1
|
Xu S, Wang Q, Qin Y, Yang Q, Xu Y, Zhou Z. Dl-3-n-butylphthalein inhibits neuronal apoptosis and ferroptosis after cerebral ischemia-reperfusion injury in rats by regulating CXCR4. Neurotoxicol Teratol 2025; 108:107434. [PMID: 39956404 DOI: 10.1016/j.ntt.2025.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
OBJECTIVE To investigate the anti-apoptosis and anti-ferroptosis effects of dl-3-n-butylphthalide (dl-NBP) on cerebral ischemia-reperfusion injury (CIRI) in rats, and the potential involvement of cysteine-X-cysteine chemokine receptor 4 (CXCR4). METHODS The differentially expressed genes between healthy people and stroke patients were screened by GEO database. A transient middle cerebral artery occlusion rat model was used to induce CIRI in vivo. Rats were randomly divided into sham group, tMCAO group, and dl-NBP + tMCAO group. The therapeutic effect of dl-NBP in vivo and its effect on apoptosis and ferroptosis in brain tissues were evaluated. An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to simulate CIRI in cultured PC12 cells, and the effects of dl-NBP on apoptosis and ferroptosis were examined. In this model, CXCR4 expression was assessed by western blotting and its involvement in dl-NBP-mediated protection assessed by inhibition with AMD3100. RESULTS In the stroke-related GSE22255 and GSE66724 datasets, a total of six genes with increased co-expression were found, including CXCR4. Dl-NBP treatment significantly reduced both the volume of cerebral infarction and the degree of cerebral edema, and improved neurological function in rats. dl-NBP reduced the degree of apoptosis and ferroptosis and alleviated CIRI both in vivo and in vitro. The pro-survival effects of dl-NBP were significantly reversed after CXCR4 inhibition with AMD3100. CONCLUSION Dl-NBP has anti-apoptotic and anti-ferroptotic effects on CIRI both in vivo and in vitro, and this effect is mediated by CXCR4.
Collapse
Affiliation(s)
- Sifan Xu
- Department of Neurology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu City, Anhui Province, PR China
| | - Qi Wang
- Department of Neurology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu City, Anhui Province, PR China
| | - Yu Qin
- Department of Neurology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu City, Anhui Province, PR China
| | - Qian Yang
- Department of Neurology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu City, Anhui Province, PR China
| | - Yang Xu
- Department of Neurology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu City, Anhui Province, PR China..
| | - Zhiming Zhou
- Department of Neurology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu City, Anhui Province, PR China..
| |
Collapse
|
2
|
Khorramdelazad H, Bagherzadeh K, Rahimi A, Darehkordi A, Najafi A, Karimi M, Khoshmirsafa M, Hassanshahi G, Safari E, Falak R. A1, an innovative fluorinated CXCR4 inhibitor, redefines the therapeutic landscape in colorectal cancer. Cancer Cell Int 2025; 25:5. [PMID: 39757159 DOI: 10.1186/s12935-024-03584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a globally prevalent malignancy, primarily affecting the colon and rectum, characterized by uncontrolled cellular changes in the intestinal wall lining. Recent evidence underlines the significant role of the CXCL12/CXCR4 axis in the development of CRC, suggesting that inhibiting this pathway could be a promising therapeutic approach. This study focuses on investigating the potential of N, N''-thiocarbonylbis (N'-(3,4-dimethyl phenyl)-2,2,2-trifluoroacetimidamide) (A1), a novel fluorinated CXCR4 inhibitor, through a comprehensive analysis encompassing in silico, in vitro, and in vivo studies. METHODS The molecular dynamic simulation method was employed to compute A1 binding affinity and energy for the CXCR4 receptor compared to AMD3100. In vitro experiments utilized the CT-26 mouse CRC cell line to compare the inhibitory effects of A1 and AMD3100 on tumor cell proliferation and migration. Following the development of the CRC animal model in BALB/c mice, immune system responses within the tumor microenvironment (TME) were evaluated. Flow cytometry and real-time PCR (RT-PCR) were used to measure the effects of AMD3100 and A1 on regulatory T-cell (Treg) infiltration and the expression of CXCR4, vascular endothelial growth factor (VEGF), fibroblast growth factors (FGF), interleukin-10 (IL-10), and tumor growth factor-beta (TGF-β) genes in tumor tissue. Additionally, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) techniques were employed to assess VEGF, IL-10, and TGF-β tissue levels at the protein level. RESULTS Molecular dynamic simulation studies with molecular mechanics Poisson-Boltsman surface area (MM-PBSA) analysis revealed that A1 exhibits significantly lower binding energy for the CXCR4 receptor than AMD3100. A1 effectively inhibited the proliferation of CT-26 cells, significantly reduced tumor cell migration, attenuated Treg infiltration, and suppressed IL-10 and TGF-β expression at both mRNA and protein levels in vivo. Notably, A1 outperformed AMD3100 in reducing tumor size and increasing survival rate in treated animals, with minimal side effects. CONCLUSION These findings emphasize the potential of A1 as a favorable anti-tumor small molecule in CRC. Further validation through rigorous preclinical and clinical studies may position A1 as a promising alternative to AMD3100 in human cancers.
Collapse
Affiliation(s)
- Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Ave, Tehran, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, the Five Senses Health Institute, Rassoul Akram Hospital, University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Ave, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Darehkordi
- Department of Chemistry, Faculty of Science, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Ave, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Karimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Ave, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Ave, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Centre, Institute of Basics Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elaheh Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Ave, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Hemmat Ave, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Solomon B. Bone marrow-derived microglia confer neuroprotection to a mouse model of amyotrophic lateral sclerosis. Neural Regen Res 2024; 19:2586-2587. [PMID: 38808993 PMCID: PMC11168524 DOI: 10.4103/nrr.nrr-d-23-01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 05/30/2024] Open
Affiliation(s)
- Beka Solomon
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences Tel-Aviv University, Ramat Aviv, Israel
| |
Collapse
|
4
|
Theme 7 Pre-Clinical Therapeutic Strategies. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:197-217. [PMID: 39508670 DOI: 10.1080/21678421.2024.2403304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
5
|
Abbassi Y, Cappelli S, Spagnolo E, Gennari A, Visani G, Barattucci S, Paron F, Stuani C, Droppelmann CA, Strong MJ, Buratti E. Axon guidance genes are regulated by TDP-43 and RGNEF through long-intron removal. FASEB J 2024; 38:e70081. [PMID: 39360635 DOI: 10.1096/fj.202400743rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Rho guanine nucleotide exchange factor (RGNEF) is a guanine nucleotide exchange factor (GEF) mainly involved in regulating the activity of Rho-family GTPases. It is a bi-functional protein, acting both as a guanine exchange factor and as an RNA-binding protein. RGNEF is known to act as a destabilizing factor of neurofilament light chain RNA (NEFL) and it could potentially contribute to their sequestration in nuclear cytoplasmic inclusions. Most importantly, RGNEF inclusions in the spinal motor neurons of ALS patients have been shown to co-localize with inclusions of TDP-43, the major well-known RNA-binding protein aggregating in the brain and spinal cord of human patients. Therefore, it can be hypothesized that loss-of-function of both proteins following aggregation may contribute to motor neuron death/survival in ALS patients. To further characterize their relationship, we have compared the transcriptomic profiles of neuronal cells depleted of TDP-43 and RGNEF and show that these two factors predominantly act in an antagonistic manner when regulating the expression of axon guidance genes. From a mechanistic point of view, our experiments show that the effect of these genes on the processivity of long introns can explain their mode of action. Taken together, our results show that loss-of-function of factors co-aggregating with TDP-43 can potentially affect the expression of commonly regulated neuronal genes in a very significant manner, potentially acting as disease modifiers. This finding further highlights that neurodegenerative processes at the RNA level are the result of combinatorial interactions between different RNA-binding factors that can be co-aggregated in neuronal cells. A deeper understanding of these complex scenarios may lead to a better understanding of pathogenic mechanisms occurring in patients, where more than one specific protein may be aggregating in their neurons.
Collapse
Affiliation(s)
- Yasmine Abbassi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Sara Cappelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Eugenio Spagnolo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alice Gennari
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulia Visani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Simone Barattucci
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Francesca Paron
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
6
|
Alfahel L, Gschwendtberger T, Kozareva V, Dumas L, Gibbs R, Kertser A, Baruch K, Zaccai S, Kahn J, Thau-Habermann N, Eggenschwiler R, Sterneckert J, Hermann A, Sundararaman N, Vaibhav V, Van Eyk JE, Rafuse VF, Fraenkel E, Cantz T, Petri S, Israelson A. Targeting low levels of MIF expression as a potential therapeutic strategy for ALS. Cell Rep Med 2024; 5:101546. [PMID: 38703766 PMCID: PMC11148722 DOI: 10.1016/j.xcrm.2024.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/03/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by motor neuron (MN) loss. We previously discovered that macrophage migration inhibitory factor (MIF), whose levels are extremely low in spinal MNs, inhibits mutant SOD1 misfolding and toxicity. In this study, we show that a single peripheral injection of adeno-associated virus (AAV) delivering MIF into adult SOD1G37R mice significantly improves their motor function, delays disease progression, and extends survival. Moreover, MIF treatment reduces neuroinflammation and misfolded SOD1 accumulation, rescues MNs, and corrects dysregulated pathways as observed by proteomics and transcriptomics. Furthermore, we reveal low MIF levels in human induced pluripotent stem cell-derived MNs from familial ALS patients with different genetic mutations, as well as in post mortem tissues of sporadic ALS patients. Our findings indicate that peripheral MIF administration may provide a potential therapeutic mechanism for modulating misfolded SOD1 in vivo and disease outcome in ALS patients.
