1
|
Pashayee-Khamene F, Heidari Z, Asbaghi O, Ashtary-Larky D, Goudarzi K, Forbes SC, Candow DG, Bagheri R, Ghanavati M, Dutheil F. Creatine supplementation protocols with or without training interventions on body composition: a GRADE-assessed systematic review and dose-response meta-analysis. J Int Soc Sports Nutr 2024; 21:2380058. [PMID: 39042054 PMCID: PMC11268231 DOI: 10.1080/15502783.2024.2380058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Despite the robust evidence demonstrating positive effects from creatine supplementation (primarily when associated with resistance training) on measures of body composition, there is a lack of a comprehensive evaluation regarding the influence of creatine protocol parameters (including dose and form) on body mass and estimates of fat-free and fat mass. METHODS Randomized controlled trials (RCTs) evaluating the effect of creatine supplementation on body composition were included. Electronic databases, including PubMed, Web of Science, and Scopus were searched up to July 2023. Heterogeneity tests were performed. Random effect models were assessed based on the heterogeneity tests, and pooled data were examined to determine the weighted mean difference (WMD) with a 95% confidence interval (CI). RESULTS From 4831 initial records, a total of 143 studies met the inclusion criteria. Creatine supplementation increased body mass (WMD: 0.86 kg; 95% CI: 0.76 to 0.96, I2 = 0%) and fat-free mass (WMD: 0.82 kg; 95% CI: 0.57 to 1.06, I2 = 0%) while reducing body fat percentage (WMD: -0.28 %; 95% CI: -0.47 to -0.09; I2 = 0%). Studies that incorporated a maintenance dose of creatine or performed resistance training in conjunction with supplementation had greater effects on body composition. CONCLUSION Creatine supplementation has a small effect on body mass and estimates of fat-free mass and body fat percentage. These findings were more robust when combined with resistance training.
Collapse
Affiliation(s)
| | - Zeinab Heidari
- Ahvaz Jundishapur University of Medical Sciences, Student research committee, Ahvaz, Iran
| | - Omid Asbaghi
- Shahid Beheshti University of Medical Sciences, Cancer Research Center, Tehran, Iran
| | - Damoon Ashtary-Larky
- Ahvaz Jundishapur University of Medical Sciences, Nutrition and Metabolic Diseases Research Center, Ahvaz, Iran
| | - Kian Goudarzi
- Shahid Beheshti University of Medical Sciences, Faculty of Medicine, Tehran, Iran
| | - Scott C Forbes
- Brandon University, Department of Physical Education Studies, Brandon, MB, Canada
| | - Darren G. Candow
- University of Regina, Faculty of Kinesiology and Health Studies, Regina, SK, Canada
| | - Reza Bagheri
- University of Isfahan, Department of Exercise Physiology, Isfahan, Iran
| | - Matin Ghanavati
- Shahid Beheshti University of Medical Sciences, National Nutrition and Food Technology Research Institute, (Faculty of Nutrition Science and Food Technology), Tehran, Iran
| | - Fred Dutheil
- University Hospital of Clermont–Ferrand, Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont–Ferrand, Occupational and Environmental Medicine, Clermont–Ferrand, France
| |
Collapse
|
2
|
Furtado ETF, Oliveira JPLDE, Pereira ISB, Veiga EP, Silva SFDA, Abreu WCDE. Short term creatine loading improves strength endurance even without changing maximal strength, RPE, fatigue index, blood lactate, and mode state. AN ACAD BRAS CIENC 2024; 96:e20230559. [PMID: 38747788 DOI: 10.1590/0001-3765202420230559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/16/2024] [Indexed: 06/15/2024] Open
Abstract
Creatine is consumed by athletes to increase strength and gain muscle. The aim of this study was to evaluate the effects of creatine supplementation on maximal strength and strength endurance. Twelve strength-trained men (25.2 ± 3.4 years) supplemented with 20 g Creatina + 10g maltodextrin or placebo (20g starch + 10g maltodextrin) for five days in randomized order. Maximal strength and strength endurance (4 sets 70% 1RM until concentric failure) were determined in the bench press. In addition, blood lactate, rate of perceived effort, fatigue index, and mood state were evaluated. All measurements were performed before and after the supplementation period. There were no significant changing in maximal strength, blood lactate, RPE, fatigue index, and mood state in either treatment. However, the creatine group performed more repetitions after the supplementation (Cr: Δ = +3.4 reps, p = 0.036, g = 0.53; PLA: Δ = +0.3reps, p = 0.414, g = 0.06), and higher total work (Cr: Δ = +199.5au, p = 0.038, g = 0.52; PLA: Δ = +26.7au, p = 0.402, g = 0.07). Creatine loading for five days allowed the subjects to perform more repetitions, resulting in greater total work, but failed to change the maximum strength.
