1
|
Tüsüz Önata E, Özdemir Ö. Fecal microbiota transplantation in allergic diseases. World J Methodol 2025; 15:101430. [DOI: 10.5662/wjm.v15.i2.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024] Open
Abstract
Microorganisms such as bacteria, fungi, viruses, parasites living in the human intestine constitute the human intestinal microbiota. Dysbiosis refers to compositional and quantitative changes that negatively affect healthy gut microbiota. In recent years, with the demonstration that many diseases are associated with dysbiosis, treatment strategies targeting the correction of dysbiosis in the treatment of these diseases have begun to be investigated. Faecal microbiota transplantation (FMT) is the process of transferring faeces from a healthy donor to another recipient in order to restore the gut microbiota and provide a therapeutic benefit. FMT studies have gained popularity after probiotic, prebiotic, symbiotic studies in the treatment of dysbiosis and related diseases. FMT has emerged as a potential new therapy in the treatment of allergic diseases as it is associated with the maintenance of intestinal microbiota and immunological balance (T helper 1/T helper 2 cells) and thus suppression of allergic responses. In this article, the definition, application, safety and use of FMT in allergic diseases will be discussed with current data.
Collapse
Affiliation(s)
- Ece Tüsüz Önata
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| | - Öner Özdemir
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| |
Collapse
|
2
|
Huang R, Shen ZY, Huang D, Zhao SH, Dan LX, Wu P, Tang QZ, Ma ZG. Microbiota-indole-3-propionic acid-heart axis mediates the protection of leflunomide against αPD1-induced cardiotoxicity in mice. Nat Commun 2025; 16:2651. [PMID: 40108157 PMCID: PMC11923180 DOI: 10.1038/s41467-025-58107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
Anti-programmed death 1 (αPD1) immune checkpoint blockade is used in combination for cancer treatment but associated with cardiovascular toxicity. Leflunomide (Lef) can suppress the growth of several tumor and mitigate cardiac remodeling in mice. However, the role of Lef in αPD1-induced cardiotoxicity remains unclear. Here, we report that Lef treatment inhibits αPD1-related cardiotoxicity without compromising the efficacy of αPD1-mediated immunotherapy. Lef changes community structure of gut microbiota in αPD1-treated melanoma-bearing mice. Moreover, mice receiving microbiota transplants from Lef+αPD1-treated melanoma-bearing mice have better cardiac function compared to mice receiving transplants from αPD1-treated mice. Mechanistically, we analyze metabolomics and identify indole-3-propionic acid (IPA), which protects cardiac dysfunction in αPD1-treated mice. IPA can directly bind to the aryl hydrocarbon receptor and promote phosphoinositide 3-kinase expression, thus curtailing the cardiomyocyte response to immune injury. Our findings reveal that Lef mitigates αPD1-induced cardiac toxicity in melanoma-bearing mice through modulation of the microbiota-IPA-heart axis.
Collapse
Affiliation(s)
- Rong Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Zhuo-Yu Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Dan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Shu-Hong Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Ling-Xuan Dan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Pan Wu
- Department of Adult Internal Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| |
Collapse
|
3
|
Waring R, Mitchell S. Noise - an insidious stressor affecting xenobiotic metabolism? Xenobiotica 2025; 55:1-3. [PMID: 39668708 DOI: 10.1080/00498254.2024.2441675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Affiliation(s)
- Rosemary Waring
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
4
|
Ma J, Zhang J, Zhang Y, Wang Z. Causal effects of noise and air pollution on multiple diseases highlight the dual role of inflammatory factors in ambient exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175743. [PMID: 39182784 DOI: 10.1016/j.scitotenv.2024.175743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/08/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Noise and air pollution are significant environmental threats with proven adverse health effects. However, the causality between these ambient exposures and disease is still largely unknown. This study aims to provide genetic evidence for this gap and investigates the dual role of inflammatory factors, emphasizing the need for integrated public health strategies. METHODS We included noise and air pollution as exposures, 91 inflammatory factors as mediators, and 26 diseases as outcomes. We explored causal relationships using Mendelian randomization. To ensure the reliability, we screened single nucleotide polymorphisms (SNPs) closely associated with exposure as instrumental variables (IVs), and assessed the pleiotropy and heterogeneity of these IVs. RESULTS Our results suggest that "Hearing difficulty/problems with background noise" increases the risk of hypertension, bronchitis, and menopause; loud music exposure frequency increases the risk of bronchitis; noisy workplace raises the risk of hypertension, coronary heart disease, narcolepsy, and irritable bowel syndrome; NO2 increases the risk of myocardial infarction and chronic heart failure; NOx increases the risk of pneumonia and inflammatory diseases of female pelvic organs; and PM10 increases the risk of myocardial infarction, narcolepsy, and type 2 diabetes; PM2.5-10 increases the risk of developing pneumonia and type 2 diabetes. Furthermore, we found that nine inflammatory factors play a mediating role, of which four play a mediating role in increasing the risk of morbidity and eight play a mediating role in protection against ambient exposures. Finally, we selected SNPs significantly associated with exposure and outcome for enrichment analysis. CONCLUSIONS This study provides the first genetic evidence linking noise and air pollution to various diseases, highlighting the dual mediating role of inflammatory factors. Our findings align with the "One Health" framework, emphasizing the interconnectedness of environmental and human health. Integrated public health strategies considering these complex biological responses are essential for promoting overall well-being.
Collapse
Affiliation(s)
- Jialao Ma
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China; Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Jinwei Zhang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Yifan Zhang
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China; Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Zhi Wang
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China; Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China.
| |
Collapse
|
5
|
Li C, Zhu C, Tu G, Chen Z, Mo Z, Luo C. Impact of Altered Gut Microbiota on Ketamine-Induced Conditioned Place Preference in Mice. Neuropsychiatr Dis Treat 2024; 20:1725-1740. [PMID: 39318552 PMCID: PMC11421448 DOI: 10.2147/ndt.s476420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Objects Ketamine is a drug of abuse worldwide and current treatments for ketamine abuse are inadequate. It is an urgent need to develop novel anti-addictive strategy. Since gut microbiota plays a crucial role in drug abuse, the present study investigates the impact and mechanisms of the gut microbiota in addictive behaviors induced by ketamine addiction. Methods Conditioned place preference (CPP) was employed to assess addiction, followed by 16S rRNA gene sequencing to elucidate alterations in the gut microbiota. Furthermore, qRT-PCR, ELISA, and immunohistochemistry were conducted to evaluate the expression levels of crucial genes and proteins associated with the gut-brain axis. Additionally, we investigated whether ketamine addiction is regulated through the gut microbiota by orally administering antibiotics to establish pseudo-germ-free mice. Results We found that repeated ketamine administration (20 mg/kg) induced CPP and significantly altered gut microbiota diversity and composition, as revealed by 16S rRNA gene sequencing. Compared to the control group, ketamine exposure exhibited differences in the relative abundance of 5 microbial families, with 4 (Lachnospiraceae, Ruminococcaceae, Desulfovibrionaceae and Family-XIII) showing increases, while one (Prevotellaceae) displayed a decrease. At the genus level, five genera were upregulated, while one was downregulated. Furthermore, COG analysis revealed significant differences in protein functionality between the two groups. Additionally, axis series studies showed that ketamine dependence reduced levels of tight junction proteins, GABA and GABRA1, while increasing BDNF and 5-HT. Moreover, an oral antibiotic cocktail simulating pseudo germ-free conditions in mice did not enhance the addictive behavior induced by ketamine. Conclusion Our study supports the hypothesis that ketamine-induced CPP is mediated through the gut microbiota. The present study provides new insights into improvement of efficient strategy for addiction treatment.
Collapse
Affiliation(s)
- Chan Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- School of Life Sciences, Guangzhou University, Guangzhou, People's Republic of China
| | - Chen Zhu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Genghong Tu
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong, People's Republic of China
| | - Zhijie Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhixian Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, People's Republic of China
| | - Chaohua Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Arregi A, Vegas O, Lertxundi A, Silva A, Ferreira I, Bereziartua A, Cruz MT, Lertxundi N. Road traffic noise exposure and its impact on health: evidence from animal and human studies-chronic stress, inflammation, and oxidative stress as key components of the complex downstream pathway underlying noise-induced non-auditory health effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46820-46839. [PMID: 38977550 PMCID: PMC11297122 DOI: 10.1007/s11356-024-33973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
In heavily urbanized world saturated with environmental pollutants, road traffic noise stands out as a significant factor contributing to widespread public health issues. It contributes in the development of a diverse range of non-communicable diseases, such as cardiovascular diseases, metabolic dysregulation, cognitive impairment, and neurodegenerative disorders. Although the exact mechanisms behind these non-auditory health effects remain unclear, the noise reaction model centres on the stress response to noise. When exposed to noise, the body activates the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, leading to the secretion of stress hormones like catecholamines and cortisol. Prolonged exposure to noise-induced stress results in chronic inflammation and oxidative stress. This review underscores the role of inflammation and oxidative stress in the progression of noise-induced vascular dysfunction, disruption of the circadian rhythm, accelerated aging, neuroinflammation, and changes in microbiome. Additionally, our focus is on understanding the interconnected nature of these health outcomes: These interconnected factors create a cascade effect, contributing to the accumulation of multiple risk factors that ultimately lead to severe adverse health effects.