Collapse
Affiliation(s)
- Leenor Alfahel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Thomas Gschwendtberger
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; Center for Systems Neuroscience, Hannover Medical School, 30625 Hannover, Germany
| | - Velina Kozareva
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura Dumas
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada
| | - Rachel Gibbs
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada
| | | | - Kuti Baruch
- ImmunoBrain Checkpoint Ltd., Ness Ziona 7404905, Israel
| | - Shir Zaccai
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Joy Kahn
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | | | - Reto Eggenschwiler
- Gastroenterology, Hepatology and Endocrinology Department, Hannover Medical School, 30625 Hannover, Germany; Translational Hepatology and Stem Cell Biology, REBIRTH - Research Center for Translational Regenerative Medicine and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden, Technical University Dresden, 01307 Dresden, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Niveda Sundararaman
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vineet Vaibhav
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Victor F Rafuse
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tobias Cantz
- Gastroenterology, Hepatology and Endocrinology Department, Hannover Medical School, 30625 Hannover, Germany; Translational Hepatology and Stem Cell Biology, REBIRTH - Research Center for Translational Regenerative Medicine and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; Max Planck Institute for Molecular Biomedicine, Cell and Developmental Biology, 48149 Münster, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; Center for Systems Neuroscience, Hannover Medical School, 30625 Hannover, Germany
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| |
Collapse
|
7
|
La Cognata V, Morello G, Guarnaccia M, Cavallaro S. The multifaceted role of the CXC chemokines and receptors signaling axes in ALS pathophysiology. Prog Neurobiol 2024; 235:102587. [PMID: 38367748 DOI: 10.1016/j.pneurobio.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disease with complex genetic basis and still no clear etiology. Multiple intertwined layers of immune system-related dysfunctions and neuroinflammatory mechanisms are emerging as substantial determinants in ALS onset and progression. In this review, we collect the increasingly arising evidence implicating four main CXC chemokines/cognate receptors signaling axes (CXCR1/2-CXCL1/2/8; CXCR3-CXCL9/10/11; CXCR4/7-CXCL12; CXCR5-CXCL13) in the pathophysiology of ALS. Findings in preclinical models implicate these signaling pathways in motor neuron toxicity and neuroprotection, while in ALS patients dysregulation of CXCLs/CXCRs has been shown at both central and peripheral levels. Immunological monitoring of CXC-ligands in ALS may allow tracking of disease progression, while pharmacological modulation of CXC-receptors provides a novel therapeutic strategy. A deeper understanding of the interplay between CXC-mediated neuroinflammation and ALS is crucial to advance research into treatments for this debilitating uncurable disorder.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy.
| |
Collapse
|
8
|
Ratano P, Cocozza G, Pinchera C, Busdraghi LM, Cantando I, Martinello K, Scioli M, Rosito M, Bezzi P, Fucile S, Wulff H, Limatola C, D’Alessandro G. Reduction of inflammation and mitochondrial degeneration in mutant SOD1 mice through inhibition of voltage-gated potassium channel Kv1.3. Front Mol Neurosci 2024; 16:1333745. [PMID: 38292023 PMCID: PMC10824952 DOI: 10.3389/fnmol.2023.1333745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective therapy, causing progressive loss of motor neurons in the spinal cord, brainstem, and motor cortex. Regardless of its genetic or sporadic origin, there is currently no cure for ALS or therapy that can reverse or control its progression. In the present study, taking advantage of a human superoxide dismutase-1 mutant (hSOD1-G93A) mouse that recapitulates key pathological features of human ALS, we investigated the possible role of voltage-gated potassium channel Kv1.3 in disease progression. We found that chronic administration of the brain-penetrant Kv1.3 inhibitor, PAP-1 (40 mg/Kg), in early symptomatic mice (i) improves motor deficits and prolongs survival of diseased mice (ii) reduces astrocyte reactivity, microglial Kv1.3 expression, and serum pro-inflammatory soluble factors (iii) improves structural mitochondrial deficits in motor neuron mitochondria (iv) restores mitochondrial respiratory dysfunction. Taken together, these findings underscore the potential significance of Kv1.3 activity as a contributing factor to the metabolic disturbances observed in ALS. Consequently, targeting Kv1.3 presents a promising avenue for modulating disease progression, shedding new light on potential therapeutic strategies for ALS.
Collapse
Affiliation(s)
| | - Germana Cocozza
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | | | | | - Iva Cantando
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | | | - Maria Rosito
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Sergio Fucile
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Health Sciences Drive, Davis, CA, United States
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur, Sapienza University, Rome, Italy
| | - Giuseppina D’Alessandro
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
9
|
Montesinos-Rongen M, Sanchez-Ruiz M, Siebert S, Winter C, Siebert R, Brunn A, Deckert M. AMD3100-mediated CXCR4 inhibition impairs development of primary lymphoma of the central nervous system. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00163-3. [PMID: 37196929 DOI: 10.1016/j.ajpath.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/23/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
A hallmark of primary lymphoma of the central nervous system (PCNSL, CNS) is the strong CXCR4 expression of the tumor cells, the function of which is still unknown. In vitro treatment of BAL17CNS lymphoma cells by AMD3100 which inhibits CXCR4-CXCL12 interactions resulted in the significantly differential expression of 273 genes encoding proteins involved in cell motility, cell-cell signaling and interaction, hematological system development and function, and immunological disease. Among the genes downregulated was the one encoding CD200, a regulator of CNS immunological activity. These data directly translated into the in vivo situation; BAL17CNS CD200 expression was downregulated by 89% (3% vs. 28% CD200+ lymphoma cells) in AMD3100-treated vs. untreated mice with BAL17CNS-induced PCNSL. Reduced lymphoma cell CD200 expression may contribute to the markedly increased microglial activation in AMD3100-treated mice. AMD3100 also maintained the structural integrity of blood-brain barrier tight junctions and the outer basal lamina of cerebral blood vessels. Subsequently, lymphoma cell invasion of the brain parenchyma was impaired and maximal parenchymal tumor size was significantly reduced by 82% in the induction phase. Thus, AMD3100 qualified as potentially attractive candidate to be included into the therapeutic concept of PCNSL. Beyond therapy, CXCR4-induced suppression of microglial activity is of general neuroimmunological interest and identifies CD200 expressed by the lymphoma cells as a novel mechanism of immune escape in PCNSL.
Collapse
Affiliation(s)
- Manuel Montesinos-Rongen
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Monica Sanchez-Ruiz
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Susann Siebert
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Claudia Winter
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Anna Brunn
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; present address: Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martina Deckert
- Institute of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; present address: Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
10
|
Tripathi R, Kumar P. Preliminary study to identify CXCR4 inhibitors as potential therapeutic agents for Alzheimer's and Parkinson's diseases. Integr Biol (Camb) 2023; 15:zyad012. [PMID: 37635325 DOI: 10.1093/intbio/zyad012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
Neurodegenerative disorders (NDDs) are known to exhibit genetic overlap and shared pathophysiology. This study aims to find the shared genetic architecture of Alzheimer's disease (AD) and Parkinson's disease (PD), two major age-related progressive neurodegenerative disorders. The gene expression profiles of GSE67333 (containing samples from AD patients) and GSE114517 (containing samples from PD patients) were retrieved from the Gene Expression Omnibus (GEO) functional genomics database managed by the National Center for Biotechnology Information. The web application GREIN (GEO RNA-seq Experiments Interactive Navigator) was used to identify differentially expressed genes (DEGs). A total of 617 DEGs (239 upregulated and 379 downregulated) were identified from the GSE67333 dataset. Likewise, 723 DEGs (378 upregulated and 344 downregulated) were identified from the GSE114517 dataset. The protein-protein interaction networks of the DEGs were constructed, and the top 50 hub genes were identified from the network of the respective dataset. Of the four common hub genes between two datasets, C-X-C chemokine receptor type 4 (CXCR4) was selected due to its gene expression signature profile and the same direction of differential expression between the two datasets. Mavorixafor was chosen as the reference drug due to its known inhibitory activity against CXCR4 and its ability to cross the blood-brain barrier. Molecular docking and molecular dynamics simulation of 51 molecules having structural similarity with Mavorixafor was performed to find two novel molecules, ZINC49067615 and ZINC103242147. This preliminary study might help predict molecular targets and diagnostic markers for treating Alzheimer's and Parkinson's diseases. Insight Box Our research substantiates the therapeutic relevance of CXCR4 inhibitors for the treatment of Alzheimer's and Parkinson's diseases. We would like to disclose the following insights about this study. We found common signatures between Alzheimer's and Parkinson's diseases at transcriptional levels by analyzing mRNA sequencing data. These signatures were used to identify putative therapeutic agents for these diseases through computational analysis. Thus, we proposed two novel compounds, ZINC49067615 and ZINC103242147, that were stable, showed a strong affinity with CXCR4, and exhibited good pharmacokinetic properties. The interaction of these compounds with major residues of CXCR4 has also been described.
Collapse
Affiliation(s)
- Rahul Tripathi
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| |
Collapse
|
11
|
Monsour M, Garbuzova-Davis S, Borlongan CV. Patching Up the Permeability: The Role of Stem Cells in Lessening Neurovascular Damage in Amyotrophic Lateral Sclerosis. Stem Cells Transl Med 2022; 11:1196-1209. [PMID: 36181767 PMCID: PMC9801306 DOI: 10.1093/stcltm/szac072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating disease with poor prognosis. The pathophysiology of ALS is commonly debated, with theories involving inflammation, glutamate excitotoxity, oxidative stress, mitochondria malfunction, neurofilament accumulation, inadequate nutrients or growth factors, and changes in glial support predominating. These underlying pathological mechanisms, however, act together to weaken the blood brain barrier and blood spinal cord barrier, collectively considered as the blood central nervous system barrier (BCNSB). Altering the impermeability of the BCNSB impairs the neurovascular unit, or interdependent relationship between the brain and advances the concept that ALS is has a significant neurovascular component contributing to its degenerative presentation. This unique categorization of ALS opens a variety of treatment options targeting the reestablishment of BCNSB integrity. This review will critically assess the evidence implicating the significant neurovascular components of ALS pathophysiology, while also offering an in-depth discussion regarding the use of stem cells to repair these pathological changes within the neurovascular unit.