Collapse
Affiliation(s)
- Edilson Tadeu F Furtado
- Universidade Federal de Lavras, Departamento de Nutrição, Faculdade de Ciências da Saúde, Trevo Rotatório Professor Edmir Sá Santos, s/n, 37203-202 Lavras, MG, Brazil
| | - João Paulo L DE Oliveira
- Universidade Federal de Lavras, Departamento de Nutrição, Faculdade de Ciências da Saúde, Trevo Rotatório Professor Edmir Sá Santos, s/n, 37203-202 Lavras, MG, Brazil
| | - Isabela S B Pereira
- Universidade Federal de Lavras, Departamento de Nutrição, Faculdade de Ciências da Saúde, Trevo Rotatório Professor Edmir Sá Santos, s/n, 37203-202 Lavras, MG, Brazil
| | - Elayne P Veiga
- Faculdade Presbiteriana Gammon, Educação Física, Praça Dr. Augusto Silva, 616, 37200-000 Lavras, MG, Brazil
| | - Sandro F DA Silva
- Universidade Federal de Lavras, Faculdade de Ciências da Saúde, Departamento de Educação Física, Trevo Rotatório Professor Edmir Sá Santos, s/n, 37203-202 Lavras, MG, Brazil
| | - Wilson César DE Abreu
- Universidade Federal de Lavras, Departamento de Nutrição, Faculdade de Ciências da Saúde, Trevo Rotatório Professor Edmir Sá Santos, s/n, 37203-202 Lavras, MG, Brazil
| |
Collapse
|
3
|
Parsowith EJ, Stock MS, Kocuba O, Schumpp A, Jackson K, Brooks AM, Larson A, Dixon M, Fairman CM. Impact of Short-Term Creatine Supplementation on Muscular Performance among Breast Cancer Survivors. Nutrients 2024; 16:979. [PMID: 38613014 PMCID: PMC11013276 DOI: 10.3390/nu16070979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer (BC) is one of the most common cancers in the United States. Advances in detection and treatment have resulted in an increased survival rate, meaning an increasing population experiencing declines in muscle mass and strength. Creatine supplementation has consistently demonstrated improvements in strength and muscle performance in older adults, though these findings have not been extended to cancer populations. PURPOSE The purpose of this study was to investigate the effects of short-term creatine supplementation on muscular performance in BC survivors. METHODS Using a double-blind, placebo-controlled, randomized design, 19 female BC survivors (mean ± SD age = 57.63 ± 10.77 years) were assigned to creatine (SUPP) (n = 9) or dextrose placebo (PLA) (n = 10) groups. The participants completed two familiarization sessions, then two test sessions, each separated by 7 days, where the participants supplemented with 5 g of SUPP or PLA 4 times/day between sessions. The testing sessions included sit-to-stand power, isometric/isokinetic peak torque, and upper/lower body strength via 10 repetition maximum (10RM) tests. The interaction between supplement (SUPP vs. PLA) and time (Pre vs. Post) was examined using a group × time ANOVA and effect sizes. RESULTS No significant effects were observed for sit-to-stand power (p = 0.471; ηp2 = 0.031), peak torque at 60°/second (p = 0.533; ηp2 = 0.023), peak torque at 120°/second (p = 0.944; ηp2 < 0.001), isometric peak torque (p = 0.905; ηp2 < 0.001), 10RM chest press (p = 0.407; ηp2 = 0.041), and 10RM leg extension (p = 0.932; ηp2 < 0.001). However, a large effect size for time occurred for the 10RM chest press (ηp2 = 0.531) and leg extension (ηp2 = 0.422). CONCLUSION Seven days of creatine supplementation does not influence muscular performance among BC survivors.
Collapse
Affiliation(s)
- Emily J. Parsowith
- Cognition, Neuroplasticity, and Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA; (E.J.P.); (M.S.S.)
| | - Matt S. Stock
- Cognition, Neuroplasticity, and Sarcopenia (CNS) Lab, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA; (E.J.P.); (M.S.S.)