Collapse
Affiliation(s)
- Ane Arregi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Oscar Vegas
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Aitana Lertxundi
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Ana Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Ferreira
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ainhoa Bereziartua
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Nerea Lertxundi
- Faculty of Psychology, University of the Basque Country (UPV/EHU), 20008, San Sebastian, Spain
- Environmental Epidemiology and Child Development Group, Biogipuzkoa Health Research Institute, Paseo Doctor Begiristain S/N, 20014, San Sebastian, Spain
- Spanish Consortium for Research On Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
7
|
Guo Z, Wu Y, Chen B, Kong M, Xie P, Li Y, Liu D, Chai R, Gu N. Superparamagnetic iron oxide nanoparticle regulates microbiota-gut-inner ear axis for hearing protection. Natl Sci Rev 2024; 11:nwae100. [PMID: 38707203 PMCID: PMC11067960 DOI: 10.1093/nsr/nwae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Noise-induced hearing loss (NIHL) is a highly prevalent form of sensorineural hearing damage that has significant negative effects on individuals of all ages and there are no effective drugs approved by the US Food and Drug Administration. In this study, we unveil the potential of superparamagnetic iron oxide nanoparticle assembly (SPIOCA) to reshape the dysbiosis of gut microbiota for treating NIHL. This modulation inhibits intestinal inflammation and oxidative stress responses, protecting the integrity of the intestinal barrier. Consequently, it reduces the transportation of pathogens and inflammatory factors from the bloodstream to the cochlea. Additionally, gut microbiota-modulated SPIOCA-induced metabolic reprogramming in the gut-inner ear axis mainly depends on the regulation of the sphingolipid metabolic pathway, which further contributes to the restoration of hearing function. Our study confirms the role of the microbiota-gut-inner ear axis in NIHL and provides a novel alternative for the treatment of NIHL and other microbiota dysbiosis-related diseases.
Collapse
Affiliation(s)
- Zhanhang Guo
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yunhao Wu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mengdie Kong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Peng Xie
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Dongfang Liu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology & Vascular Surgery, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- School of Medical Technology, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Southeast university Shenzhen research institute, Shenzhen 518063, China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
- Cardiovascular Disease Research Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
8
|
Dietert RR, Dietert JM. Examining Sound, Light, and Vibrations as Tools to Manage Microbes and Support Holobionts, Ecosystems, and Technologies. Microorganisms 2024; 12:905. [PMID: 38792734 PMCID: PMC11123986 DOI: 10.3390/microorganisms12050905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
The vast array of interconnected microorganisms across Earth's ecosystems and within holobionts has been called the "Internet of Microbes." Bacteria and archaea are masters of energy and information collection, storage, transformation, and dissemination using both "wired" and wireless (at a distance) functions. Specific tools affecting microbial energy and information functions offer effective strategies for managing microbial populations within, between, and beyond holobionts. This narrative review focuses on microbial management using a subset of physical modifiers of microbes: sound and light (as well as related vibrations). These are examined as follows: (1) as tools for managing microbial populations, (2) as tools to support new technologies, (3) as tools for healing humans and other holobionts, and (4) as potential safety dangers for microbial populations and their holobionts. Given microbial sensitivity to sound, light, and vibrations, it is critical that we assign a higher priority to the effects of these physical factors on microbial populations and microbe-laden holobionts. We conclude that specific sound, light, and/or vibrational conditions are significant therapeutic tools that can help support useful microbial populations and help to address the ongoing challenges of holobiont disease. We also caution that inappropriate sound, light, and/or vibration exposure can represent significant hazards that require greater recognition.
Collapse
Affiliation(s)
- Rodney R. Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
9
|
Li J, Yang J, Xia Y, Wang J, Xia Y. Effects of Astragaloside IV on Hearing, Inflammatory Factors, and Intestinal Flora in Mice Exposed to Noise. Metabolites 2024; 14:122. [PMID: 38393014 PMCID: PMC10890247 DOI: 10.3390/metabo14020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Long-term exposure to noise can cause irreversible hearing loss. Considering that there is no effective drug treatment, it is important to seek preventive treatment for noise-induced hearing loss (NIHL). Although astragaloside IV (AS-IV) protects against NIHL by reducing serum inflammatory factors, there is scarce information on the regulation of inflammatory factors by AS-IV to prevent NIHL. We investigated the hearing thresholds and relationship between the serum levels of inflammatory cytokines and intestinal microbiota of c57bl/6j mice exposed to noise (103 dB SPL 4 h·d-1) for 7 days, treated with or without AS-IV. Our results revealed a lower hearing threshold and lower serum levels of TNF-α, TNF-γ, IL-6, IL-1β, and IFN-γ in the mice treated with AS-IV. Additionally, AS-IV increased the abundance levels of the phylum Firmicutes, class Bacillus, order Lactobacillus, and family Lactobacillus (p < 0.05), and decreased those of the phylum Bacteroidetes and order Bacteroidales (p < 0.05). Lactobacillus and Bacilli negatively correlated with TNF-α, TNF-γ, and IL-1β; Erysipelotrichaceae negatively correlated with INF-γ; and Clostridiales positively correlated with IL-1β. In conclusion, AS-IV reduces the elevation of hearing thresholds in mice, preventing hearing loss in mice exposed to noise, and under the intervention of AS-IV, changes in the levels of inflammatory factors correlate with intestinal flora. We suggest that AS-IV improves intestinal flora and reduces inflammation levels in c57bl/6j mice exposed to noise.
Collapse
Affiliation(s)
- Junyi Li
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jian Yang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Yun Xia
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Junyi Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Yuan Xia
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| |
Collapse
|
10
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
11
|
Wu S, Du W, Wu Z, Wen F, Zhong X, Huang X, Gu H, Wang J. Effect of chronic noise exposure on glucose and lipid metabolism in mice via modulating gut microbiota and regulating CREB/CRTC2 and SREBP1/SCD pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115887. [PMID: 38157803 DOI: 10.1016/j.ecoenv.2023.115887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Chronic noise exposure is correlated with gut microbiota dysbiosis and glucose and lipid metabolism disorders. However, evidence on the mechanisms underlying of gut microbiota alterations in chronic noise induced glucose and lipid metabolism disorders is limited, and the potential aftereffects of chronic noise exposure on metabolic disorders remain unclear. In present study, we established chronic daytime and nighttime noise exposure mice models to explore the effects and underlying mechanism of gut microbiota on chronic noise-induced glucose and lipid metabolism disorders. The results showed that exposure to chronic daytime or nighttime noise significantly increased the fasting blood glucose, serum and liver TG levels, impaired glucose tolerance, and decreased serum HDL-C levels and liver TC levels in mice. However, after 4 weeks of recovery, only serum TG of mice in nighttime noise recovery group remained elevated. Besides, exposure to chronic noise reduced the intestinal tight junction protein levels and increased intestinal permeability, while this effect did not completely dissipate even after the recovery period. Moreover, chronic noise exposure changed the gut microbiota and significantly regulated metabolites and metabolic pathways, and further activate hepatic gluconeogenesis CRTC2/CREB-PCK1 signaling pathway and lipid synthesis SREBP1/SCD signaling pathway through intestinal hepatic axis. Together, our findings demonstrated that chronic daytime and nighttime noise exposure could cause the glucose and lipid metabolism disorder by modulating the gut microbiota and serum metabolites, and activating hepatic gluconeogenic CREB/CRTC2-PCK1 signaling and lipid synthesis SREBP1/SCD signaling pathway. The potential aftereffects of noise exposure during wakefulness on metabolic disorders are more significant than that of noise exposure during sleep.
Collapse
Affiliation(s)
- Shan Wu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Wenjing Du
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Zhidan Wu
- Guangzhou Baiyun District Center for Disease Control and Prevention, Guangzhou 510445, China
| | - Fei Wen
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Xiangbin Zhong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Xin Huang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Haoyan Gu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Junyi Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510000, China.
| |
Collapse
|
12
|
Yang L, Gutierrez DE, Guthrie OW. Systemic health effects of noise exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:21-54. [PMID: 37957800 DOI: 10.1080/10937404.2023.2280837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Noise, any unwanted sound, is pervasive and impacts large populations worldwide. Investigators suggested that noise exposure not only induces auditory damage but also produces various organ system dysfunctions. Although previous reviews primarily focused on noise-induced cardiovascular and cerebral dysfunctions, this narrow focus has unintentionally led the research community to disregard the importance of other vital organs. Indeed, limited studies revealed that noise exposure impacts other organs including the liver, kidneys, pancreas, lung, and gastrointestinal tract. Therefore, the aim of this review was to examine the effects of noise on both the extensively studied organs, the brain and heart, but also determine noise impact on other vital organs. The goal was to illustrate a comprehensive understanding of the systemic effects of noise. These systemic effects may guide future clinical research and epidemiological endpoints, emphasizing the importance of considering noise exposure history in diagnosing various systemic diseases.