Collapse
Affiliation(s)
- Molly Monsour
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Corresponding author: Cesar V. Borlongan, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL 33612, USA.
| |
Collapse
|
12
|
Yan Y, Su J, Zhang Z. The CXCL12/CXCR4/ACKR3 Response Axis in Chronic Neurodegenerative Disorders of the Central Nervous System: Therapeutic Target and Biomarker. Cell Mol Neurobiol 2022; 42:2147-2156. [PMID: 34117967 PMCID: PMC11421623 DOI: 10.1007/s10571-021-01115-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022]
Abstract
There has been an increase in the incidence of chronic neurodegenerative disorders of the central nervous system, including Alzheimer's and Parkinson's diseases, over the recent years mostly due to the rise in the number of elderly individuals. In addition, various neurodegenerative disorders are related to imbalances in the CXCL12/CXCR4/ACKR3 response axis. Notably, the CXC Chemokine Ligand 12 (CXCL12) is essential for the development of the central nervous system. Moreover, the expression and distribution of CXCL12 and its receptors are associated with the aggravation or alleviation of symptoms of neurodegenerative disorders. Therefore, the current review sought to highlight the specific functions of CXCL12 and its receptors in various neurodegenerative disorders, in order to provide new insights for future research.
Collapse
Affiliation(s)
- Yudie Yan
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang City, 110001, People's Republic of China
| | - Jingtong Su
- Jinzhou Medical University, Liaoning Province, Jinzhou City, People's Republic of China
| | - Zhen Zhang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Liaoning Province, Shenyang City, 110001, People's Republic of China.
| |
Collapse
|
13
|
Alarcan H, Al Ojaimi Y, Lanznaster D, Escoffre JM, Corcia P, Vourc'h P, Andres CR, Veyrat-Durebex C, Blasco H. Taking Advantages of Blood–Brain or Spinal Cord Barrier Alterations or Restoring Them to Optimize Therapy in ALS? J Pers Med 2022; 12:jpm12071071. [PMID: 35887567 PMCID: PMC9319288 DOI: 10.3390/jpm12071071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that still lacks an efficient therapy. The barriers between the central nervous system (CNS) and the blood represent a major limiting factor to the development of drugs for CNS diseases, including ALS. Alterations of the blood–brain barrier (BBB) or blood–spinal cord barrier (BSCB) have been reported in this disease but still require further investigations. Interestingly, these alterations might be involved in the complex etiology and pathogenesis of ALS. Moreover, they can have potential consequences on the diffusion of candidate drugs across the brain. The development of techniques to bypass these barriers is continuously evolving and might open the door for personalized medical approaches. Therefore, identifying robust and non-invasive markers of BBB and BSCB alterations can help distinguish different subgroups of patients, such as those in whom barrier disruption can negatively affect the delivery of drugs to their CNS targets. The restoration of CNS barriers using innovative therapies could consequently present the advantage of both alleviating the disease progression and optimizing the safety and efficiency of ALS-specific therapies.
Collapse
Affiliation(s)
- Hugo Alarcan
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Yara Al Ojaimi
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Debora Lanznaster
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Jean-Michel Escoffre
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
- Service de Neurologie, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Patrick Vourc'h
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Christian R Andres
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Hélène Blasco
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| |
Collapse
|
14
|
Ng C, Lee KL, Muthiah MD, Wu KX, Chioh FWJ, Tan K, Soon GST, Shabbir A, Loo WM, Low ZS, Chen Q, Tan NS, Ng HH, Dan YY, Cheung C. Endothelial‐immune crosstalk contributes to vasculopathy in nonalcoholic fatty liver disease. EMBO Rep 2022; 23:e54271. [PMID: 35403791 PMCID: PMC9171677 DOI: 10.15252/embr.202154271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
The top cause of mortality in patients with nonalcoholic fatty liver disease (NAFLD) is cardiovascular complications. However, mechanisms of NAFLD‐associated vasculopathy remain understudied. Here, we show that blood outgrowth endothelial cells (BOECs) from NAFLD subjects exhibit global transcriptional upregulation of chemokines and human leukocyte antigens. In mouse models of diet‐induced NAFLD, we confirm heightened endothelial expressions of CXCL12 in the aortas and the liver vasculatures, and increased retention of infiltrated leukocytes within the vessel walls. To elucidate endothelial‐immune crosstalk, we performed immunoprofiling by single‐cell analysis, uncovering T cell intensification in NAFLD patients. Functionally, treatment with a CXCL12‐neutralizing antibody is effective at moderating the enhanced chemotactic effect of NAFLD BOECs in recruiting CD8+ T lymphocytes. Interference with the CXCL12‐CXCR4 axis using a CXCR4 antagonist also averts the impact of immune cell transendothelial migration and restores endothelial barrier integrity. Clinically, we detect threefold more circulating damaged endothelial cells in NAFLD patients than in healthy controls. Our work provides insight into the modulation of interactions with effector immune cells to mitigate endothelial injury in NAFLD.
Collapse
Affiliation(s)
- Chun‐Yi Ng
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | - Khang Leng Lee
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | - Mark Dhinesh Muthiah
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Medicine National University Health System Singapore Singapore
| | - Kan Xing Wu
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | | | - Konstanze Tan
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | | | - Asim Shabbir
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Surgery University Surgical Cluster National University Health System Singapore Singapore
| | - Wai Mun Loo
- Department of Medicine National University Health System Singapore Singapore
| | - Zun Siong Low
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology Agency for Science Technology and Research (A*STAR) Singapore Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
- School of Biological Sciences Nanyang Technological University Singapore Singapore
| | - Huck Hui Ng
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Institute of Molecular and Cell Biology Agency for Science Technology and Research (A*STAR) Singapore Singapore
- School of Biological Sciences Nanyang Technological University Singapore Singapore
- Genome Institute of Singapore Agency for Science Technology and Research (A*STAR) Singapore Singapore
| | - Yock Young Dan
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Medicine National University Health System Singapore Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
- Institute of Molecular and Cell Biology Agency for Science Technology and Research (A*STAR) Singapore Singapore
| |
Collapse
|
15
|
Yu W, He J, Cai X, Yu Z, Zou Z, Fan D. Neuroimmune Crosstalk Between the Peripheral and the Central Immune System in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:890958. [PMID: 35592701 PMCID: PMC9110796 DOI: 10.3389/fnagi.2022.890958] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the degeneration and death of motor neurons. Systemic neuroinflammation contributes to the pathogenesis of ALS. The proinflammatory milieu depends on the continuous crosstalk between the peripheral immune system (PIS) and central immune system (CIS). Central nervous system (CNS) resident immune cells interact with the peripheral immune cells via immune substances. Dysfunctional CNS barriers, including the blood–brain barrier, and blood–spinal cord barrier, accelerate the inflammatory process, leading to a systemic self-destructive cycle. This review focuses on the crosstalk between PIS and CIS in ALS. Firstly, we briefly introduce the cellular compartments of CIS and PIS, respectively, and update some new understanding of changes specifically occurring in ALS. Then, we will review previous studies on the alterations of the CNS barriers, and discuss their crucial role in the crosstalk in ALS. Finally, we will review the moveable compartments of the crosstalk, including cytokines, chemokines, and peripheral immune cells which were found to infiltrate the CNS, highlighting the interaction between PIS and CIS. This review aims to provide new insights into pathogenic mechanisms and innovative therapeutic approaches for ALS.
Collapse
Affiliation(s)
- Weiyi Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Xiying Cai
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhou Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- *Correspondence: Dongsheng Fan,
| |
Collapse
|
16
|
Bassani D, Pavan M, Federico S, Spalluto G, Sturlese M, Moro S. The Multifaceted Role of GPCRs in Amyotrophic Lateral Sclerosis: A New Therapeutic Perspective? Int J Mol Sci 2022; 23:4504. [PMID: 35562894 PMCID: PMC9106011 DOI: 10.3390/ijms23094504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerating disease involving the motor neurons, which causes a progressive loss of movement ability, usually leading to death within 2 to 5 years from the diagnosis. Much effort has been put into research for an effective therapy for its eradication, but still, no cure is available. The only two drugs approved for this pathology, Riluzole and Edaravone, are onlyable to slow down the inevitable disease progression. As assessed in the literature, drug targets such as protein kinases have already been extensively examined as potential drug targets for ALS, with some molecules already in clinical trials. Here, we focus on the involvement of another very important and studied class of biological entities, G protein-coupled receptors (GPCRs), in the onset and progression of ALS. This workaimsto give an overview of what has been already discovered on the topic, providing useful information and insights that can be used by scientists all around the world who are putting efforts into the fight against this very important neurodegenerating disease.
Collapse
Affiliation(s)
- Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; (S.F.); (G.S.)
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; (S.F.); (G.S.)