| | - Olivia Kocuba
- Exercise Oncology Lab, University of South Carolina, Columbia, SC 29208, USA
| | - Alec Schumpp
- Exercise Oncology Lab, University of South Carolina, Columbia, SC 29208, USA
| | - Kylah Jackson
- Exercise Oncology Lab, University of South Carolina, Columbia, SC 29208, USA
| | - Alexander M. Brooks
- Exercise Oncology Lab, University of South Carolina, Columbia, SC 29208, USA
| | - Alena Larson
- Exercise Oncology Lab, University of South Carolina, Columbia, SC 29208, USA
| | - Madison Dixon
- Exercise Oncology Lab, University of South Carolina, Columbia, SC 29208, USA
| | - Ciaran M. Fairman
- Exercise Oncology Lab, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
4
|
Martín-Rodríguez A, Belinchón-deMiguel P, Rubio-Zarapuz A, Tornero-Aguilera JF, Martínez-Guardado I, Villanueva-Tobaldo CV, Clemente-Suárez VJ. Advances in Understanding the Interplay between Dietary Practices, Body Composition, and Sports Performance in Athletes. Nutrients 2024; 16:571. [PMID: 38398895 PMCID: PMC10892519 DOI: 10.3390/nu16040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The dietary practices of athletes play a crucial role in shaping their body composition, influencing sports performance, training adaptations, and overall health. However, despite the widely acknowledged significance of dietary intake in athletic success, there exists a gap in our understanding of the intricate relationships between nutrition, body composition, and performance. Furthermore, emerging evidence suggests that many athletes fail to adopt optimal nutritional practices, which can impede their potential achievements. In response, this Special Issue seeks to gather research papers that delve into athletes' dietary practices and their potential impacts on body composition and sports performance. Additionally, studies focusing on interventions aimed at optimizing dietary habits are encouraged. This paper outlines the key aspects and points that will be developed in the ensuing articles of this Special Issue.
Collapse
Affiliation(s)
- Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.M.-R.); (A.R.-Z.); (V.J.C.-S.)
| | - Pedro Belinchón-deMiguel
- Faculty of Biomedical and Health Sciences, Department of Nursing and Nutrition, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.M.-R.); (A.R.-Z.); (V.J.C.-S.)
| | - Jose Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.M.-R.); (A.R.-Z.); (V.J.C.-S.)
| | - Ismael Martínez-Guardado
- Faculty of Health Sciences, Camilo José Cela University, C. Castillo de Alarcón, 49, Villafranca del Castillo, 28692 Madrid, Spain;
| | | | - Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (A.M.-R.); (A.R.-Z.); (V.J.C.-S.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| |
Collapse
|
5
|
Amawi A, AlKasasbeh W, Jaradat M, Almasri A, Alobaidi S, Hammad AA, Bishtawi T, Fataftah B, Turk N, Saoud HA, Jarrar A, Ghazzawi H. Athletes' nutritional demands: a narrative review of nutritional requirements. Front Nutr 2024; 10:1331854. [PMID: 38328685 PMCID: PMC10848936 DOI: 10.3389/fnut.2023.1331854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
Nutrition serves as the cornerstone of an athlete's life, exerting a profound impact on their performance and overall well-being. To unlock their full potential, athletes must adhere to a well-balanced diet tailored to their specific nutritional needs. This approach not only enables them to achieve optimal performance levels but also facilitates efficient recovery and reduces the risk of injuries. In addition to maintaining a balanced diet, many athletes also embrace the use of nutritional supplements to complement their dietary intake and support their training goals. These supplements cover a wide range of options, addressing nutrient deficiencies, enhancing recovery, promoting muscle synthesis, boosting energy levels, and optimizing performance in their respective sports or activities. The primary objective of this narrative review is to comprehensively explore the diverse nutritional requirements that athletes face to optimize their performance, recovery, and overall well-being. Through a thorough literature search across databases such as PubMed, Google Scholar, and Scopus, we aim to provide evidence-based recommendations and shed light on the optimal daily intakes of carbohydrates, protein, fats, micronutrients, hydration strategies, ergogenic aids, nutritional supplements, and nutrient timing. Furthermore, our aim is to dispel common misconceptions regarding sports nutrition, providing athletes with accurate information and empowering them in their nutritional choices.