Collapse
Affiliation(s)
- Li Yang
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Daniel E Gutierrez
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
13
|
Krittanawong C, Qadeer YK, Hayes RB, Wang Z, Virani S, Zeller M, Dadvand P, Lavie CJ. Noise Exposure and Cardiovascular Health. Curr Probl Cardiol 2023; 48:101938. [PMID: 37422031 DOI: 10.1016/j.cpcardiol.2023.101938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Noise is considered an environmental stressor adversely affecting well-being and quality of life, inter-individual communications, and attention and cognitive function and inducing emotional responses, corresponding to noise annoyance. In addition, noise exposure is associated with nonauditory effects including worsening mental health, cognitive impairments, and adverse birth outcomes, sleep disorders, and increased annoyance. An accumulating body of evidence has indicated that traffic noise is also associated with CVD, through multiple pathways. It has been shown that psychological stress and mental health disorders such as depression and anxiety have a negative impact on the development of cardiovascular diseases and outcomes. Likewise, reduced sleep quality and/or duration has been reported to increase sympathetic nervous system activity, which can predispose to conditions like hypertension and diabetes mellitus, known risk factors for CVD. Finally, there seems to be a disruption in the hypothalamic-pituitary-axis secondary to noise pollution that also results in an increased risk of CVD. The World Health Organization has estimated that the number of DALYs (disability-adjusted life-years) lost resulting from environmental noise in Western Europe ranges from 1 to 1.6 million, making noise the second major contributor to the burden of disease in Europe, only after air pollution. Thus, we sought to explore the relationship between noise pollution and risk of CVD.
Collapse
Affiliation(s)
| | | | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN; Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Salim Virani
- Section of Cardiology, Baylor College of Medicine, Houston, TX; The Aga Khan University, Karachi, Pakistan; Baylor College of Medicine, Houston, TX, USA
| | - Marianne Zeller
- Laboratoire PEC2, EA 7460, Université de Bourgogne-Franche Comté, Dijon, France
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBERESP (Centro de Investigación Biomédica en Red Epidemiología y Salud Pública), Madrid, Spain
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA, USA
| |
Collapse
|
14
|
Zhou Z, Jiang WJ, Li L, Si JQ. Noise exposure increase apoptosis in the hippocampus of AD mice through the upregulation of CTSS. Biochem Biophys Res Commun 2023; 681:283-290. [PMID: 37801777 DOI: 10.1016/j.bbrc.2023.09.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
In recent years, it has become an acknowledged fact that noise exposure can lead to cognitive impairments, and researchers have shown increasing interest in this area. However, the detrimental impact of noise exposure on Alzheimer's disease (AD) animal models might be considerably greater than on ordinary model mice, yet the mechanisms by which noise exposure affects the hippocampus in these models have been scarcely investigated. This study we used 4D Label-free proteomics to identify distinctive differentially expressed proteins in the hippocampus of AD model mice following noise exposure. Among these proteins, the presence of Cathepsin S(CTSS) cannot be disregarded. Utilizing experimental techniques such as Western blot, immunofluorescence, and rt-qPCR, we confirmed the expression of CTSS in the hippocampus of APP/PS1 mice after noise exposure. Additionally, we examined downstream molecules including P53,BCL-2, BAX, and CASPASE3 using KEGG pathway analysis. The results indicated an elevation in CTSS expression, a reduction in the anti-apoptotic gene BCL-2, and an increase in the expression of BAX and cleaved CASPASE3. Based on these findings, we hypothesize that noise exposure potentially heightens apoptosis within the hippocampus through upregulating CTSS expression, subsequently posing a threat to AD model animals.
Collapse
Affiliation(s)
- Zan Zhou
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China; Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China; The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Wen-Jun Jiang
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China; Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310051, China
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China.
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China; The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
15
|
Li X, Fu B, Zhao C, Hu J, Zhang X, Fu Y, She X, Gu C, Cheng M, Wang F, Song X, Dai J, Yin J, Fu Y, Zheng P, Wu F, Zhu Y, Ma K, Gao X, Wang M, Zeng Q, Cui B. Early-life noise exposure causes cognitive impairment in a sex-dependent manner by disrupting homeostasis of the microbiota-gut-brain axis. Brain Behav Immun 2023; 114:221-239. [PMID: 37648006 DOI: 10.1016/j.bbi.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/01/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
Epidemiological investigations show that noise exposure in early life is associated with health and cognitive impairment. The gut microbiome established in early life plays a crucial role in modulating developmental processes that subsequently affect brain function and behavior. Here, we examined the impact of early-life exposure to noise on cognitive function in adolescent rats by analyzing the gut microbiome and metabolome to elucidate the underlying mechanisms. Chronic noise exposure during early life led to cognitive deficits, hippocampal injury, and neuroinflammation. Early-life noise exposure showed significant difference on the composition and function of the gut microbiome throughout adolescence, subsequently causing axis-series changes in fecal short-chain fatty acid (SCFA) metabolism and serum metabolome profiles, as well as dysregulation of endothelial tight junction proteins, in both intestine and brain. We also observed sex-dependent effects of microbiota depletion on SCFA-related beneficial bacteria in adolescence. Experiments on microbiota transplantation and SCFA supplementation further confirmed the role of intestinal bacteria and related SCFAs in early-life noise-exposure-induced impairments in cognition, epithelial integrity, and neuroinflammation. Overall, these results highlight the homeostatic imbalance of microbiota-gut-brain axis as an important physiological response toward environmental noise during early life and reveals subtle differences in molecular signaling processes between male and female rats.
Collapse
Affiliation(s)
- Xiaofang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Public Health and Management, Binzhou Medical University, Yantai 264003, China
| | - Bo Fu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chunli Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Public Health and Management, Binzhou Medical University, Yantai 264003, China
| | - Junjie Hu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xinyao Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yiming Fu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaojun She
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Cui Gu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Mengzhu Cheng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Fenghan Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaoqiong Song
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jie Dai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jiayi Yin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yu Fu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Pengfang Zheng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Fangshan Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yingwen Zhu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Kefeng Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiujie Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Miao Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Zeng
- Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; School of Public Health and Management, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
16
|
Yin Q, Shi G, Zhu L. Association between gut microbiota and sensorineural hearing loss: a Mendelian randomization study. Front Microbiol 2023; 14:1230125. [PMID: 37915857 PMCID: PMC10616596 DOI: 10.3389/fmicb.2023.1230125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Background Several recent studies speculated that the gut microbiota is associated with sensorineural hearing loss (SNHL) and proposed the concept of the gut-inner ear axis. However, the causal effect of gut microbiota on SNHL is still unknown. In this study, we performed a two-sample Mendelian randomization (MR) analysis to estimate the causal effect of gut microbiota on SNHL. Methods Gut microbiota data were obtained from the largest available genome-wide association study (n = 18,340) conducted by the MiBioGen consortium. The summary statistics of SNHL were obtained from the FinnGen consortium R8 release data (28,310 cases and 302,750 controls). The causal effects were estimated with inverse-variance weighted, MR-Egger, and weighted median. Reverse Mendelian randomization analysis was performed on the bacteria that were found to be associated with SNHL in forward Mendelian randomization analysis. We then performed sensitivity analyses, including Cochran's Q-test, MR-Egger intercept test, MR-PRESSO, cML-MA-BIC, and leave-one-out analysis, to detect heterogeneity and pleiotropy. Results The inverse-variance weighted results suggested that Lachnospiraceae (UCG001) had a significant protective effect against SNHL (odds ratio = 0.85, 95% confidence interval: 0.78-0.93, P = 6.99 × 10-4). In addition, Intestinimonas (odds ratio = 0.89, 95% confidence interval: 0.82-0.97, P = 8.53 × 10-3) presented a suggestively protective effect on SNHL. Rikenellaceae (RC9gutgroup) (odds ratio = 1.08, 95% confidence interval: 1.02-1.15, P = 0.01) and Eubacterium (hallii group) (odds ratio = 1.12, 95% confidence interval: 1.00-1.24, P = 0.048) suggestively increase the risk of SNHL. The results of the reverse MR analysis showed that there is no significant causal effect of SNHL on the gut microbiota. No significant heterogeneity of instrumental variables or pleiotropy was detected. Conclusion The evidence that the four genera mentioned above are associated with SNHL supports the hypothesis of a gut-inner ear axis. Our study provides microbial markers for the prevention and treatment of SNHL, and further studies are needed to explore the mechanisms of the gut microbiome-inner ear axis in health and diseases.