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| |
Collapse
|
17
|
Mirian A, Moszczynski A, Soleimani S, Aubert I, Zinman L, Abrahao A. Breached Barriers: A Scoping Review of Blood-Central Nervous System Barrier Pathology in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2022; 16:851563. [PMID: 35431812 PMCID: PMC9009245 DOI: 10.3389/fncel.2022.851563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Recent studies have implicated changes in the blood-central nervous system barriers (BCNSB) in amyotrophic lateral sclerosis (ALS). The objective of this scoping review is to synthesize the current evidence for BCNSB structure and functional abnormalities in ALS studies and propose how BCNSB pathology may impact therapeutic development. Methods A literature search was conducted using Ovid Medline, EMBASE, and Web of Science, from inception to November 2021 and limited to entries in English language. Simplified search strategy included the terms ALS/motor neuron disease and [BCNSB or blood-brain barrier (BBB) or blood-spinal cord barrier (BSCB)]. Henceforth, BCNSB is used as a term that is inclusive of the BBB and BSCB. Four independent reviewers conducted a title and abstract screening, hand-searched the reference lists of review papers, and performed a full text review of eligible studies. Included studies were original peer-reviewed full text publications, evaluating the structure and function of the BCNSB in preclinical models of ALS, clinical ALS, or postmortem human ALS tissue. There was no restriction on study design. The four reviewers independently extracted the data. Results The search retrieved 2,221 non-duplicated articles and 48 original studies were included in the synthesis. There was evidence that the integrity of the BCNSB is disrupted throughout the course of the disease in rodent models, beginning prior to symptom onset and detectable neurodegeneration. Increased permeability, pharmacoresistance with upregulated efflux transporters, and morphological changes in the supporting cells of the BCNSB, including pericytes, astrocytes, and endothelial cells were observed in animal models. BCNSB abnormalities were also demonstrated in postmortem studies of ALS patients. Therapeutic interventions targeting BCNSB dysfunction were associated with improved motor neuron survival in animal models of ALS. Conclusion BCNSB structural and functional abnormalities are likely implicated in ALS pathophysiology and may occur upstream to neurodegeneration. Promising therapeutic strategies targeting BCNSB dysfunction have been tested in animals and can be translated into ALS clinical trials.
Collapse
Affiliation(s)
- Ario Mirian
- Clinical Neurological Sciences, Western University, London Health Sciences, London, ON, Canada
| | | | - Serena Soleimani
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lorne Zinman
- Division of Neurology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Science Centre, Toronto, ON, Canada
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Agessandro Abrahao
- Division of Neurology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Science Centre, Toronto, ON, Canada
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
18
|
Pun FW, Leung GHD, Leung HW, Liu BHM, Long X, Ozerov IV, Wang J, Ren F, Aliper A, Izumchenko E, Moskalev A, de Magalhães JP, Zhavoronkov A. Hallmarks of aging-based dual-purpose disease and age-associated targets predicted using PandaOmics AI-powered discovery engine. Aging (Albany NY) 2022; 14:2475-2506. [PMID: 35347083 PMCID: PMC9004567 DOI: 10.18632/aging.203960] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
Aging biology is a promising and burgeoning research area that can yield dual-purpose pathways and protein targets that may impact multiple diseases, while retarding or possibly even reversing age-associated processes. One widely used approach to classify a multiplicity of mechanisms driving the aging process is the hallmarks of aging. In addition to the classic nine hallmarks of aging, processes such as extracellular matrix stiffness, chronic inflammation and activation of retrotransposons are also often considered, given their strong association with aging. In this study, we used a variety of target identification and prioritization techniques offered by the AI-powered PandaOmics platform, to propose a list of promising novel aging-associated targets that may be used for drug discovery. We also propose a list of more classical targets that may be used for drug repurposing within each hallmark of aging. Most of the top targets generated by this comprehensive analysis play a role in inflammation and extracellular matrix stiffness, highlighting the relevance of these processes as therapeutic targets in aging and age-related diseases. Overall, our study reveals both high confidence and novel targets associated with multiple hallmarks of aging and demonstrates application of the PandaOmics platform to target discovery across multiple disease areas.
Collapse
Affiliation(s)
- Frank W. Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Geoffrey Ho Duen Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Hoi Wing Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Bonnie Hei Man Liu
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Xi Long
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ivan V. Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ju Wang
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Feng Ren
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Alexander Aliper
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Alexey Moskalev
- School of Systems Biology, George Mason University (GMU), Fairfax, VA 22030, USA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
19
|
Chopra N, Menounos S, Choi JP, Hansbro PM, Diwan AD, Das A. Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies. NEUROSCI 2022; 3:1-27. [PMID: 39484675 PMCID: PMC11523733 DOI: 10.3390/neurosci3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/14/2021] [Indexed: 11/03/2024] Open
Abstract
The blood-spinal cord barrier (BSCB) has been long thought of as a functional equivalent to the blood-brain barrier (BBB), restricting blood flow into the spinal cord. The spinal cord is supported by various disc tissues that provide agility and has different local immune responses compared to the brain. Though physiologically, structural components of the BSCB and BBB share many similarities, the clinical landscape significantly differs. Thus, it is crucial to understand the composition of BSCB and also to establish the cause-effect relationship with aberrations and spinal cord dysfunctions. Here, we provide a descriptive analysis of the anatomy, current techniques to assess the impairment of BSCB, associated risk factors and impact of spinal disorders such as spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), peripheral nerve injury (PNI), ischemia reperfusion injury (IRI), degenerative cervical myelopathy (DCM), multiple sclerosis (MS), spinal cavernous malformations (SCM) and cancer on BSCB dysfunction. Along with diagnostic and mechanistic analyses, we also provide an up-to-date account of available therapeutic options for BSCB repair. We emphasize the need to address BSCB as an individual entity and direct future research towards it.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Spiro Menounos
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
| | - Jaesung P Choi
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Ashish D Diwan
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
20
|
Gavriel Y, Rabinovich-Nikitin I, Solomon B. Inhibition of CXCR4/CXCL12 signaling: a translational perspective for Alzheimer's disease treatment. Neural Regen Res 2022; 17:108-109. [PMID: 34100443 PMCID: PMC8451578 DOI: 10.4103/1673-5374.314303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yuval Gavriel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inna Rabinovich-Nikitin
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Beka Solomon
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Gavriel Y, Rabinovich-Nikitin I, Ezra A, Barbiro B, Solomon B. Subcutaneous Administration of AMD3100 into Mice Models of Alzheimer's Disease Ameliorated Cognitive Impairment, Reduced Neuroinflammation, and Improved Pathophysiological Markers. J Alzheimers Dis 2021; 78:653-671. [PMID: 33016905 DOI: 10.3233/jad-200506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), the prevalent dementia in the elderly, involves many related and interdependent pathologies that manifest simultaneously, leading to cognitive impairment and death. Amyloid-β (Aβ) accumulation in the brain triggers the onset of AD, accompanied by neuroinflammatory response and pathological changes. The CXCR4/CXCL12 (SDF1) axis is one of the major signal transduction cascades involved in the inflammation process and regulation of homing of hematopoietic stem cells (HSCs) within the bone marrow niche. Inhibition of the axis with AMD3100, a reversible antagonist of CXCR4 mobilizes endogenous HSCs from the bone marrow into the periphery, facilitating the recruitment of bone marrow-derived microglia-like cells into the brain, attenuates the neuroinflammation process that involves release of excitotoxic markers such as TNFα, intracellular Ca2 +, and glutamate and upregulates monocarboxylate transporter 1, the major L-lactate transporter in the brain. OBJECTIVE Herein, we investigate if administration of a combination of AMD3100 and L-lactate may have beneficial effects in the treatment of AD. METHODS We tested the feasibility of the combined treatment for short- and long-term efficacy for inducing endogenous stem cells' mobilization and attenuation of neuroinflammation in two distinct amyloid-β-induced AD mouse models. RESULTS The combined treatment did not demonstrate any adverse effects on the mice, and resulted in a significant improvement in cognitive/memory functions, attenuated neuroinflammation, and alleviated AD pathologies compared to each treatment alone. CONCLUSION This study showed AMD3100's beneficial effect in ameliorating AD pathogenesis, suggesting an alternative to the multistep procedures of transplantation of stem cells in the treatment of AD.
Collapse
Affiliation(s)
- Yuval Gavriel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inna Rabinovich-Nikitin
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Assaf Ezra
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Becki Barbiro
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Beka Solomon
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Cihankaya H, Theiss C, Matschke V. Little Helpers or Mean Rogue-Role of Microglia in Animal Models of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22030993. [PMID: 33498186 PMCID: PMC7863915 DOI: 10.3390/ijms22030993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, causing degeneration of both upper and lower motor neurons in the central nervous system (CNS). ALS patients suffer from hyperreflexia, spasticity, paralysis and muscle atrophy and typically die due to respiratory failure 1–5 years after disease onset. In addition to the degeneration of motor neurons on the cellular level, ALS has been associated with neuroinflammation, such as microgliosis. Microglial activation in ALS can either be protective or degenerative to the neurons. Among others, mutations in superoxide dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C9Orf72), transactive response DNA binding protein (TDP) 43 and vacuolar protein sorting-associated protein 54 (VPS54) genes have been associated with ALS. Here, we describe the dual role and functionality of microglia in four different in vivo ALS models and search for the lowest common denominator with respect to the role of microglia in the highly heterogeneous disease of ALS.
Collapse
Affiliation(s)
- Hilal Cihankaya
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (H.C.); (C.T.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (H.C.); (C.T.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (H.C.); (C.T.)