Collapse
Affiliation(s)
- Adam Amawi
- Department of Exercise Science and Kinesiology, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Walaa AlKasasbeh
- Department of Physical and Health Education, Faculty of Educational Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Manar Jaradat
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Amani Almasri
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Sondos Alobaidi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Aya Abu Hammad
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Taqwa Bishtawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Batoul Fataftah
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Nataly Turk
- Department of Family and Community Medicine, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Hassan Al Saoud
- Department of Exercise Science and Kinesiology, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Amjad Jarrar
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Oxford Brookes Center for Nutrition and Health, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Hadeel Ghazzawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| |
Collapse
|
6
|
Nutritional Ergogenic Aids in Combat Sports: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14132588. [PMID: 35807770 PMCID: PMC9268044 DOI: 10.3390/nu14132588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/21/2023] Open
Abstract
Nutritional ergogenic aids (NEAs) are substances included within the group of sports supplements. Although they are widely consumed by athletes, evidence-based analysis is required to support training outcomes or competitive performance in specific disciplines. Combat sports have a predominant use of anaerobic metabolism as a source of energy, reaching peak exertion or sustained effort for very short periods of time. In this context, the use of certain NEAs could help athletes to improve their performance in those specific combat skills (i.e., the number of attacks, throws and hits; jump height; and grip strength, among others) as well as in general physical aspects (time to exhaustion [TTE], power, fatigue perception, heart rate, use of anaerobic metabolism, etc.). Medline/PubMed, Scopus and EBSCO were searched from their inception to May 2022 for randomised controlled trials (RCTs). Out of 677 articles found, 55 met the predefined inclusion criteria. Among all the studied NEAs, caffeine (5–10 mg/kg) showed strong evidence for its use in combat sports to enhance the use of glycolytic pathways for energy production during high-intensity actions due to a greater production of and tolerance to blood lactate levels. In this regard, abilities including the number of attacks, reaction time, handgrip strength, power and TTE, among others, were improved. Buffering supplements such as sodium bicarbonate, sodium citrate and beta-alanine may have a promising role in high and intermittent exertion during combat, but more studies are needed in grappling combat sports to confirm their efficacy during sustained isometric exertion. Other NEAs, including creatine, beetroot juice or glycerol, need further investigation to strengthen the evidence for performance enhancement in combat sports. Caffeine is the only NEA that has shown strong evidence for performance enhancement in combat sports.
Collapse
|
7
|
Schroeder N. Evidence-Based Nutritional Strategies to Enhance Athletic Performance. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Abstract
ABSTRACT Creatine is a popular and widely used ergogenic dietary supplement among athletes, for which studies have consistently shown increased lean muscle mass and exercise capacity when used with short-duration, high-intensity exercise. In addition to strength gains, research has shown that creatine supplementation may provide additional benefits including enhanced postexercise recovery, injury prevention, rehabilitation, as well as a number of potential neurologic benefits that may be relevant to sports. Studies show that short- and long-term supplementation is safe and well tolerated in healthy individuals and in a number of patient populations.
Collapse
Affiliation(s)
- Matthew Hall
- Sports Medicine, UConn Primary Care Sports Medicine Fellowship, Department of Orthopedics, UConn Health, Farmington, CT
| | - Elizabeth Manetta
- Department of Family Medicine, University of Connecticut, St. Francis Hospital, Hartford, CT
| | - Kristofer Tupper
- Department of Family Medicine, University of Connecticut, St. Francis Hospital, Hartford, CT
| |
Collapse
|
9
|
Wax B, Kerksick CM, Jagim AR, Mayo JJ, Lyons BC, Kreider RB. Creatine for Exercise and Sports Performance, with Recovery Considerations for Healthy Populations. Nutrients 2021; 13:1915. [PMID: 34199588 PMCID: PMC8228369 DOI: 10.3390/nu13061915] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/06/2023] Open
Abstract
Creatine is one of the most studied and popular ergogenic aids for athletes and recreational weightlifters seeking to improve sport and exercise performance, augment exercise training adaptations, and mitigate recovery time. Studies consistently reveal that creatine supplementation exerts positive ergogenic effects on single and multiple bouts of short-duration, high-intensity exercise activities, in addition to potentiating exercise training adaptations. In this respect, supplementation consistently demonstrates the ability to enlarge the pool of intracellular creatine, leading to an amplification of the cell's ability to resynthesize adenosine triphosphate. This intracellular expansion is associated with several performance outcomes, including increases in maximal strength (low-speed strength), maximal work output, power production (high-speed strength), sprint performance, and fat-free mass. Additionally, creatine supplementation may speed up recovery time between bouts of intense exercise by mitigating muscle damage and promoting the faster recovery of lost force-production potential. Conversely, contradictory findings exist in the literature regarding the potential ergogenic benefits of creatine during intermittent and continuous endurance-type exercise, as well as in those athletic tasks where an increase in body mass may hinder enhanced performance. The purpose of this review was to summarize the existing literature surrounding the efficacy of creatine supplementation on exercise and sports performance, along with recovery factors in healthy populations.