Collapse
Affiliation(s)
- Qiuyuan Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Guolin Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lei Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
17
|
Peng X, Mao Y, Tai Y, Luo B, Dai Q, Wang X, Wang H, Liang Y, Guan R, Liu C, Guo Y, Chen L, Zhang Z, Wang H. Characterization of Anxiety-Like Behaviors and Neural Circuitry following Chronic Moderate Noise Exposure in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107004. [PMID: 37796530 PMCID: PMC10552915 DOI: 10.1289/ehp12532] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/13/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Commonly encountered nontraumatic, moderate noise is increasingly implicated in anxiety; however, the neural substrates underlying this process remain unclear. OBJECTIVES We investigated the neural circuit mechanism through which chronic exposure to moderate-level noise causes anxiety-like behaviors. METHODS Mice were exposed to chronic, moderate white noise [85 decibel (dB) sound pressure level (SPL)], 4 h/d for 4 wk to induce anxiety-like behaviors, which were assessed by open field, elevated plus maze, light-dark box, and social interaction tests. Viral tracing, immunofluorescence confocal imaging, and brain slice patch-clamp recordings were used to characterize projections from auditory brain regions to the lateral amygdala. Neuronal activities were characterized by in vivo multielectrode and fiber photometry recordings in awake mice. Optogenetics and chemogenetics were used to manipulate specific neural circuitry. RESULTS Mice chronically (4 wk) exposed to moderate noise (85 dB SPL, 4 h/d) demonstrated greater neuronal activity in the lateral amygdala (LA), and the LA played a critical role in noise-induced anxiety-like behavior in these model mice. Viral tracing showed that the LA received monosynaptic projections from the medial geniculate body (MG) and auditory cortex (ACx). Optogenetic excitation of the MG → LA or ACx → LA circuits acutely evoked anxiety-like behaviors, whereas their chemogenetic inactivation abolished noise-induced anxiety-like behavior. Moreover, mice chronically exposed to moderate noise were more susceptible to acute stress, with more neuronal firing in the LA, even after noise withdrawal. DISCUSSION Mice exposed to 4 wk of moderate noise (85 dB SPL, 4 h/d) demonstrated behavioral and physiological differences compared to controls. The neural circuit mechanisms involved greater excitation from glutamatergic neurons of the MG and ACx to LA neurons under chronic, moderate noise exposure, which ultimately promoted anxiety-like behaviors. Our findings support the hypothesis that nontraumatic noise pollution is a potentially serious but unrecognized public health concern. https://doi.org/10.1289/EHP12532.
Collapse
Affiliation(s)
- Xiaoqi Peng
- Department of Anesthesiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunfeng Mao
- Department of Anesthesiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingju Tai
- Department of Anesthesiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bin Luo
- Auditory Research Laboratory, Department of Neurobiology and Biophysics, Division of Life Sciences and Medicine, USTC, Hefei, China
- Department of Psychiatry, The First Affiliated Hospital of USTC, Hefei, China
| | - Qian Dai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiyang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hao Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Liang
- Department of Otolaryngology, The First Affiliated Hospital of USTC, Hefei, China
| | - Ruirui Guan
- Department of Otolaryngology, The First Affiliated Hospital of USTC, Hefei, China
| | - Chunhua Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yiping Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Chen
- Auditory Research Laboratory, Department of Neurobiology and Biophysics, Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haitao Wang
- Department of Anesthesiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
18
|
Zhang Z, Wu Y, Zhou S, Fu P, Yan H. Effects of Music and White Noise Exposure on the Gut Microbiota, Oxidative Stress, and Immune-Related Gene Expression of Mice. Microorganisms 2023; 11:2272. [PMID: 37764116 PMCID: PMC10536120 DOI: 10.3390/microorganisms11092272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The microbiota in gastrointestinal tracts is recognized to play a pivotal role in the health of their hosts. Music and noise are prevalent environmental factors in human society and animal production and are reported to impact their welfare and physiological conditions; however, the information on the relationship between the microbiota, physiological status, and sound is limited. This study investigated the impact of music and white noise exposure in mice through 16s rRNA gene sequencing, enzyme assay, and qPCR. The results demonstrate that white noise induced oxidative stress in animals by decreasing serum SOD and GSH-PX activity while increasing LDH activity and MDA levels (p < 0.05). Conversely, no oxidative stress was observed in the music treatment group. The relative gene expression of IFN-γ and IL-1β decreased in the white noise group compared to the music and control groups. The 16s rRNA gene amplicon sequencing revealed that Bacteroidetes, Firmicutes, Verrucomicrobia, and Proteobacteria were dominant among all the groups. Furthermore, the proportion of Firmicutes increased in the music treatment group but decreased in the white noise treatment group compared to the control group. In conclusion, white noise has detrimental impacts on the gut microbiota, antioxidant activity, and immunity of mice, while music is potentially beneficial.
Collapse
Affiliation(s)
| | | | | | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Hong Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
19
|
Li N, Zhang X, Cui Y, Wu H, Yu Y, Yu S. Dysregulations of metabolites and gut microbes and their associations in rats with noise induced hearing loss. Front Microbiol 2023; 14:1229407. [PMID: 37601356 PMCID: PMC10436299 DOI: 10.3389/fmicb.2023.1229407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Background Noise exposure could lead to hearing loss and disorders of various organs. Recent studies have reported the close relations of environmental noise exposure to the metabolomics dysregulations and gut microbiota disturbance in the exposers. However, the associations between gut microbial homeostasis and the body metabolism during noise-induced hearing loss (NIHL) were unclear. To get a full understanding of their synergy in noise-associated diseases, it is essential to uncover their impacts and associations under exposure conditions. Methods With ten male rats with background noise exposure (≤ 40 dB) as controls (Ctr group), 20 age- and weight-matched male rats were exposed to 95 dB Sound pressure level (SPL) (LN group, n = 10) or 105 dB SPL noise (HN group, n = 10) for 30 days with 4 h/d. The auditory brainstem response (ABR) of the rats and their serum biochemical parameters were detected to investigate their hearing status and the potential effects of noise exposure on other organs. Metabolomics (UPLC/Q-TOF-MS) and microbiome (16S rDNA gene sequencing) analyses were performed on samples from the rats. Multivariate analyses and functional enrichments were applied to identify the dysregulated metabolites and gut microbes as well as their associated pathways. Pearson correlation analysis was performed to investigate the associations of the dysregulations of microbiota and the metabolites. Results NIHL rat models were constructed. Many biochemical parameters were altered by noise exposure. The gut microbiota constitution and serum metabolic profiles of the noise-exposed rats were also dysregulated. Through metabolomics analysis, 34 and 36 differential metabolites as well as their associated pathways were identified in LN and HN groups, respectively. Comparing with the control rats, six and 14 florae were shown to be significantly dysregulated in the LN group and HN group, respectively. Further association analysis showed significant correlations between differential metabolites and differential microbiota. Conclusion There were cochlea injuries and abnormalities of biochemical parameters in the rats with NIHL. Noise exposure could also disrupt the metabolic profiles and the homeostatic balance of gut microbes of the host as well as their correlations. The dysregulated metabolites and microbiota might provide new clues for prevention of noise-related disorders.
Collapse
Affiliation(s)
- Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Yanan Cui
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Wu
- Henan Institute for Occupational Health, Zhengzhou, Henan, China
| | - Yue Yu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shanfa Yu
- School of Public Health, Henan Medical College, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Graham AS, Ben-Azu B, Tremblay MÈ, Torre P, Senekal M, Laughton B, van der Kouwe A, Jankiewicz M, Kaba M, Holmes MJ. A review of the auditory-gut-brain axis. Front Neurosci 2023; 17:1183694. [PMID: 37600010 PMCID: PMC10435389 DOI: 10.3389/fnins.2023.1183694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Hearing loss places a substantial burden on medical resources across the world and impacts quality of life for those affected. Further, it can occur peripherally and/or centrally. With many possible causes of hearing loss, there is scope for investigating the underlying mechanisms involved. Various signaling pathways connecting gut microbes and the brain (the gut-brain axis) have been identified and well established in a variety of diseases and disorders. However, the role of these pathways in providing links to other parts of the body has not been explored in much depth. Therefore, the aim of this review is to explore potential underlying mechanisms that connect the auditory system to the gut-brain axis. Using select keywords in PubMed, and additional hand-searching in google scholar, relevant studies were identified. In this review we summarize the key players in the auditory-gut-brain axis under four subheadings: anatomical, extracellular, immune and dietary. Firstly, we identify important anatomical structures in the auditory-gut-brain axis, particularly highlighting a direct connection provided by the vagus nerve. Leading on from this we discuss several extracellular signaling pathways which might connect the ear, gut and brain. A link is established between inflammatory responses in the ear and gut microbiome-altering interventions, highlighting a contribution of the immune system. Finally, we discuss the contribution of diet to the auditory-gut-brain axis. Based on the reviewed literature, we propose numerous possible key players connecting the auditory system to the gut-brain axis. In the future, a more thorough investigation of these key players in animal models and human research may provide insight and assist in developing effective interventions for treating hearing loss.
Collapse
Affiliation(s)
- Amy S. Graham
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Peter Torre
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA, United States
| | - Marjanne Senekal
- Department of Human Biology, Division of Physiological Sciences, University of Cape Town, Cape Town, South Africa
| | - Barbara Laughton
- Family Clinical Research Unit, Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Andre van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Marcin Jankiewicz
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Mamadou Kaba
- Department of Pathology, Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Martha J. Holmes
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
21
|
Li X, Zheng P, Cao W, Cao Y, She X, Yang H, Ma K, Wu F, Gao X, Fu Y, Yin J, Wei F, Jiang S, Cui B. Lactobacillus rhamnosus GG ameliorates noise-induced cognitive deficits and systemic inflammation in rats by modulating the gut-brain axis. Front Cell Infect Microbiol 2023; 13:1067367. [PMID: 37180445 PMCID: PMC10169735 DOI: 10.3389/fcimb.2023.1067367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Background Environmental noise exposure is linked to neuroinflammation and imbalance of the gut microbiota. Promoting gut microbiota homeostasis may be a key factor in relieving the deleterious non-auditory effects of noise. This study aimed to investigate the effect of Lactobacillus rhamnosus GG (LGG) intervention on noise-induced cognitive deficits and systemic inflammation in rats. Methods Learning and memory were assessed using the Morris water maze, while 16S rRNA sequencing and gas chromatography-mass spectrometry were used to analyze the gut microbiota and short-chain fatty acid (SCFA) content. Endothelial tight junction proteins and serum inflammatory mediators were assessed to explore the underlying pathological mechanisms. Results The results indicated that Lactobacillus rhamnosus GG intervention ameliorated noise-induced memory deterioration, promoted the proliferation of beneficial bacteria, inhibited the growth of harmful bacteria, improved dysregulation of SCFA-producing bacteria, and regulated SCFA levels. Mechanistically, noise exposure led to a decrease in tight junction proteins in the gut and hippocampus and an increase in serum inflammatory mediators, which were significantly alleviated by Lactobacillus rhamnosus GG intervention. Conclusion Taken together, Lactobacillus rhamnosus GG intervention reduced gut bacterial translocation, restored gut and blood-brain barrier functions, and improved gut bacterial balance in rats exposed to chronic noise, thereby protecting against cognitive deficits and systemic inflammation by modulating the gut-brain axis.