- Correspondence: ; Tel.: +49-234-32-25018
| |
Collapse
|
23
|
Friedman-Levi Y, Liraz-Zaltsman S, Shemesh C, Rosenblatt K, Kesner EL, Gincberg G, Carmichael ST, Silva AJ, Shohami E. Pharmacological blockers of CCR5 and CXCR4 improve recovery after traumatic brain injury. Exp Neurol 2021; 338:113604. [PMID: 33453212 DOI: 10.1016/j.expneurol.2021.113604] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/27/2020] [Accepted: 01/09/2021] [Indexed: 11/16/2022]
Abstract
CCR5 and CXCR4 are structurally related chemokine receptors that belong to the superfamily of G-protein coupled receptors through which the HIV virus enters and infects cells. Both receptors are also related to HIV-associated neurocognitive disorders that include difficulties in concentration and memory, impaired executive functions, psychomotor slowing, depression and irritability, which are also hallmarks of the long-term sequelae of TBI. Moreover, A growing body of evidence attributes negative influences to CCR5 activation on cognition, particularly after stroke and traumatic brain injury (TBI). Here we investigated the effect of their blockage on motor and cognitive functions, on brain tissue loss and preservation and on some of the biochemical pathways involved. We examined the effect of maraviroc, a CCR5 antagonist used in HIV patients as a viral entry inhibitor, and of plerixafor (AMD3100), a CXCR4 antagonist used in cancer patients as an immune-modulator, on mice subjected to closed head injury (CHI). Mice were treated with maraviroc or plerixafor after CHI for the following 4 or 5 days, respectively. Neurobehavior was assessed according to the Neurological Severity Score; cognitive tests were performed by using the Y-maze, Barnes maze and the novel object recognition test; anxiety was evaluated with the open field test. The mice were sacrificed and brain tissues were collected for Western blot, pathological and immunohistochemical analyses. Both drugs enhanced tissue preservation in the cortex, hippocampus, periventricular areas, corpus callosum and striatum, and reduced astrogliosis)GFAP expression). They also increased the levels of synaptic cognition-related signaling molecules such as phosphorylated NR1 and CREB, and the synaptic plasticity protein PSD95. Both treatments also enhanced the expression of CCR5 and CXCR4 on different brain cell types. In summary, the beneficial effects of blocking CCR5 and CXCR4 after CHI suggest that the drugs used in this study, both FDA approved and in clinical use, should be considered for translational research in TBI patients.
Collapse
Affiliation(s)
- Yael Friedman-Levi
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Sigal Liraz-Zaltsman
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; Institute for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kiryat Ono, Israel.
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel.
| | | | - Efrat L Kesner
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Gincberg
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, LA, CA, USA.
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, Psychology, Integrative Center for Learning and Memory and Brain Research Institute, UCLA, LA, CA, USA.
| | - Esther Shohami
- Department of Pharmacology, the Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
24
|
Andrés-Benito P, Povedano M, Domínguez R, Marco C, Colomina MJ, López-Pérez Ó, Santana I, Baldeiras I, Martínez-Yelámos S, Zerr I, Llorens F, Fernández-Irigoyen J, Santamaría E, Ferrer I. Increased C-X-C Motif Chemokine Ligand 12 Levels in Cerebrospinal Fluid as a Candidate Biomarker in Sporadic Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21228680. [PMID: 33213069 PMCID: PMC7698527 DOI: 10.3390/ijms21228680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (sALS) is a fatal progressive neurodegenerative disease affecting upper and lower motor neurons. Biomarkers are useful to facilitate the diagnosis and/or prognosis of patients and to reveal possible mechanistic clues about the disease. This study aimed to identify and validate selected putative biomarkers in the cerebrospinal fluid (CSF) of sALS patients at early disease stages compared with age-matched controls and with other neurodegenerative diseases including Alzheimer disease (AD), spinal muscular atrophy type III (SMA), frontotemporal dementia behavioral variant (FTD), and multiple sclerosis (MS). SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for protein quantitation, and ELISA for validation, were used in CSF samples of sALS cases at early stages of the disease. Analysis of mRNA and protein expression was carried out in the anterior horn of the lumbar spinal cord in post-mortem tissue of sALS cases (terminal stage) and controls using RTq-PCR, and Western blotting, and immunohistochemistry, respectively. SWATH acquisition on liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed 51 differentially expressed proteins in the CSF in sALS. Receiver operating characteristic (ROC) curves showed CXCL12 to be the most valuable candidate biomarker. We validated the values of CXCL12 in CSF with ELISA in two different cohorts. Besides sALS, increased CXCL12 levels were found in MS but were not altered in AD, SMA, and FTD. Therefore, increased CXCL12 levels in the CSF can be useful in the diagnoses of MS and sALS in the context of the clinical settings. CXCL12 immunoreactivity was localized in motor neurons in control and sALS, and in a few glial cells in sALS at the terminal stage; CXCR4 was in a subset of oligodendroglial-like cells and axonal ballooning of motor neurons in sALS; and CXCR7 in motor neurons in control and sALS, and reactive astrocytes in the pyramidal tracts in terminal sALS. CXCL12/CXCR4/CXCR7 axis in the spinal cord probably plays a complex role in inflammation, oligodendroglial and astrocyte signaling, and neuronal and axonal preservation in sALS.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
- Correspondence: (P.A.-B.); (I.F.); Tel./Fax: +34-94-403-5808 (P.A.-B. & I.F.)
| | - Mònica Povedano
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Raúl Domínguez
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
| | - Carla Marco
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
| | - Maria J. Colomina
- Anesthesia and Critical Care Department, Bellvitge University Hospital-University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Óscar López-Pérez
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Isabel Santana
- Neurology Department, CHUC—Centro Hospitalar e Universitário de Coimbra, CNC—Center for Neuroscience and Cell Biology; and Faculty of Medicine, University of Coimbra, 3000-456 Coimbra, Portugal; (I.S.); (I.B.)
| | - Inês Baldeiras
- Neurology Department, CHUC—Centro Hospitalar e Universitário de Coimbra, CNC—Center for Neuroscience and Cell Biology; and Faculty of Medicine, University of Coimbra, 3000-456 Coimbra, Portugal; (I.S.); (I.B.)
| | - Sergio Martínez-Yelámos
- Multiple Sclerosis Unit, Service of Neurology, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Franc Llorens
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- IDISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (J.F.-I.); (E.S.)
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
| | - Enrique Santamaría
- IDISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (J.F.-I.); (E.S.)
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain;
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Bellvitge University Hospital, 08907 Hospitalet de Llobregat, Spain; (M.P.); (R.D.); (C.M.)
- Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Correspondence: (P.A.-B.); (I.F.); Tel./Fax: +34-94-403-5808 (P.A.-B. & I.F.)
| |
Collapse
|
25
|
Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of Glial Function During Neurodegeneration. Front Cell Neurosci 2020; 14:278. [PMID: 32973460 PMCID: PMC7473408 DOI: 10.3389/fncel.2020.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour and Development, Penrith, NSW, Australia
| |
Collapse
|
26
|
Wang C, Xu K, Wang Y, Mao Y, Huang Y, Liang Y, Liu Y, Hao J, Gu X, Ma Z, Sun Y. Spinal cannabinoid receptor 2 activation reduces hypersensitivity associated with bone cancer pain and improves the integrity of the blood-spinal cord barrier. Reg Anesth Pain Med 2020; 45:783-791. [PMID: 32796132 PMCID: PMC7513263 DOI: 10.1136/rapm-2019-101262] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023]
Abstract
Background Disruption of the blood–spinal cord barrier (BSCB) can facilitate inflammation that results in pain hypersensitivity. Proinflammatory cytokines produced by activated microglia and astrocytes damage the BSCB. This study aims to explore whether the BSCB is damaged in the bone cancer pain (BCP) model and to investigate a potential role and mechanism of JWH015 ((2-methyl-1-propyl-1H-indol-3-yl)−1-naphthalenylmethanone), a selective cannabinoid receptor 2 (CB2R) agonist, in preserving the BSCB integrity in the BCP model. Methods We used a male mouse model of BCP. Pain hypersensitivity was measured over time. Evans blue dye extravasation, transmission electron microscopy and Western blotting were performed to investigate the permeability and structural integrity of the BSCB. Immunofluorescence staining and western blotting were used to investigate the effect of JWH015 on the activation of glial cells and the levels of proinflammatory cytokines. Results A single intrathecal injection of JWH015 ameliorated pain hypersensitivity, the BSCB disruption and microglia and astrocyte activation. Decreases in the expression of ZO-1 and claudin-5 were partially restored by JWH015. The levels of the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α and the enzyme MMP9 were reduced by JWH015. However, all effects were prevented by pretreatment with a CB2R-selective antagonist, AM630 ((6-iodo-2-methyl-1-(2-morpholinoethyl)−1H-indol-3-yl)(4-methoxyphenyl)methanone). Conclusions JWH015 alleviates neuroinflammation and maintains the BSCB integrity and permeability in a mouse model of BCP, which is probably mediated by inhibiting glial cells activation. This study reveals the new analgesic mechanism of JWH015 on BCP and provides a perspective to explore novel drugs that target the BSCB to control BCP.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Ke Xu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yu Wang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yanting Mao
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yulin Huang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Ying Liang
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yue Liu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Jing Hao
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yu'e Sun
- Department of Anesthesiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Ding X, Yang W, Ren Q, Hu J, Yang S, Han W, Wang J, Wang X, Wang H. Serum IgG-induced microglial activation enhances neuronal cytolysis via the NO/sGC/PKG pathway in children with opsoclonus-myoclonus syndrome and neuroblastoma. J Neuroinflammation 2020; 17:190. [PMID: 32546235 PMCID: PMC7298801 DOI: 10.1186/s12974-020-01839-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Opsoclonus-myoclonus syndrome (OMS) is a rare neurological disease. Some children with OMS also have neuroblastoma (NB). We and others have previously documented that serum IgG from children with OMS and NB induces neuronal cytolysis and activates several signaling pathways. However, the mechanisms underlying OMS remain unclear. Here, we investigated whether nitric oxide (NO) from activated microglias and its cascade contribute to neuronal cytolysis in pediatric OMS. Methods The activation of cultured cerebral cortical and cerebellar microglias incubated with sera or IgG isolated from sera of children with OMS and NB was measured by the expression of the activation marker, cytokines, and NO. Neuronal cytolysis was determined after exposing to IgG-treated microglia-conditioned media. Using inhibitors and activators, the effects of NO synthesis and its intracellular cascade, namely soluble guanylyl cyclase (sGC) and protein kinase G (PKG), on neuronal cytolysis were evaluated. Results Incubation with sera or IgG from children with OMS and NB increased the activation of cerebral cortical and cerebellar microglias, but not the activation of astrocytes or the cytolysis of glial cells. Moreover, the cytolysis of neurons was elevated by conditioned media from microglias incubated with IgG from children with OMS and NB. Furthermore, the expression of NO, sGC, and PKG was increased. Neuronal cytolysis was relieved by the inhibitors of NO signaling, while neuronal cytolysis was exacerbated by the activators of NO signaling but not proinflammatory cytokines. The cytolysis of neurons was suppressed by pretreatment with the microglial inhibitor minocycline, a clinically tested drug. Finally, increased microglial activation did not depend on the Fab fragment of serum IgG. Conclusions Serum IgG from children with OMS and NB potentiates microglial activation, which induces neuronal cytolysis through the NO/sGC/PKG pathway, suggesting an applicability of microglial inhibitor as a therapeutic candidate.