Collapse
Affiliation(s)
- Benjamin Wax
- Applied Physiology Laboratory, Department of Kinesiology, Mississippi State University, Mississippi State, MS 39759, USA
| | - Chad M. Kerksick
- Exercise & Performance Nutrition Laboratory, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO 63301, USA
| | - Andrew R. Jagim
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI 54601, USA;
| | - Jerry J. Mayo
- Department of Nutrition and Family Sciences, University of Central Arkansas, Conway, AR 72035, USA;
| | - Brian C. Lyons
- Health, Kinesiology, and Sport Management Department, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
10
|
Ulupınar S, Özbay S. Energy pathway contributions during 60-second upper-body Wingate test in Greco-Roman wrestlers: intermittent versus single forms. Res Sports Med 2021; 30:244-255. [PMID: 33663306 DOI: 10.1080/15438627.2021.1895784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study aimed to investigate the energy pathway contributions and physiological and performance responses between a 10 × 6-second intermittent sprint test (IST) and a 60-second single maximal test (SMT). Seventeen highly trained male Greco-Roman wrestlers participated in this study. Participants completed the 60-second upper-body Wingate tests, both intermittent and single forms. The contributions of the oxidative, glycolytic, and ATP-PCr pathways were estimated using mathematical methods based on lactate values and oxygen consumption kinetics of rest, exercise, and recovery phases. The main findings indicated that total energy expenditure (TEE) and the contribution of oxidative, glycolytic, and ATP-PCr pathways were 514 kJ, 45%, 11%, and 44% for IST (overall: sprints + rest intervals); 333 kJ, 14%, 17%, and 69% for IST (sprints only); and 159 kJ, 31%, 38%, and 31% for SMT, respectively. TEE and ATP-PCR pathway contributions were higher in the IST (both overall and sprint only), whereas glycolytic pathway contribution and delta lactate were higher in the SMT. Absolute oxidative contribution was similar, but relative oxidative contribution was higher in the SMT. Additionally, mean power was higher in the IST than SMT, whereas peak power, peak and mean heart rate, and ratings of perceived exertion were similar.
Collapse
Affiliation(s)
- Süleyman Ulupınar
- Ermenek District National Education Directorate, Turkiye Cumhuriyeti Milli Egitim Bakanligi, Karaman, Turkey
| | - Serhat Özbay
- Faculty of Sport Sciences, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
11
|
Sarshin A, Fallahi V, Forbes SC, Rahimi A, Koozehchian MS, Candow DG, Kaviani M, Khalifeh SN, Abdollahi V, Naderi A. Short-term co-ingestion of creatine and sodium bicarbonate improves anaerobic performance in trained taekwondo athletes. J Int Soc Sports Nutr 2021; 18:10. [PMID: 33478522 PMCID: PMC7819230 DOI: 10.1186/s12970-021-00407-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Creatine (CR) and sodium bicarbonate (SB) alone improve anaerobic performance. However, the ergogenic effects of CR and SB co-ingestion on taekwondo anaerobic performance remains unknown. METHODS Forty trained taekwondo athletes (21 ± 1 y.; 180.5 ± 7.3 cm; 72.7 ± 8.6 kg) were randomized to: (i) CR and SB (CR + SB; 20 g of CR+ 0.5 g·kg- 1·d- 1 of SB), (ii) CR, (iii) SB, (iv) placebo (PLA), or (v) control (CON) for 5 days. Before and after supplementation, participants completed 3 bouts of a Taekwondo Anaerobic Intermittent Kick Test (TAIKT) to determine changes in peak power (PP), mean power (MP), and fatigue index (FI). Blood lactate (BL) was measured before, immediately following, and 3 min post-TAIKT. RESULTS PP and MP increased over time (P < 0.05) following CR + SB, CR, and SB ingestion, with no changes in the PLA or CON groups. There was a greater increase over time in MP following CR + SB (Absolute Δ: 1.15 ± 0.28 W∙kg67) compared to CR (Absolute Δ: 0.43 ± 0.33 W∙kg67; P < 0.001) and SB (Absolute Δ: 0.73 ± 0.24 W∙kg67; P = 0.03). There were no significant time and condition effect for FI (P > 0.05). BL increased following exercise across all groups; however, CR + SB and SB post-exercise BL was lower compared to CR, PLA, and CON (P < 0.05). CONCLUSION Short-term CR and SB alone enhance TAIKT performance in trained taekwondo athletes. Co-ingestion of CR and SB augments MP compared to CR and SB alone, with similar PP improvements.