Collapse
Affiliation(s)
- Xiaofang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Pengfang Zheng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Wa Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yang Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaojun She
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kefeng Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Fangshan Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Xiujie Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yu Fu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Jiayi Yin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Jinan, China
| | - Fei Wei
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shoufang Jiang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health and Management, Binzhou Medical University, Yantai, China
- School of Public Health and Management, Weifang Medical University, Weifang, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Jinan, China
| |
Collapse
|
22
|
Li J, Zhang F, Zhao L, Dong C. Microbiota-gut-brain axis and related therapeutics in Alzheimer's disease: prospects for multitherapy and inflammation control. Rev Neurosci 2023:revneuro-2023-0006. [PMID: 37076953 DOI: 10.1515/revneuro-2023-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly and causes neurodegeneration, leading to memory loss, behavioral disorder, and psychiatric impairment. One potential mechanism contributing to the pathogenesis of AD may be the imbalance in gut microbiota, local and systemic inflammation, and dysregulation of the microbiota-gut-brain axis (MGBA). Most of the AD drugs approved for clinical use today are symptomatic treatments that do not improve AD pathologic changes. As a result, researchers are exploring novel therapeutic modalities. Treatments involving the MGBA include antibiotics, probiotics, transplantation of fecal microbiota, botanical products, and others. However, single-treatment modalities are not as effective as expected, and a combination therapy is gaining momentum. The purpose of this review is to summarize recent advances in MGBA-related pathological mechanisms and treatment modalities in AD and to propose a new concept of combination therapy. "MGBA-based multitherapy" is an emerging view of treatment in which classic symptomatic treatments and MGBA-based therapeutic modalities are used in combination. Donepezil and memantine are two commonly used drugs in AD treatment. On the basis of the single/combined use of these two drugs, two/more additional drugs and treatment modalities that target the MGBA are chosen based on the characteristics of the patient's condition as an adjuvant treatment, as well as the maintenance of good lifestyle habits. "MGBA-based multitherapy" offers new insights for the treatment of cognitive impairment in AD patients and is expected to show good therapeutic results.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Feng Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Li Zhao
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Chunbo Dong
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| |
Collapse
|
23
|
Hu S, Lin Z, Zhao S, Zhang B, Luo L, Zeng L. Pu-erh tea alleviated colitis-mediated brain dysfunction by promoting butyric acid production. Food Chem Toxicol 2023; 172:113594. [PMID: 36592713 DOI: 10.1016/j.fct.2022.113594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Brain inflammation develops with increased colitis. Pu-erh tea is considered a potential dietary intervention to improve colitis. However, it's unclear whether Pu-erh tea helps alleviate colitis-mediated brain dysfunction. Here, we found that colitis triggered brain dysfunction and increased the risk of depression. Pu-erh tea improved gut-brain barrier function (increased ZO-1 and Occludin) and restored short-chain fatty acids (SCFAs) as well as neurotransmitter release (γ-GABA, 5-HT, and dopamine), which stemmed from the production of butyric acid (BA). Pu-erh tea and BA promoted the production of SCFAs by reshaping the gut microbes (increased Lactobacillus, Akkermansia, Faecalibaculum), thereby downregulating gut inflammatory protein expression (PI3K/AKT/NF-κB). SCFAs, especially BA, intervened directly in the blood-brain barrier via the gut-brain axis to restore neurotransmitter release. Collectively, our results highlighted that increasing BA through Pu-erh tea consumption may be a key mechanism for improving colitis-mediated brain dysfunction by lowering gut inflammation and balancing gut microbe-gut-brain axis homeostasis. These results provide a promising step that might encourage further investigations of Pu-erh tea as a protective agent for brain function in colitis patients.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing, 400715, China.
| | - Zhiyuan Lin
- College of Food Science, Southwest University, Beibei, Chongqing, 400715, China.
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing, 400715, China.
| | - Bowen Zhang
- College of Food Science, Southwest University, Beibei, Chongqing, 400715, China.
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing, 400715, China.
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
24
|
Paciello F, Ripoli C, Fetoni AR, Grassi C. Redox Imbalance as a Common Pathogenic Factor Linking Hearing Loss and Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12020332. [PMID: 36829891 PMCID: PMC9952092 DOI: 10.3390/antiox12020332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Experimental and clinical data suggest a tight link between hearing and cognitive functions under both physiological and pathological conditions. Indeed, hearing perception requires high-level cognitive processes, and its alterations have been considered a risk factor for cognitive decline. Thus, identifying common pathogenic determinants of hearing loss and neurodegenerative disease is challenging. Here, we focused on redox status imbalance as a possible common pathological mechanism linking hearing and cognitive dysfunctions. Oxidative stress plays a critical role in cochlear damage occurring during aging, as well as in that induced by exogenous factors, including noise. At the same time, increased oxidative stress in medio-temporal brain regions, including the hippocampus, is a hallmark of neurodegenerative disorders like Alzheimer's disease. As such, antioxidant therapy seems to be a promising approach to prevent and/or counteract both sensory and cognitive neurodegeneration. Here, we review experimental evidence suggesting that redox imbalance is a key pathogenetic factor underlying the association between sensorineural hearing loss and neurodegenerative diseases. A greater understanding of the pathophysiological mechanisms shared by these two diseased conditions will hopefully provide relevant information to develop innovative and effective therapeutic strategies.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-0630154966
| | - Anna Rita Fetoni
- Unit of Audiology, Department of Neuroscience, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
25
|
Xiao QY, Ye TY, Wang XL, Qi DM, Cheng XR. Effects of Qi-Fu-Yin on aging of APP/PS1 transgenic mice by regulating the intestinal microbiome. Front Cell Infect Microbiol 2023; 12:1048513. [PMID: 36710967 PMCID: PMC9880330 DOI: 10.3389/fcimb.2022.1048513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Alzheimer's disease is the most common form of dementia and closely related to aging. Qi-Fu-Yin is widely used to treat dementia, but its anti-aging effects is unknown. Methods We used 11-month-old APP/PS1 transgenic mice for behavioral tests to observe the changes in cognitive function and age-related symptoms after Qi-Fu-Yin treatment. Fecal samples were collected for 16sRNA sequencing and metagenomic sequencing. Differences among the groups of intestinal microbiota and the associations with aging and intestinal microbiota were analyzed based on the results. Results Here we found that Qi-Fu-Yin improved the ability of motor coordination, raised survival rate and prolonged the survival days under cold stress stimulation in aged APP/ PS1 transgenic mice. Our data from 16sRNA and metagenomic sequencing showed that at the Family level, the intestinal microbiota was significantly different among wild-type mice, APP/PS1 transgenic mice and the Qi-Fu-Yin group by PCA analysis. Importantly, Qi-Fu-Yin improved the functional diversity of the major KEGG pathways, carbohydrate-active enzymes, and major virulence factors in the intestinal flora of APP/PS1 transgenic mice. Among them, the functions of eight carbohydrate-active enzymes (GT2_Glycos_transf_2, GT4, GT41, GH2, CE1, CE10, CE3, and GH24) and the functions of top three virulence factors (defensive virulence factors, offensive virulence factors and nonspecific virulence factors) were significantly and positively correlated with the level of grasping ability. We further indicated that the Qi-Fu-Yin significantly reduced the plasma levels of IL-6. Conclusion Our results indicated that the effects of Qi-Fu-Yin anti-aging of APP/PS1 transgenic mice might be through the regulation of intestinal flora diversity, species richness and the function of major active enzymes.
Collapse
Affiliation(s)
- Qiu-yue Xiao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tian-yuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-long Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dong-mei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-rui Cheng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
26
|
Matheson JAT, Holsinger RMD. The Role of Fecal Microbiota Transplantation in the Treatment of Neurodegenerative Diseases: A Review. Int J Mol Sci 2023; 24:1001. [PMID: 36674517 PMCID: PMC9864694 DOI: 10.3390/ijms24021001] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases are highly prevalent but poorly understood, and with few treatment options despite decades of intense research, attention has recently shifted toward other mediators of neurological disease that may present future targets for therapeutic research. One such mediator is the gut microbiome, which communicates with the brain through the gut-brain axis and has been implicated in various neurological disorders. Alterations in the gut microbiome have been associated with numerous neurological and other diseases, and restoration of the dysbiotic gut has been shown to improve disease conditions. One method of restoring a dysbiotic gut is via fecal microbiota transplantation (FMT), recolonizing the "diseased" gut with normal microbiome. Fecal microbiota transplantation is a treatment method traditionally used for Clostridium difficile infections, but it has recently been used in neurodegenerative disease research as a potential treatment method. This review aims to present a summary of neurodegenerative research that has used FMT, whether as a treatment or to investigate how the microbiome influences pathogenesis.