Collapse
Affiliation(s)
- Xu Ding
- Laboratory of Nutrition and Development, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan-li-shi Road, Xi-Cheng District, Beijing, 100045, China.
| | - Wei Yang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Qinghua Ren
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jiajian Hu
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Shen Yang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Han
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xu Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
28
|
Medina DX, Chung EP, Teague CD, Bowser R, Sirianni RW. Intravenously Administered, Retinoid Activating Nanoparticles Increase Lifespan and Reduce Neurodegeneration in the SOD1 G93A Mouse Model of ALS. Front Bioeng Biotechnol 2020; 8:224. [PMID: 32292776 PMCID: PMC7118553 DOI: 10.3389/fbioe.2020.00224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of the retinoic acid (RA) signaling pathway is observed in amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Here, we investigated the therapeutic potential of retinoid activation via the RA receptor β (RARβ) in the SOD1G93A mouse model of ALS. Our approach utilized the RARβ agonist adapalene, which we previously found to be neuroprotective in vitro. Adapalene, like most retinoids, is poorly water soluble, which has thus far prevented effective drug delivery in vivo. To address this challenge, we encapsulated adapalene within nanoparticles (Adap-NPs) composed of poly(lactic acid)-poly(ethylene glycol) (PLA-PEG). Our data demonstrate that intravenous administration of Adap-NPs robustly activates retinoid signaling in the CNS. Chronic administration of Adap-NPs resulted in improved motor performance, prolonged lifespan, and neuroprotection in SOD1G93A mice. This study highlights retinoid signaling as a valuable therapeutic approach and presents a novel nanoparticle platform for the treatment of ALS.
Collapse
Affiliation(s)
- David X Medina
- Gregory W. Fulton ALS Center, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States.,Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Eugene P Chung
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Collin D Teague
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Robert Bowser
- Gregory W. Fulton ALS Center, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Rachael W Sirianni
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, United States.,Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
29
|
Filipi T, Hermanova Z, Tureckova J, Vanatko O, Anderova M. Glial Cells-The Strategic Targets in Amyotrophic Lateral Sclerosis Treatment. J Clin Med 2020; 9:E261. [PMID: 31963681 PMCID: PMC7020059 DOI: 10.3390/jcm9010261] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease, which is characterized by the degeneration of motor neurons in the motor cortex and the spinal cord and subsequently by muscle atrophy. To date, numerous gene mutations have been linked to both sporadic and familial ALS, but the effort of many experimental groups to develop a suitable therapy has not, as of yet, proven successful. The original focus was on the degenerating motor neurons, when researchers tried to understand the pathological mechanisms that cause their slow death. However, it was soon discovered that ALS is a complicated and diverse pathology, where not only neurons, but also other cell types, play a crucial role via the so-called non-cell autonomous effect, which strongly deteriorates neuronal conditions. Subsequently, variable glia-based in vitro and in vivo models of ALS were established and used for brand-new experimental and clinical approaches. Such a shift towards glia soon bore its fruit in the form of several clinical studies, which more or less successfully tried to ward the unfavourable prognosis of ALS progression off. In this review, we aimed to summarize current knowledge regarding the involvement of each glial cell type in the progression of ALS, currently available treatments, and to provide an overview of diverse clinical trials covering pharmacological approaches, gene, and cell therapies.
Collapse
Affiliation(s)
- Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
- 2nd Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14200 Prague, Czech Republic; (T.F.); (Z.H.); (J.T.); (O.V.)
| |
Collapse
|
30
|
Berry JD, Cudkowicz ME, Windebank AJ, Staff NP, Owegi M, Nicholson K, McKenna-Yasek D, Levy YS, Abramov N, Kaspi H, Mehra M, Aricha R, Gothelf Y, Brown RH. NurOwn, phase 2, randomized, clinical trial in patients with ALS: Safety, clinical, and biomarker results. Neurology 2019; 93:e2294-e2305. [PMID: 31740545 PMCID: PMC6937497 DOI: 10.1212/wnl.0000000000008620] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Objective To determine the safety and efficacy of mesenchymal stem cell (MSC)-neurotrophic factor (NTF) cells (NurOwn®, autologous bone marrow-derived MSCs, induced to secrete NTFs) delivered by combined intrathecal and intramuscular administration to participants with amyotrophic lateral sclerosis (ALS) in a phase 2 randomized controlled trial. Methods The study enrolled 48 participants randomized 3:1 (treatment: placebo). After a 3-month pretransplant period, participants received 1 dose of MSC-NTF cells (n = 36) or placebo (n = 12) and were followed for 6 months. CSF was collected before and 2 weeks after transplantation. Results The study met its primary safety endpoint. The rate of disease progression (Revised ALS Functional Rating Scale [ALSFRS-R] slope change) in the overall study population was similar in treated and placebo participants. In a prespecified rapid progressor subgroup (n = 21), rate of disease progression was improved at early time points (p < 0.05). To address heterogeneity, a responder analysis showed that a higher proportion of treated participants experienced ≥1.5 points/month ALSFRS-R slope improvement compared to placebo at all time points, and was significant in rapid progressors at 4 and 12 weeks (p = 0.004 and 0.046, respectively). CSF neurotrophic factors increased and CSF inflammatory biomarkers decreased in treated participants (p < 0.05) post-transplantation. CSF monocyte chemoattractant protein-1 levels correlated with ALSFRS-R slope improvement up to 24 weeks (p < 0.05). Conclusion A single-dose transplantation of MSC-NTF cells is safe and demonstrated early promising signs of efficacy. This establishes a clear path forward for a multidose randomized clinical trial of intrathecal autologous MSC-NTF cell transplantation in ALS. Classification of evidence This phase II study provides Class I evidence.
Collapse
Affiliation(s)
- James D Berry
- From Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School (J.D.B., M.E.C., K.N.), Boston; Mayo Clinic (A.J.W., N.P.S.), Rochester, MN; University of Massachusetts (M.O., D.M.-Y., R.H.B.), Worcester; Brainstorm Cell Therapeutics (Y.S.L., N.A., H.K., R.A., Y.G.), Petach Tikva, Israel; and Tigermed USA (M.M.), Somerset, NJ
| | - Merit E Cudkowicz
- From Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School (J.D.B., M.E.C., K.N.), Boston; Mayo Clinic (A.J.W., N.P.S.), Rochester, MN; University of Massachusetts (M.O., D.M.-Y., R.H.B.), Worcester; Brainstorm Cell Therapeutics (Y.S.L., N.A., H.K., R.A., Y.G.), Petach Tikva, Israel; and Tigermed USA (M.M.), Somerset, NJ
| | - Anthony J Windebank
- From Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School (J.D.B., M.E.C., K.N.), Boston; Mayo Clinic (A.J.W., N.P.S.), Rochester, MN; University of Massachusetts (M.O., D.M.-Y., R.H.B.), Worcester; Brainstorm Cell Therapeutics (Y.S.L., N.A., H.K., R.A., Y.G.), Petach Tikva, Israel; and Tigermed USA (M.M.), Somerset, NJ
| | - Nathan P Staff
- From Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School (J.D.B., M.E.C., K.N.), Boston; Mayo Clinic (A.J.W., N.P.S.), Rochester, MN; University of Massachusetts (M.O., D.M.-Y., R.H.B.), Worcester; Brainstorm Cell Therapeutics (Y.S.L., N.A., H.K., R.A., Y.G.), Petach Tikva, Israel; and Tigermed USA (M.M.), Somerset, NJ
| | - Margaret Owegi
- From Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School (J.D.B., M.E.C., K.N.), Boston; Mayo Clinic (A.J.W., N.P.S.), Rochester, MN; University of Massachusetts (M.O., D.M.-Y., R.H.B.), Worcester; Brainstorm Cell Therapeutics (Y.S.L., N.A., H.K., R.A., Y.G.), Petach Tikva, Israel; and Tigermed USA (M.M.), Somerset, NJ
| | - Katherine Nicholson
- From Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School (J.D.B., M.E.C., K.N.), Boston; Mayo Clinic (A.J.W., N.P.S.), Rochester, MN; University of Massachusetts (M.O., D.M.-Y., R.H.B.), Worcester; Brainstorm Cell Therapeutics (Y.S.L., N.A., H.K., R.A., Y.G.), Petach Tikva, Israel; and Tigermed USA (M.M.), Somerset, NJ
| | - Diane McKenna-Yasek
- From Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School (J.D.B., M.E.C., K.N.), Boston; Mayo Clinic (A.J.W., N.P.S.), Rochester, MN; University of Massachusetts (M.O., D.M.-Y., R.H.B.), Worcester; Brainstorm Cell Therapeutics (Y.S.L., N.A., H.K., R.A., Y.G.), Petach Tikva, Israel; and Tigermed USA (M.M.), Somerset, NJ
| | - Yossef S Levy
- From Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School (J.D.B., M.E.C., K.N.), Boston; Mayo Clinic (A.J.W., N.P.S.), Rochester, MN; University of Massachusetts (M.O., D.M.-Y., R.H.B.), Worcester; Brainstorm Cell Therapeutics (Y.S.L., N.A., H.K., R.A., Y.G.), Petach Tikva, Israel; and Tigermed USA (M.M.), Somerset, NJ
| | - Natalie Abramov
- From Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School (J.D.B., M.E.C., K.N.), Boston; Mayo Clinic (A.J.W., N.P.S.), Rochester, MN; University of Massachusetts (M.O., D.M.-Y., R.H.B.), Worcester; Brainstorm Cell Therapeutics (Y.S.L., N.A., H.K., R.A., Y.G.), Petach Tikva, Israel; and Tigermed USA (M.M.), Somerset, NJ
| | - Haggai Kaspi