Collapse
Affiliation(s)
- Amir Sarshin
- Faculty of Physical Education and Sport Sciences, Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | - Vahid Fallahi
- Faculty of Physical Education and Sport Sciences, Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Scott C Forbes
- Faculty of Education, Department of Physical Education, Brandon University, Brandon, MB, R7A6A9, Canada
| | - Alireza Rahimi
- Faculty of Physical Education and Sport Sciences, Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Majid S Koozehchian
- Department of Kinesiology, Jacksonville State University, Jacksonville, AL, 36265, USA
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, S4S0A2, Canada
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Seyed Nemat Khalifeh
- Faculty of Physical Education and Sport Sciences, Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | | - Alireza Naderi
- Department of Sport Physiology, Boroujerd Branch, Islamic Azad University, Boroujerd, Iran
| |
Collapse
|
12
|
Zajac A, Golas A, Chycki J, Halz M, Michalczyk MM. The Effects of Long-Term Magnesium Creatine Chelate Supplementation on Repeated Sprint Ability (RAST) in Elite Soccer Players. Nutrients 2020; 12:nu12102961. [PMID: 32998206 PMCID: PMC7600931 DOI: 10.3390/nu12102961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Aim: The aim of the study was to evaluate the effects of 16 weeks of a low dose of magnesium creatine chelate supplementation on repeated sprint ability test (RAST) results in elite soccer players. Materials: Twenty well-trained soccer players participated in the study. The players were divided randomly into two groups: the supplemented group (SG = 10) and placebo group (PG = 10). Out of the 20 subjects selected for the study, 16 (SG = 8, PG = 8) completed the entire experiment. The SG ingested a single dose of 5500 mg of magnesium creatine chelate (MgCr-C), in 4 capsules per day, which was 0.07 g/kg/d. The PG received an identical 4 capsules containing corn starch. Before and after the study, the RAST was performed. In the RAST, total time (TT), first and sixth 35 m sprint length (s), average power (AP) and max power (MP) were measured. Additionally, before and after the test, lactate LA (mmol/L) and acid–base equilibrium pH (-log(H+)), bicarbonates HCO3− (mmol/L) were evaluated. Also, in serum at rest, creatinine (mg/dL) concentration was measured. Results: After the study, significantly better results in TT, AP and MP were observed in the SG. No significant changes in the RAST results were observed in the PG. After the study, significant changes in the first 35 m sprint, as well as the sixth 35 m sprint results were registered in the SG, while insignificant changes occurred in the PG. A significantly higher creatinine concentration was observed. Also, a higher post-RAST concentration of LA, HCO3− and lower values of pH were observed in April, May and June compared with baseline values. Conclusions: The long timeframe, i.e., 16 weeks, of the low dose of magnesium creatine chelate supplementation improved the RAST results in the SG. Despite the long period of MgCr-C supplementation, in the end of the study, the creatinine level in the SG reached higher but still reference values.
Collapse
|
13
|
Soares Freitas Sampaio CR, Aidar FJ, Ferreira ARP, dos Santos JL, Marçal AC, de Matos DG, de Souza RF, Moreira OC, Guerra I, Fernandes Filho J, Marcucci-Barbosa LS, Nunes-Silva A, de Almeida-Neto PF, Cabral BGAT, Reis VM. Can Creatine Supplementation Interfere with Muscle Strength and Fatigue in Brazilian National Level Paralympic Powerlifting? Nutrients 2020; 12:nu12092492. [PMID: 32824920 PMCID: PMC7551857 DOI: 10.3390/nu12092492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to analyze the effect of creatine (Cr) supplementation on peak torque (PT) and fatigue rate in Paralympic weightlifting athletes. Eight Paralympic powerlifting athletes participated in the study, with 25.40 ± 3.30 years and 70.30 ± 12.15 kg. The measurements of muscle strength, fatigue index (FI), peak torque (PT), force (kgf), force (N), rate of force development (RFD), and time to maximum isometric force (time) were determined by a Musclelab load cell. The study was performed in a single-blind manner, with subjects conducting the experiments first with placebo supplementation and then, following a 7-day washout period, beginning the same protocol with creatine supplementation for 7 days. This sequence was chosen because of the lengthy washout of creatine. Regarding the comparison between conditions, Cr supplementation did not show effects on the variables of muscle force, peak torque, RFD, and time to maximum isometric force (p > 0.05). However, when comparing the results of the moments with the use of Cr and placebo, a difference was observed for the FI after seven days (U3: 1.12; 95% CI: (0.03, 2.27); p = 0.02); therefore, the FI was higher for placebo. Creatine supplementation has a positive effect on the performance of Paralympic powerlifting athletes, reducing fatigue index, and keeping the force levels as well as PT.
Collapse
Affiliation(s)
- Carlos Rodrigo Soares Freitas Sampaio
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Sergipe, Brazil; (C.R.S.F.S.); (A.C.M.); (D.G.d.M.); (R.F.d.S.)
| | - Felipe J. Aidar
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Sergipe, Brazil; (C.R.S.F.S.); (A.C.M.); (D.G.d.M.); (R.F.d.S.)