Collapse
Affiliation(s)
- Julie-Anne T. Matheson
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
27
|
Everett BA, Tran P, Prindle A. Toward manipulating serotonin signaling via the microbiota-gut-brain axis. Curr Opin Biotechnol 2022; 78:102826. [PMID: 36332346 DOI: 10.1016/j.copbio.2022.102826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
It is now well established in humans that there is a bidirectional pathway of communication between the central and enteric nervous systems in which members of the microbiome participate. This microbiota-gut-brain axis (MGBA) is crucial for normal development and physiology, and its dysregulation has been implicated in a range of neurological and intestinal disorders. Investigations into the mechanistic underpinnings of the MGBA have identified serotonin as a molecule of particular interest. In this review, we highlight recent advances toward understanding the role of endogenous serotonin in microbial communities, how microbial communities bidirectionally interact with host serotonin, and potential future engineering opportunities to leverage these novel mechanisms for biomedical applications.
Collapse
Affiliation(s)
- Blake A Everett
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter Tran
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
28
|
Zhan A, Luo Y, Qin H, Lin W, Tian L. Hypomagnetic Field Exposure Affecting Gut Microbiota, Reactive Oxygen Species Levels, and Colonic Cell Proliferation in Mice. Bioelectromagnetics 2022; 43:462-475. [PMID: 36434792 DOI: 10.1002/bem.22427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
The gut microbiota has been considered one of the key factors in host health, which is influenced by many environmental factors. The geomagnetic field (GMF) represents one of the important environmental conditions for living organisms. Previous studies have shown that the elimination of GMF, the so-called hypomagnetic field (HMF), could affect the physiological functions and resistance to antibiotics of some microorganisms. However, whether long-term HMF exposure could alter the gut microbiota to some extent in mammals remains unclear. Here, we investigated the effects of long-term (8- and 12-week) HMF exposure on the gut microbiota in C57BL/6J mice. Our results clearly showed that 8-week HMF significantly affected the diversity and function of the mouse gut microbiota. Compared with the GMF group, the concentrations of short-chain fatty acids tended to decrease in the HMF group. Immunofluorescence analysis showed that HMF promoted colonic cell proliferation, concomitant with an increased level of reactive oxygen species (ROS). To our knowledge, this is the first in vivo finding that long-term HMF exposure could affect the mouse gut microbiota, ROS levels, and colonic cell proliferation in the colon. Moreover, the changes in gut microbiota can be restored by returning mice to the GMF environment, thus the possible harm to the microbiota caused by HMF exposure can be alleviated. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Aisheng Zhan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yukai Luo
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huafeng Qin
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Lanxiang Tian
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Qu J, Wang Y, Kong Y, Zhu H, Yu Y, Zhong L. Effect of chronic traffic noise on behavior and physiology of plateau pikas (Ochotona curzoniae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1065966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the last two decades, numerous studies have shown the effects of traffic noise on animal vocal communication. However, studies on the influences of traffic noise on wildlife behavior and physiology are scarce. In the present study, we experimentally manipulated the traffic noise exposure of plateau pika, a native small mammal widely distributed in the alpine meadow of Qinghai-Tibet Plateau, to explore the effects of traffic noise exposure on its behavior and physiology. We showed that noise exposure increased the pika’s exploration and cortisol concentration (CORT) but decreased the resting metabolic rate (RMR). In addition, the relationships between RMR and exploration or CORT appeared under traffic noise treatment. This study suggests that traffic noise plays a large role in the behavior and physiology of plateau pikas and may have a long-term negative effect on the fitness of rodent populations. Generalizing these non-lethal effects to different taxa is crucial for the conservation and management of biodiversity in this increasingly noisy world.
Collapse
|
30
|
Berlow M, Wada H, Derryberry EP. Experimental Exposure to Noise Alters Gut Microbiota in a Captive Songbird. MICROBIAL ECOLOGY 2022; 84:1264-1277. [PMID: 34783872 DOI: 10.1007/s00248-021-01924-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Noise pollution is an unprecedented evolutionary pressure on wild animals that can lead to alteration of stress hormone levels and changes in foraging behavior. Both corticosterone and feeding behavior can have direct effects on gut bacteria, as well as indirect effects through changes in gut physiology. Therefore, we hypothesized that exposure to noise will alter gut microbial communities via indirect effects on glucocorticoids and foraging behaviors. We exposed captive white-crowned sparrows to city-like noise and measured each individuals' corticosterone level, food intake, and gut microbial diversity at the end of four treatments (acclimation, noise, recovery, and control) using a balanced repeated measures design. We found evidence that noise acts to increase corticosterone and decrease food intake, adding to a growing body of research indicating noise exposure affects stress hormone levels and foraging behaviors. We also found evidence to support our prediction for a causal, positive relationship between noise exposure and gut microbial diversity, such that birds had higher measures of alpha diversity during noise exposure. These results help to explain previous findings that urban, free-living white-crowned sparrows have higher bacterial richness than rural sparrows. However, noise appeared to act directly on the gut microbiome or, more likely, through an unmeasured variable, rather than through indirect effects via corticosterone and food intake. Altogether, our study indicates that noise affects plasma corticosterone, feeding behavior, and the gut microbiome in a songbird and raises new questions as to the mechanism linking noise exposure to gut microbial diversity.
Collapse
Affiliation(s)
- Mae Berlow
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA.
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
31
|
Microbiota-derived metabolite Indoles induced aryl hydrocarbon receptor activation and inhibited neuroinflammation in APP/PS1 mice. Brain Behav Immun 2022; 106:76-88. [PMID: 35961580 DOI: 10.1016/j.bbi.2022.08.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 01/12/2023] Open
Abstract
Gut microbiota alterations might affect the development of Alzheimer's disease (AD) through microbiota-derived metabolites. For example, microbiota-derived Indoles via tryptophan metabolism prevented Aβ accumulation and Tau hyperphosphorylation, restored synaptic plasticity, and then promoted the cognitive and behavioral ability of APP/PS1 mice. The imbalanced compositions of Indoles-producing bacteria with tryptophan deficiency were found in male APP/PS1 mice, but the molecular mechanisms remained unclear. Our current study revealed that Indoles (including indole, indole-3-acetic acid and indole-3-propionic acid) upregulated the production of aryl hydrocarbon receptor (AhR), inhibited the activation of the NF-κB signal pathway as well as the formation of the NLRP3 inflammasome, reduced the release of inflammatory cytokines, including TNF-α, IL-6, IL-1β and IL-18, alleviating the inflammatory response of APP/PS1 mice. These findings demonstrated the roles of Indoles-producing bacteria in activating the AhR pathway to regulate neuroinflammation of AD through gut microbiota-derived Indoles, which implied a novel way for AD treatment.
Collapse
|
32
|
Tarawneh R, Penhos E. The gut microbiome and Alzheimer's disease: Complex and bidirectional interactions. Neurosci Biobehav Rev 2022; 141:104814. [PMID: 35934087 PMCID: PMC9637435 DOI: 10.1016/j.neubiorev.2022.104814] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
Structural and functional alterations to the gut microbiome, referred to as gut dysbiosis, have emerged as potential key mediators of neurodegeneration and Alzheimer disease (AD) pathogenesis through the "gut -brain" axis. Emerging data from animal and clinical studies support an important role for gut dysbiosis in mediating neuroinflammation, central and peripheral immune dysregulation, abnormal brain protein aggregation, and impaired intestinal and brain barrier permeability, leading to neuronal loss and cognitive impairment. Gut dysbiosis has also been shown to directly influence various mechanisms involved in neuronal growth and repair, synaptic plasticity, and memory and learning functions. Aging and lifestyle factors including diet, exercise, sleep, and stress influence AD risk through gut dysbiosis. Furthermore, AD is associated with characteristic gut microbial signatures which offer value as potential markers of disease severity and progression. Together, these findings suggest the presence of a complex bidirectional relationship between AD and the gut microbiome and highlight the utility of gut modulation strategies as potential preventative or therapeutic strategies in AD. We here review the current literature regarding the role of the gut-brain axis in AD pathogenesis and its potential role as a future therapeutic target in AD treatment and/or prevention.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, Alzheimer Disease Research Center, The University of New Mexico, Albuquerque, NM 87106, USA.
| | - Elena Penhos
- College of Medicine, The Ohio State University, Columbus, OH, USA 43210
| |
Collapse
|
33
|
Denton AJ, Godur DA, Mittal J, Bencie NB, Mittal R, Eshraghi AA. Recent Advancements in Understanding the Gut Microbiome and the Inner Ear Axis. Otolaryngol Clin North Am 2022; 55:1125-1137. [PMID: 36088154 DOI: 10.1016/j.otc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The gut microbiome and its dynamic association with organ systems beyond the gastrointestinal tract, such as the nervous and cardiovascular systems, is an emerging area of research. Although the role of the gut microbiome has been extensively characterized in the gut-brain axis, the implications of gut dysbiosis in inner ear inflammation and hearing deficits have still not been explored. With some similarities outlined between the blood-brain barrier (BBB) and the blood labyrinth barrier (BLB) of the inner ear, this review aims to explore the axis between the gut microbiome and the inner ear as it pertains to their bidirectional communication.