- From Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School (J.D.B., M.E.C., K.N.), Boston; Mayo Clinic (A.J.W., N.P.S.), Rochester, MN; University of Massachusetts (M.O., D.M.-Y., R.H.B.), Worcester; Brainstorm Cell Therapeutics (Y.S.L., N.A., H.K., R.A., Y.G.), Petach Tikva, Israel; and Tigermed USA (M.M.), Somerset, NJ
| | - Munish Mehra
- From Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School (J.D.B., M.E.C., K.N.), Boston; Mayo Clinic (A.J.W., N.P.S.), Rochester, MN; University of Massachusetts (M.O., D.M.-Y., R.H.B.), Worcester; Brainstorm Cell Therapeutics (Y.S.L., N.A., H.K., R.A., Y.G.), Petach Tikva, Israel; and Tigermed USA (M.M.), Somerset, NJ
| | - Revital Aricha
- From Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School (J.D.B., M.E.C., K.N.), Boston; Mayo Clinic (A.J.W., N.P.S.), Rochester, MN; University of Massachusetts (M.O., D.M.-Y., R.H.B.), Worcester; Brainstorm Cell Therapeutics (Y.S.L., N.A., H.K., R.A., Y.G.), Petach Tikva, Israel; and Tigermed USA (M.M.), Somerset, NJ
| | - Yael Gothelf
- From Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School (J.D.B., M.E.C., K.N.), Boston; Mayo Clinic (A.J.W., N.P.S.), Rochester, MN; University of Massachusetts (M.O., D.M.-Y., R.H.B.), Worcester; Brainstorm Cell Therapeutics (Y.S.L., N.A., H.K., R.A., Y.G.), Petach Tikva, Israel; and Tigermed USA (M.M.), Somerset, NJ
| | - Robert H Brown
- From Massachusetts General Hospital Neurological Clinical Research Institute and Harvard Medical School (J.D.B., M.E.C., K.N.), Boston; Mayo Clinic (A.J.W., N.P.S.), Rochester, MN; University of Massachusetts (M.O., D.M.-Y., R.H.B.), Worcester; Brainstorm Cell Therapeutics (Y.S.L., N.A., H.K., R.A., Y.G.), Petach Tikva, Israel; and Tigermed USA (M.M.), Somerset, NJ.
| |
Collapse
|
31
|
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44:51-68. [PMID: 30396776 DOI: 10.1016/j.cytogfr.2018.10.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
CXCL12 is a CXC chemokine that traditionally has been classified as a homeostatic chemokine. It contributes to physiological processes such as embryogenesis, hematopoiesis and angiogenesis. In contrast to these homeostatic functions, increased expression of CXCL12 in general, or of a specific CXCL12 splicing variant has been demonstrated in various pathologies. In addition to this increased or differential transcription of CXCL12, also upregulation of its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) contributes to the onset or progression of diseases. Moreover, posttranslational modification of CXCL12 during disease progression, through interaction with locally produced molecules or enzymes, also affects CXCL12 activity, adding further complexity. As CXCL12, CXCR4 and ACKR3 are broadly expressed, the number of pathologies wherein CXCL12 is involved is growing. In this review, the role of the CXCL12/CXCR4/ACKR3 axis will be discussed for the most prevalent pathologies. Administration of CXCL12-neutralizing antibodies or small-molecule antagonists of CXCR4 or ACKR3 delays disease onset or prevents disease progression in cancer, viral infections, inflammatory bowel diseases, rheumatoid arthritis and osteoarthritis, asthma and acute lung injury, amyotrophic lateral sclerosis and WHIM syndrome. On the other hand, CXCL12 has protective properties in Alzheimer's disease and multiple sclerosis, has a beneficial role in wound healing and has crucial homeostatic properties in general.
Collapse
Affiliation(s)
- Rik Janssens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
32
|
Gupta N, Shyamasundar S, Patnala R, Karthikeyan A, Arumugam TV, Ling EA, Dheen ST. Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies. Expert Opin Ther Targets 2018; 22:765-781. [DOI: 10.1080/14728222.2018.1515917] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Neelima Gupta
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sukanya Shyamasundar
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Radhika Patnala
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aparna Karthikeyan
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eng-Ang Ling
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - S. Thameem Dheen
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
33
|
Fang X. Impaired tissue barriers as potential therapeutic targets for Parkinson's disease and amyotrophic lateral sclerosis. Metab Brain Dis 2018; 33:1031-1043. [PMID: 29681010 DOI: 10.1007/s11011-018-0239-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier and the intestinal barrier show signs of disruption in patients with idiopathic Parkinson's disease (PD) and animal models of nigrostriatal degeneration, and likewise in amyotrophic lateral sclerosis (ALS) models. A substantial body of evidence shows that defects in epithelial membrane barriers, both in the gut and within the cerebral vasculature, can result in increased vulnerability of tissues to external factors potentially participating in the pathogenesis of PD and ALS. As such, restoration of tissue barriers may prove to be a novel therapeutic target in neurodegenerative disease. In this review, we focus on the potential of new intervention strategies for rescuing and maintaining barrier functions in PD and ALS.
Collapse
Affiliation(s)
- Xin Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
34
|
Buonvicino D, Felici R, Ranieri G, Caramelli R, Lapucci A, Cavone L, Muzzi M, Di Pietro L, Bernardini C, Zwergel C, Valente S, Mai A, Chiarugi A. Effects of Class II-Selective Histone Deacetylase Inhibitor on Neuromuscular Function and Disease Progression in SOD1-ALS Mice. Neuroscience 2018; 379:228-238. [PMID: 29588251 DOI: 10.1016/j.neuroscience.2018.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates that transcriptome alterations due to epigenetic deregulation concur to ALS pathogenesis. Accordingly, pan-histone deacetylase (HDAC) inhibitors delay ALS development in mice, but these compounds failed when tested in ALS patients. Possibly, lack of selectivity toward specific classes of HDACs weakens the therapeutic effects of pan-HDAC inhibitors. Here, we tested the effects of the HDAC Class II selective inhibitor MC1568 on disease evolution, motor neuron survival as well as skeletal muscle function in SOD1G93A mice. We report that HDACs did not undergo expression changes during disease evolution in isolated motor neurons of adult mice. Conversely, increase in specific Class II HDACs (-4, -5 and -6) occurs in skeletal muscle of mice with severe neuromuscular impairment. Importantly, treatment with MC1568 causes early improvement of motor performances that vanishes at later stages of disease. Notably, motor improvement is not paralleled by reduced motor neuron degeneration but by increased skeletal muscle electrical potentials, reduced activation of mir206/FGFBP1-dependent muscle reinnervation signaling, and increased muscle expression of myogenic genes.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy.
| | - Roberta Felici
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Riccardo Caramelli
- Neurophysiology Unit, Department of Neurology and Psychiatry, Azienda Ospedaliera Careggi, Florence, Italy
| | - Andrea Lapucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Leonardo Cavone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Mirko Muzzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Lorena Di Pietro
- Institute of Anatomy and Cell Biology, University Cattolica del Sacro Cuore, Rome, Italy
| | - Camilla Bernardini
- Institute of Anatomy and Cell Biology, University Cattolica del Sacro Cuore, Rome, Italy
| | - Clemens Zwergel
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Sergio Valente
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Antonello Mai
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| |
Collapse
|
35
|
Perner C, Perner F, Stubendorff B, Förster M, Witte OW, Heidel FH, Prell T, Grosskreutz J. Dysregulation of chemokine receptor expression and function in leukocytes from ALS patients. J Neuroinflammation 2018; 15:99. [PMID: 29592817 PMCID: PMC5874995 DOI: 10.1186/s12974-018-1135-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is rapidly progressive adult-onset motor neuron disease characterized by the neurodegeneration of both upper and lower motor neurons in the cortex and the spinal cord; the majority of patients succumb to respiratory failure. Although the etiology is not yet fully understood, there is compelling evidence that ALS is a multi-systemic disorder, with peripheral inflammation critically contributing to the disease process. However, the full extent and nature of this immunological dysregulation remains to be established, particularly within circulating blood cells. Therefore, the aim of the present study was to identify dysregulated inflammatory molecules in peripheral blood cells of ALS patients and analyze for functional consequences of the observed findings. To this end, we employed flow cytometry-based screening to quantify the surface expression of major chemokine receptors and integrins. A significantly increased expression of CXCR3, CXCR4, CCL2, and CCL5 was observed on T cells in ALS patients compared to healthy controls. Intriguingly, the expression was even more pronounced in patients with a slow progressive phenotype. To further investigate the functional consequences of this altered surface expression, we used a modified Boyden chamber assay to measure chemotaxis in ALS patient-derived lymphocytes. Interestingly, chemoattraction with the CXCR3-Ligand IP10 led to upregulated migratory behavior of ALS lymphocytes compared to healthy controls. Taken together, our data provides evidence for a functional dysregulation of IP10-directed chemotaxis in peripheral blood cells in ALS patients. However, whether the chemokine itself or its receptor CXCR3, or both, could serve as potential therapeutic targets in ALS requires further investigations.
