS Patients with Doppler echocardiography and 4D flow cardiac magnetic resonance data were included retrospectively. An established automated technique was used to segment the left ventricular transvalvular flow using short-axis cine stack of images. Peak mitral E-wave and peak mitral A-wave velocities were automatically derived using in-plane velocity maps of transvalvular flow. Additionally, we checked the agreement between peak mitral E-wave velocity derived by 4D flow CMR and Doppler echocardiography in patients with sinus rhythm and atrial fibrillation (AF) separately. RESULTS Forty-eight patients were included (median age 69 years, IQR 63 to 76; 46% female). Data were split into three groups according to heart rhythm. The median peak E-wave mitral inflow velocity by automated 4D flow CMR was comparable with Doppler echocardiography in all patients (0.90 ± 0.43 m/s vs 0.94 ± 0.48 m/s, P = 0.132), sinus rhythm-only group (0.88 ± 0.35 m/s vs 0.86 ± 0.38 m/s, P = 0.54) and in AF-only group (1.33 ± 0.56 m/s vs 1.18 ± 0.47 m/s, P = 0.06). Peak A-wave mitral inflow velocity results had no significant difference between Doppler TTE and automated 4D flow CMR (0.81 ± 0.44 m/s vs 0.81 ± 0.53 m/s, P = 0.09) in all patients and sinus rhythm-only groups. Automated 4D flow CMR showed a significant correlation with TTE for measurement of peak E-wave in all patients group (r = 0.73, P < 0.001) and peak A-wave velocities (r = 0.88, P < 0.001). Moreover, there was a significant correlation between automated 4D flow CMR and TTE for peak-E wave velocity in sinus rhythm-only patients (r = 0.68, P < 0.001) and AF-only patients (r = 0.81, P = 0.014). Excellent intra-and inter-observer variability was demonstrated for both parameters. CONCLUSION Automated dynamic peak mitral inflow diastolic velocity tracing using 4D flow CMR is comparable to Doppler echocardiography and has excellent repeatability for clinical use. However, 4D flow CMR can potentially underestimate peak velocity in patients with AF.
Collapse
Affiliation(s)
- Hosamadin Assadi
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Rui Li
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Ciaran Grafton-Clarke
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Bhalraam Uthayachandran
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Samer Alabed
- grid.31410.370000 0000 9422 8284Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK ,grid.31410.370000 0000 9422 8284Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ahmed Maiter
- grid.31410.370000 0000 9422 8284Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK ,grid.31410.370000 0000 9422 8284Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Gareth Archer
- grid.31410.370000 0000 9422 8284Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Peter P. Swoboda
- grid.9909.90000 0004 1936 8403Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Chris Sawh
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Alisdair Ryding
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Faye Nelthorpe
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Bahman Kasmai
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Fabrizio Ricci
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging and Clinical Sciences, “G.d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Rob J. van der Geest
- grid.10419.3d0000000089452978Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcus Flather
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Vassilios S. Vassiliou
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Andrew J. Swift
- grid.31410.370000 0000 9422 8284Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK ,grid.31410.370000 0000 9422 8284Department of Clinical Radiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Pankaj Garg
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK ,grid.31410.370000 0000 9422 8284Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| |
Collapse
|
20
|
Kato Y, Tao S, Lima JAC. Editorial for “Highly Accelerated Compressed Sensing
4D
Flow for Intra‐Cardiac Flow Assessment”. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yoko Kato
- Division of Cardiology Johns Hopkins University Baltimore Maryland USA
| | - Susumu Tao
- Department of Cardiology Tokyo Medical and Dental University Tokyo Japan
| | - Joao A. C. Lima
- Division of Cardiology Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|