Collapse
Affiliation(s)
- Alexa J Denton
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dimitri A Godur
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nathalie B Bencie
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adrien A Eshraghi
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA; Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
34
|
Onaolapo AY, Ojo FO, Olofinnade AT, Falade J, Lawal IA, Onaolapo OJ. Microbiome-Based Therapies in Parkinson's Disease: Can Tuning the Microbiota Become a Viable Therapeutic Strategy? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-126136. [PMID: 36056826 DOI: 10.2174/1871527321666220903114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Progressive neurodegenerative disorders such as Parkinson's disease (PD) have continued to baffle medical science, despite strides in the understanding of their pathology. The inability of currently available therapies to halt disease progression is a testament to an incomplete understanding of pathways crucial to disease initiation, progression and management. Science has continued to link the activities and equilibrium of the gut microbiome to the health and proper functioning of brain neurons. They also continue to stir interest in the potential applications of technologies that may shift the balance of the gut microbiome towards achieving a favourable outcome in PD management. There have been suggestions that an improved understanding of the roles of the gut microbiota is likely to lead to the emergence of an era where their manipulation becomes a recognized strategy for PD management. This review examines the current state of our journey in the quest to understand how the gut microbiota can influence several aspects of PD. We highlight the relationship between the gut microbiome/microbiota and PD pathogenesis, as well as preclinical and clinical evidence evaluating the effect of postbiotics, probiotics and prebiotics in PD management. This is with a view to ascertaining if we are at the threshold of discovering the application of a usable tool in our quest for disease modifying therapies in PD.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Folusho O Ojo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Anthony T Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Lagos State
| | - Joshua Falade
- Department of Mental Health, Afe-Babalola University Ado-Ekiti Ekiti State Nigeria
| | - Ismail A Lawal
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Anatomy, Faculty of Health Sciences. Alhikmah University Ilorin, Kwara State, Nigeria
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
35
|
Around-the-Clock Noise Induces AD-like Neuropathology by Disrupting Autophagy Flux Homeostasis. Cells 2022; 11:cells11172742. [PMID: 36078149 PMCID: PMC9454913 DOI: 10.3390/cells11172742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023] Open
Abstract
Environmental noise is a common hazard in military operations. Military service members during long operations are often exposed to around-the-clock noise and suffer massive emotional and cognitive dysfunction related to an Alzheimer’s disease (AD)-like neuropathology. It is essential to clarify the mechanisms underlying the effects of around-the-clock noise exposure on the central nervous system. Here, Wistar rats were continuously exposed to white noise (95 dB during the on-duty phase [8:00–16:00] and 75 dB during the off-duty phase (16:00–8:00 the next day)) for 40 days. The levels of phosphorylated tau, amyloid-β (Aβ), and neuroinflammation in the cortex and hippocampus were assessed and autophagosome (AP) aggregation was observed by transmission electron microscopy. Dyshomeostasis of autophagic flux resulting from around-the-clock noise exposure was assessed at different stages to investigate the potential pathological mechanisms. Around-the-clock noise significantly increased Aβ peptide, tau phosphorylation at Ser396 and Ser404, and neuroinflammation. Moreover, the AMPK-mTOR signaling pathway was depressed in the cortex and the hippocampus of rats exposed to around-the-clock noise. Consequently, autophagosome–lysosome fusion was deterred and resulted in AP accumulation. Our results indicate that around-the-clock noise exposure has detrimental influences on autophagic flux homeostasis and may be associated with AD-like neuropathology in the cortex and the hippocampus.
Collapse
|
36
|
Alinaghipour A, Salami M, Nabavizadeh F. Nanocurcumin substantially alleviates noise stress-induced anxiety-like behavior: the roles of tight junctions and NMDA receptors in the hippocampus. Behav Brain Res 2022; 432:113975. [PMID: 35750244 DOI: 10.1016/j.bbr.2022.113975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/30/2022] [Accepted: 06/18/2022] [Indexed: 12/01/2022]
Abstract
Environmental noise stress affects non-auditory brain regions such as the hippocampus; an area of the brain implicated in cognition and emotion. Recent experimental data indicate that dysfunction of the blood-brain barrier (BBB) and overexpression of NMDA receptors may cause anxiety. In this experiment, we evaluated the effect of nanocurcumin on anxiety-like behavior and the expression of tight junctions and NMDA receptor subunits in the hippocampus of rats exposed to traffic noise. Forty rats were assigned to control (CON), stress (ST), nanocurcumin (NC), and nanocurcumin+stress (NC+ST) groups. Anxiety-like behavior was evaluated through an elevated zero maze apparatus. The gene expression of tight junctions and NMDA receptor subunits was examined by real-time PCR in the hippocampus. Statistical analysis showed that noise exposure developed anxiety-like behavior and elevated the corticosterone level in the ST group compared to the CON group. The nanocurcumin administration decreased the stress and anxiety in the NC+ST group compared to the ST animals. While the noise stress reduced the gene expression of tight junctions occludin, claudin-5, and ZO-1, the nanocurcumin administration increased them in the NC+ST animals. Furthermore, the noise stress elevated the gene expression of the NMDA receptor subunits GRIN1 and GRIN2B. The NC+ST animals showed a modification of these subunits compared to the ST animals. Our findings showed that noise exposure promotes stress and anxiety and impairs the NMDA receptor structure and BBB integrity. The nanocurcumin treatment displayed partly restored the destructive effects of noise exposure.
Collapse
Affiliation(s)
- Azam Alinaghipour
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I. R. Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I. R. Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I. R. Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I. R. Iran.
| |
Collapse
|
37
|
The Distribution Characteristics of Aerosol Bacteria in Different Types of Pig Houses. Animals (Basel) 2022; 12:ani12121540. [PMID: 35739876 PMCID: PMC9219456 DOI: 10.3390/ani12121540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Microbial aerosols from pig houses can be released into the environment, posing a serious threat to biosafety and public health. At present, there are few studies on the structural characteristics of aerosol bacteria in piggeries at different growth stages. It is important to understand the characteristics of aerosol bacteria in pig houses to solve the problems of air pollution and disease control in pig houses at different growth stages. In this study, bacterial aerosol concentrations and bacterial communities were compared in pig houses at different growth stages in Hebei Province, China. It was found that bacterial concentrations, community richness, and diversity in the air increased with the age of pigs. There are many pathogenic bacteria in the microbial aerosols of piggery. Our study highlights the importance of more comprehensive research and analysis of microbial aerosols in pig houses. Precautions for air pollution should be instituted in pig houses, including wearing masks, rigorous disinfection, and hygiene procedures. Abstract With the development of modern pig raising technology, the increasing density of animals in pig houses leads to the accumulation of microbial aerosols in pig houses. It is an important prerequisite to grasp the characteristics of bacteria in aerosols in different pig houses to solve the problems of air pollution and disease prevention and control in different pig houses. This work investigated the effects of growth stages on bacterial aerosol concentrations and bacterial communities in pig houses. Three traditional types of closed pig houses were studied: farrowing (FAR) houses, weaning (WEA) houses, and fattening (FAT) houses. The Andersen six-stage sampler and high-volume air sampler were used to assess the concentrations and size distribution of airborne bacteria, and 16S rRNA gene sequencing was used to identify the bacterial communities. We found that the airborne bacterial concentration, community richness, and diversity index increased with pig age. We found that Acinetobacter, Erysipelothrix, Streptococcus, Moraxella, and Aerococcus in the microbial aerosols of pig houses have the potential risk of causing disease. These differences lead us to believe that disinfection strategies for pig houses should involve a situational focus on environmental aerosol composition on a case-by-case basis.