Collapse
Affiliation(s)
- Caroline Perner
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Florian Perner
- Internal Medicine II, Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Beatrice Stubendorff
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Martin Förster
- Internal Medicine I, Experimental Pneumology, Jena University Hospital, |Am Klinikum 1, 07747 Jena, Germany
| | - Otto W. Witte
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Florian H. Heidel
- Internal Medicine II, Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
- Leibniz-Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Tino Prell
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
36
|
Liu J, Wang F. Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: Cellular Mechanisms and Therapeutic Implications. Front Immunol 2017; 8:1005. [PMID: 28871262 PMCID: PMC5567007 DOI: 10.3389/fimmu.2017.01005] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/07/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects upper motor neurons (MNs) comprising the corticospinal tract and lower MNs arising from the brain stem nuclei and ventral roots of the spinal cord, leading to fatal paralysis. Currently, there are no effective therapies for ALS. Increasing evidence indicates that neuroinflammation plays an important role in ALS pathogenesis. The neuroinflammation in ALS is characterized by infiltration of lymphocytes and macrophages, activation of microglia and reactive astrocytes, as well as the involvement of complement. In this review, we focus on the key cellular players of neuroinflammation during the pathogenesis of ALS by discussing not only their detrimental roles but also their immunomodulatory actions. We will summarize the pharmacological therapies for ALS that target neuroinflammation, as well as recent advances in the field of stem cell therapy aimed at modulating the inflammatory environment to preserve the remaining MNs in ALS patients and animal models of the disease.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
37
|
Geloso MC, Corvino V, Marchese E, Serrano A, Michetti F, D'Ambrosi N. The Dual Role of Microglia in ALS: Mechanisms and Therapeutic Approaches. Front Aging Neurosci 2017; 9:242. [PMID: 28790913 PMCID: PMC5524666 DOI: 10.3389/fnagi.2017.00242] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/11/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a non-cell autonomous motor neuron loss. While it is generally believed that the disease onset takes place inside motor neurons, different cell types mediating neuroinflammatory processes are considered deeply involved in the progression of the disease. On these grounds, many treatments have been tested on ALS animals with the aim of inhibiting or reducing the pro-inflammatory action of microglia and astrocytes and counteract the progression of the disease. Unfortunately, these anti-inflammatory therapies have been only modestly successful. The non-univocal role played by microglia during stress and injuries might explain this failure. Indeed, it is now well recognized that, during ALS, microglia displays different phenotypes, from surveillant in early stages, to activated states, M1 and M2, characterized by the expression of respectively harmful and protective genes in later phases of the disease. Consistently, the inhibition of microglial function seems to be a valid strategy only if the different stages of microglia polarization are taken into account, interfering with the reactivity of microglia specifically targeting only the harmful pathways and/or potentiating the trophic ones. In this review article, we will analyze the features and timing of microglia activation in the light of M1/M2 phenotypes in the main mice models of ALS. Moreover, we will also revise the results obtained by different anti-inflammatory therapies aimed to unbalance the M1/M2 ratio, shifting it towards a protective outcome.
Collapse
Affiliation(s)
- Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy
| | - Alessia Serrano
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro CuoreRome, Italy.,IRCCS San Raffaele Scientific Institute, Università Vita-Salute San RaffaeleMilan, Italy
| | - Nadia D'Ambrosi
- Department of Biology, University of Rome Tor VergataRome, Italy
| |
Collapse
|
38
|
Lapucci A, Cavone L, Buonvicino D, Felici R, Gerace E, Zwergel C, Valente S, Mai A, Chiarugi A. Effect of Class II HDAC inhibition on glutamate transporter expression and survival in SOD1-ALS mice. Neurosci Lett 2017; 656:120-125. [PMID: 28732762 DOI: 10.1016/j.neulet.2017.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Transcriptional deregulation emerges as a key pathogenetic mechanism in ALS pathogenesis, and non-class-specific histone deacetylase (HDACs) inhibitors proved of therapeutic efficacy in preclinical models of ALS. When tested in patients, however, these drugs failed, probably because of a lack of selectivity toward pathogenetic HDACs. Here, we studied the effects of MC1568, an inhibitor of Class-II HDACs which have been reported to contribute to ALS pathogenesis. We focused on transcriptional regulation of glutamate transporter EAAT2, whose reduced expression may contribute to motor neuron degeneration in ALS. We report that MC1568 highly increased EAAT2 transcripts in primary cultures of mouse glia, but these increases did not correlate with increased glutamate uptake capacity. Accordingly, we found that MC1568 augmented protein expression of EAAT2 together with its sumoylation, a post-translational modification typically altering protein function and localization. When tested in SOD1G93A mice, however, MC1568 fully restored the reduced spinal cord expression of EAAT2 and glutamate uptake up to control levels. A prolonged treatment with MC1568 (from onset to end stage) was unable to prolong survival of mice. Data reveal a key role of Class-II HDACs in expression and function of glutamate transporter, further corroborating preclinical and clinical evidence that the sole restoration of glutamate uptake is not of therapeutic relevance to ALS therapy.
Collapse
Affiliation(s)
- Andrea Lapucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Leonardo Cavone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy.
| | - Roberta Felici
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Elisabetta Gerace
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Italy
| | - Antonello Mai
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| |
Collapse
|
39
|
Astrocyte pathology in a human neural stem cell model of frontotemporal dementia caused by mutant TAU protein. Sci Rep 2017; 7:42991. [PMID: 28256506 PMCID: PMC5335603 DOI: 10.1038/srep42991] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 01/18/2017] [Indexed: 11/11/2022] Open
Abstract
Astroglial pathology is seen in various neurodegenerative diseases including frontotemporal dementia (FTD), which can be caused by mutations in the gene encoding the microtubule-associated protein TAU (MAPT). Here, we applied a stem cell model of FTD to examine if FTD astrocytes carry an intrinsic propensity to degeneration and to determine if they can induce non-cell-autonomous effects in neighboring neurons. We utilized CRISPR/Cas9 genome editing in human induced pluripotent stem (iPS) cell-derived neural progenitor cells (NPCs) to repair the FTD-associated N279K MAPT mutation. While astrocytic differentiation was not impaired in FTD NPCs derived from one patient carrying the N279K MAPT mutation, FTD astrocytes appeared larger, expressed increased levels of 4R-TAU isoforms, demonstrated increased vulnerability to oxidative stress and elevated protein ubiquitination and exhibited disease-associated changes in transcriptome profiles when compared to astrocytes derived from one control individual and to the isogenic control. Interestingly, co-culture experiments with FTD astrocytes revealed increased oxidative stress and robust changes in whole genome expression in previously healthy neurons. Our study highlights the utility of iPS cell-derived NPCs to elucidate the role of astrocytes in the pathogenesis of FTD.
Collapse
|
40
|
Zhou Z, Liu T, Sun X, Mu X, Zhu G, Xiao T, Zhao M, Zhao C. CXCR4 antagonist AMD3100 reverses the neurogenesis promoted by enriched environment and suppresses long-term seizure activity in adult rats of temporal lobe epilepsy. Behav Brain Res 2017; 322:83-91. [DOI: 10.1016/j.bbr.2017.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/02/2017] [Accepted: 01/06/2017] [Indexed: 12/16/2022]
|
41
|
Merino JJ, Garcimartín A, López-Oliva ME, Benedí J, González MP. The Impact of CXCR4 Blockade on the Survival of Rat Brain Cortical Neurons. Int J Mol Sci 2016; 17:E2005. [PMID: 27916896 PMCID: PMC5187805 DOI: 10.3390/ijms17122005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Chemokine receptor type 4 (CXCR4) plays a role in neuronal survival/cell repair and also contributes to the progression of cancer and neurodegenerative diseases. Chemokine ligand 12 (CXCL12) binds to CXCR4. In this study, we have investigated whether CXCR4 blockade by AMD3100 (a CXCR4 antagonist, member of bicyclam family) may affect neuronal survival in the absence of insult. Thus, we have measured the mitochondrial membrane potential (MMP), Bax and Bcl-2 protein translocation, and cytochrome c release in AMD3100-treated brain cortical neurons at 7 DIV (days in vitro). METHODS For this aim, AMD3100 (200 nM) was added to cortical neurons for 24 h, and several biomarkers like cell viability, reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) release, caspase-3/9 activity, proteins Bax and Bcl-2 translocation, and cytochrome c release were analyzed by immunoblot. RESULTS CXCR4 blockade by AMD3100 (200 nM, 24 h) induces mitochondrial hyperpolarization and increases caspase-3/9 hyperpolarization without affecting LDH release as compared to untreated controls. AMD3100 also increases cytochrome c release and promotes Bax translocation to the mitochondria, whereas it raises cytosolic Bcl-2 levels in brain cortical neurons. CONCLUSION CXCR4 blockade induces cellular death via intrinsic apoptosis in rat brain cortical neurons in absence of insult.
Collapse
Affiliation(s)
- José Joaquín Merino
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M.), Ciudad Universitaria, 28040 Madrid, Spain.
- Instituto de Investigación Neuroquímica (I.U.I.N.), Universidad Complutense de Madrid (U.C.M.), Ciudad Universitaria, 28040 Madrid, Spain.
| | - Alba Garcimartín
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M.), Ciudad Universitaria, 28040 Madrid, Spain.
| | - María Elvira López-Oliva
- Sección Departamental de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M.), Ciudad Universitaria, 28040 Madrid, Spain.
| | - Juana Benedí
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M.), Ciudad Universitaria, 28040 Madrid, Spain.
| | - María Pilar González
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M.), Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|