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Sergipe, Brazil
- Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Sergipe, Brazil
- Program of Physiological Science, Federal University of Sergipe (UFS), São Cristovão 49100-000, Sergipe, Brazil
- Correspondence: ; Tel.: +55-799-9685-7777
| | - Alexandre R. P. Ferreira
- College of Physical Education and Exercise Science, University of Brasília (UnB), Brasília 70910-900, Brazil;
| | - Jymmys Lopes dos Santos
- Program in Biotechnology, Northeast Network in Biotechnology (RENORBIO), Federal University of Sergipe (UFS), São Cristovão 49100-000, Sergipe, Brazil;
| | - Anderson Carlos Marçal
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Sergipe, Brazil; (C.R.S.F.S.); (A.C.M.); (D.G.d.M.); (R.F.d.S.)
- Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Sergipe, Brazil
| | - Dihogo Gama de Matos
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Sergipe, Brazil; (C.R.S.F.S.); (A.C.M.); (D.G.d.M.); (R.F.d.S.)
| | - Raphael Fabrício de Souza
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Sergipe, Brazil; (C.R.S.F.S.); (A.C.M.); (D.G.d.M.); (R.F.d.S.)
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Sergipe, Brazil
| | - Osvaldo Costa Moreira
- Institute of Biological Sciences and Health, Federal University of Viçosa, Campus Florestal, Minas Gerais 35690-000, Brazil;
| | - Ialuska Guerra
- Federal Institute of Education, Science and Technology of Ceará (IFCE), Campus of Juazeiro do Norte, Ceará 63040-540, Brazil;
| | - José Fernandes Filho
- Brazilian Paralympic Academy, Brazilian Paralympic Committee, São Paulo 04329-000, SP, Brazil;
| | - Lucas Soares Marcucci-Barbosa
- Laboratory of Inflammation and Exercise Immunology, Sports Center, Physical Education Scholl, Federal University of OuroPreto (UFOP), OuroPreto, Minas Gerais 35400-000, Brazil; (L.S.M.-B.); (A.N.-S.)
| | - Albená Nunes-Silva
- Laboratory of Inflammation and Exercise Immunology, Sports Center, Physical Education Scholl, Federal University of OuroPreto (UFOP), OuroPreto, Minas Gerais 35400-000, Brazil; (L.S.M.-B.); (A.N.-S.)
| | - Paulo Francisco de Almeida-Neto
- Department of Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte 59078-970, Brazil; (P.F.d.A.-N.); (B.G.A.T.C.)
| | - Breno Guilherme Araújo Tinoco Cabral
- Department of Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte 59078-970, Brazil; (P.F.d.A.-N.); (B.G.A.T.C.)
| | - Victor Machado Reis
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Trásos Montes and Alto Douro University, 5001-801 Vila Real, Portugal;
| |
Collapse
|
14
|
Hummer E, Suprak DN, Buddhadev HH, Brilla L, San Juan JG. Creatine electrolyte supplement improves anaerobic power and strength: a randomized double-blind control study. J Int Soc Sports Nutr 2019; 16:24. [PMID: 31126306 PMCID: PMC6534934 DOI: 10.1186/s12970-019-0291-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/19/2019] [Indexed: 12/02/2022] Open
Abstract
Background Creatine supplementation aids the Phosphagen system by increasing the amount of free creatine and phosphocreatine available to replenish adenosine triphosphate. The purpose of this study was to investigate the effects of a creatine and electrolyte formulated multi-ingredient performance supplement (MIPS) on strength and power performance compared to a placebo. Maximal strength along with total concentric work, mean rate of force development (mRFD), mean power, peak power, and peak force for both bench press and back squat were determined at pre-test and post-test separated by 6 weeks of supplementation. Methods Twenty-two subjects (6 females, 21 ± 2 yrs., 72.46 ± 11.18 kg, 1.72 ± 0.09 m) performed a one-repetition maximum (1RM) for back squat and bench press. Eighty percent of the subject’s pre-test 1RM was used for a maximal repetition test to assess performance variables. Testing was separated by 6 weeks of supplementation of a MIPS dose per day in a double-blind fashion for comparison. A two-way mixed analysis of covariance (ANCOVA) was applied with an alpha level of 0.05. Results For their back squat 1RM, the MIPS group displayed significant increase of 13.4% (95% CI: 2.77, 23.8%) while placebo displayed a decrease of − 0.2% (95% CI: − 1.46, 2.87%) (p = 0.047, ηp2 = 0.201). The MIPS displayed a significant increase of 5.9% (95% CI: 2.5, 10.1%) and placebo displayed a non-significant increase of 0.7% (95% CI: − 3.49, 3.9%) in bench press maximal strength (p = 0.033,0.217). The MIPS group displayed a significant increase as well in total concentric work (26.5, 95% CI: 6.07, 46.87%, p = 0.008, ηp2 = 0.330) and mean power (17.9, 95% CI: 3.42, 32.46%, p = 0.003, ηp2 = 0.402) for the maximal repetition bench press test at 80% of their 1RM. Conclusions The MIPS was found to be beneficial to recreationally trained individuals compared to a placebo. The greatest benefits are seen in bench press and back squat maximal strength as well as multiple repetition tests to fatigue during the bench press exercise.
Collapse
Affiliation(s)
- Erik Hummer
- The University of Tennessee, 1914 Andy Holt Ave, Knoxville, TN, 37996, USA
| | - David N Suprak
- Western Washington University, 516 High St, Bellingham, WA, 98225-9067, USA
| | - Harsh H Buddhadev
- Western Washington University, 516 High St, Bellingham, WA, 98225-9067, USA
| | - Lorrie Brilla
- Western Washington University, 516 High St, Bellingham, WA, 98225-9067, USA.
| | - Jun G San Juan
- Western Washington University, 516 High St, Bellingham, WA, 98225-9067, USA
| |
Collapse
|
15
|
López-González LM, Sánchez-Oliver AJ, Mata F, Jodra P, Antonio J, Domínguez R. Acute caffeine supplementation in combat sports: a systematic review. J Int Soc Sports Nutr 2018; 15:60. [PMID: 30594211 PMCID: PMC6310931 DOI: 10.1186/s12970-018-0267-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Caffeine used as a supplement has been shown to improve physical and cognitive performance in several sport modalities due to its effects on the central nervous system. This review assesses the direct effects of caffeine supplementation on performance in combat sports. Using the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines, relevant studies were identified through the Medline, Scopus and SPORTDiscus databases. Of 1053 search results, only 9 articles fulfilled the inclusion criteria. Of these, three studies detected no ergogenic effect of caffeine supplementation, while six studies did observe a significant positive effect. Supplementation with 3-6 mg/kg of caffeine was found to increase the glycolytic contribution to energy metabolism during the execution of real or simulated combats, as indicated by elevated blood lactate concentrations. Caffeine intake was also noted to improve levels of strength, power and upper arm muscular endurance. These effects were not paralleled by an increase in the exertion perceived by the athlete.
Collapse
Affiliation(s)
| | - Antonio J Sánchez-Oliver
- Area of Human Motricity and Sports Performance. Faculty of Education Sciences, Seville University, c/Pirotecnia s/n, Seville, Spain. .,Sport Departament. School of Sport Sciences, Pablo de Olavide University, Seville, Spain.
| | | | - Pablo Jodra
- Department of Education Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Miami, Florida, USA
| | - Raúl Domínguez
- Faculty of Health Sciences, Universidad Isabel I, Burgos, Spain
| |
Collapse
|
16
|
Effects of Low-Dose Creatine Monohydrate on Muscle Strength and Endurance. Asian J Sports Med 2018. [DOI: 10.5812/asjsm.62739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Abstract
Context: The use of creatine as a dietary supplement has become increasingly popular over the past several decades. Despite the popularity of creatine, questions remain with regard to dosing, effects on sports performance, and safety. Evidence Acquisition: PubMed was searched for articles published between 1980 and January 2017 using the terms creatine, creatine supplementation, sports performance, and dietary supplements. An additional Google search was performed to capture National Collegiate Athletic Association–specific creatine usage data and US dietary supplement and creatine sales. Study Design: Clinical review. Level of Evidence: Level 4. Results: Short-term use of creatine is considered safe and without significant adverse effects, although caution should be advised as the number of long-term studies is limited. Suggested dosing is variable, with many different regimens showing benefits. The safety of creatine supplementation has not been studied in children and adolescents. Currently, the scientific literature best supports creatine supplementation for increased performance in short-duration, maximal-intensity resistance training. Conclusion: While creatine appears to be safe and effective for particular settings, whether creatine supplementation leads to improved performance on the field of play remains unknown.
Collapse
Affiliation(s)
- Jessica Butts
- Departments of Family and Community Medicine & Orthopaedics and Rehabilitation, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Bret Jacobs
- Department of Orthopaedic Surgery, Division of Primary Care Sports Medicine, NYU Langone Medical Center, New York, New York
| | - Matthew Silvis
- Departments of Family and Community Medicine & Orthopaedics and Rehabilitation, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|