Collapse
|
38
|
Hu S, Luo L, Bian X, Liu RH, Zhao S, Chen Y, Sun K, Jiang J, Liu Z, Zeng L. Pu-erh Tea Restored Circadian Rhythm Disruption by Regulating Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5610-5623. [PMID: 35475616 DOI: 10.1021/acs.jafc.2c01883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pu-erh tea is a healthy beverage rich in phytochemicals, and its effect on the risk of inducing circadian rhythm disorders (CRD) is unclear. In this study, healthy mice were given water or 0.25% (w/v) Pu-erh tea for 7 weeks, followed by a 40 day disruption of the light/dark cycle. CRD caused dysregulation of neurotransmitter secretion and clock gene oscillations, intestinal inflammation, and disruption of intestinal microbes and metabolites. Pu-erh tea boosted the indole and 5-hydroxytryptamine pathways of tryptophan metabolism via the gut-liver-brain axis. Furthermore, its metabolites (e.g., IAA, Indole, 5-HT) enhanced hepatic glycolipid metabolism and down-regulated intestinal oxidative stress by improving the brain hormone release. Tryptophan metabolites and bile acids also promoted liver lipid metabolism and inhibited intestinal inflammation (MyD88/NF-κB) via the enterohepatic circulation. Collectively, 0.25% (w/v) Pu-erh tea has the potential to prevent CRD by promoting indole and 5-HT pathways of tryptophan metabolism and signaling interactions in the gut-liver-brain axis.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Xintong Bian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine Chongqing Medical University, Chongqing 400016, China
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, New York 14850-7201, United States
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Chen
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Jielin Jiang
- Menghai Tea Factory·TAETEA Group, Xishuangbanna Dai Autonomous Prefecture, Yunnan 666200, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
39
|
Maraci Ö, Corsini M, Antonatou-Papaioannou A, Jünemann S, Sudyka J, Di Lecce I, Caspers BA, Szulkin M. Changes to the gut microbiota of a wild juvenile passerine in a multidimensional urban mosaic. Sci Rep 2022; 12:6872. [PMID: 35477720 PMCID: PMC9046431 DOI: 10.1038/s41598-022-10734-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Urbanisation is a major anthropogenic perturbation presenting novel ecological and evolutionary challenges to wild populations. Symbiotic microorganisms residing in the gastrointestinal tracts (gut) of vertebrates have mutual connections with host physiology and respond quickly to environmental alterations. However, the impact of anthropogenic changes and urbanisation on the gut microbiota remains poorly understood, especially in early development. To address this knowledge gap, we characterised the gut microbiota of juvenile great tits (Parus major) reared in artificial nestboxes and in natural cavities in an urban mosaic, employing two distinct frameworks characterising the urban space. Microbial diversity was influenced by cavity type. Alpha diversity was affected by the amount of impervious surface surrounding the breeding location, and positively correlated with tree cover density. Community composition differed between urban and rural sites: these alterations covaried with sound pollution and distance to the city centre. Overall, the microbial communities reflect and are possibly influenced by the heterogeneous environmental modifications that are typical of the urban space. Strikingly, the choice of framework and environmental variables characterising the urban space can influence the outcomes of such ecological studies. Our results open new perspectives to investigate the impact of microbial symbionts on the adaptive capacity of their hosts.
Collapse
Affiliation(s)
- Öncü Maraci
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33619, Bielefeld, Germany.
| | - Michela Corsini
- Centre of New Technologies, University of Warsaw, Banacha Street 2C, 02-097, Warsaw, Poland
| | - Anna Antonatou-Papaioannou
- Evolutionary Biology, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
- Institute of Biology-Zoology, Freie Universität Berlin, Köning-Luise-Str. 1-3, 14195, Berlin, Germany
| | - Sebastian Jünemann
- Faculty of Technology, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Joanna Sudyka
- Centre of New Technologies, University of Warsaw, Banacha Street 2C, 02-097, Warsaw, Poland
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Irene Di Lecce
- Centre of New Technologies, University of Warsaw, Banacha Street 2C, 02-097, Warsaw, Poland
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33619, Bielefeld, Germany
| | - Marta Szulkin
- Centre of New Technologies, University of Warsaw, Banacha Street 2C, 02-097, Warsaw, Poland
| |
Collapse
|
40
|
Aaldijk E, Vermeiren Y. The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer's disease: A narrative review. Ageing Res Rev 2022; 75:101556. [PMID: 34990844 DOI: 10.1016/j.arr.2021.101556] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, accounting for more than 50 million patients worldwide. Current evidence suggests the exact mechanism behind this devastating disease to be of multifactorial origin, which seriously complicates the quest for an effective disease-modifying therapy, as well as impedes the search for strategic preventative measures. Of interest, preclinical studies point to serotonergic alterations, either induced via selective serotonin reuptake inhibitors or serotonin receptor (ant)agonists, in mitigating AD brain neuropathology next to its clinical symptoms, the latter being supported by a handful of human intervention trials. Additionally, a substantial amount of preclinical trials highlight the potential of diet, fecal microbiota transplantations, as well as pre- and probiotics in modulating the brain's serotonergic neurotransmitter system, starting from the gut. Whether such interventions could truly prevent, reverse or slow down AD progression likewise, should be initially tested in preclinical studies with AD mouse models, including sufficient analytical measurements both in gut and brain. Thereafter, its potential therapeutic effect could be confirmed in rigorously randomized controlled trials in humans, preferentially across the Alzheimer's continuum, but especially from the prodromal up to the mild stages, where both high adherence to such therapies, as well as sufficient room for noticeable enhancement are feasible still. In the end, such studies might aid in the development of a comprehensive approach to tackle this complex multifactorial disease, since serotonin and its derivatives across the microbiota-gut-brain axis might serve as possible biomarkers of disease progression, next to forming a valuable target in AD drug development. In this narrative review, the available evidence concerning the orchestrating role of serotonin within the microbiota-gut-brain axis in the development of AD is summarized and discussed, and general considerations for future studies are highlighted.
Collapse
Affiliation(s)
- Emma Aaldijk
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Yannick Vermeiren
- Division of Human Nutrition and Health, Chair Group of Nutritional Biology, Wageningen University & Research (WUR), Wageningen, Netherlands; Faculty of Medicine & Health Sciences, Translational Neurosciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
41
|
Varesi A, Pierella E, Romeo M, Piccini GB, Alfano C, Bjørklund G, Oppong A, Ricevuti G, Esposito C, Chirumbolo S, Pascale A. The Potential Role of Gut Microbiota in Alzheimer’s Disease: from Diagnosis to Treatment. Nutrients 2022; 14:nu14030668. [PMID: 35277027 PMCID: PMC8840394 DOI: 10.3390/nu14030668] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Gut microbiota is emerging as a key regulator of many disease conditions and its dysregulation is implicated in the pathogenesis of several gastrointestinal and extraintestinal disorders. More recently, gut microbiome alterations have been linked to neurodegeneration through the increasingly defined gut microbiota brain axis, opening the possibility for new microbiota-based therapeutic options. Although several studies have been conducted to unravel the possible relationship between Alzheimer’s Disease (AD) pathogenesis and progression, the diagnostic and therapeutic potential of approaches aiming at restoring gut microbiota eubiosis remain to be fully addressed. In this narrative review, we briefly summarize the role of gut microbiota homeostasis in brain health and disease, and we present evidence for its dysregulation in AD patients. Based on these observations, we then discuss how dysbiosis might be exploited as a new diagnostic tool in early and advanced disease stages, and we examine the potential of prebiotics, probiotics, fecal microbiota transplantation, and diets as complementary therapeutic interventions on disease pathogenesis and progression, thus offering new insights into the diagnosis and treatment of this devastating and progressive disease.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
- Almo Collegio Borromeo, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (E.P.); (A.O.)
| | - Marcello Romeo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | | | - Claudia Alfano
- Department of Emergency Medicine and Surgery, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway;
| | - Abigail Oppong
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (E.P.); (A.O.)
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| | - Ciro Esposito
- Unit of Nephrology and Dialysis, ICS Maugeri, University of Pavia, 27100 Pavia, Italy;
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37121 Verona, Italy;
| | - Alessia Pascale
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
42
|
Frenis K, Kuntic M, Hahad O, Bayo Jimenez MT, Oelze M, Daub S, Steven S, Münzel T, Daiber A. Redox Switches in Noise-Induced Cardiovascular and Neuronal Dysregulation. Front Mol Biosci 2021; 8:784910. [PMID: 34869603 PMCID: PMC8637611 DOI: 10.3389/fmolb.2021.784910] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Environmental exposures represent a significant health hazard, which cumulatively may be responsible for up to 2/3 of all chronic non-communicable disease and associated mortality (Global Burden of Disease Study and The Lancet Commission on Pollution and Health), which has given rise to a new concept of the exposome: the sum of environmental factors in every individual’s experience. Noise is part of the exposome and is increasingly being investigated as a health risk factor impacting neurological, cardiometabolic, endocrine, and immune health. Beyond the well-characterized effects of high-intensity noise on cochlear damage, noise is relatively well-studied in the cardiovascular field, where evidence is emerging from both human and translational experiments that noise from traffic-related sources could represent a risk factor for hypertension, ischemic heart disease, diabetes, and atherosclerosis. In the present review, we comprehensively discuss the current state of knowledge in the field of noise research. We give a brief survey of the literature documenting experiments in noise exposure in both humans and animals with a focus on cardiovascular disease. We also discuss the mechanisms that have been uncovered in recent years that describe how exposure to noise affects physiological homeostasis, leading to aberrant redox signaling resulting in metabolic and immune consequences, both of which have considerable impact on cardiovascular health. Additionally, we discuss the molecular pathways of redox involvement in the stress responses to noise and how they manifest in disruptions of the circadian rhythm, inflammatory signaling, gut microbiome composition, epigenetic landscape and vessel function.
Collapse
Affiliation(s)
- Katie Frenis
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany.,Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Marin Kuntic
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | | | - Matthias Oelze
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Steffen Daub
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Molecular Cardiology, University Medical Center, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
43
|
Yu D, Meng X, de Vos WM, Wu H, Fang X, Maiti AK. Implications of Gut Microbiota in Complex Human Diseases. Int J Mol Sci 2021; 22:12661. [PMID: 34884466 PMCID: PMC8657718 DOI: 10.3390/ijms222312661] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Humans, throughout the life cycle, from birth to death, are accompanied by the presence of gut microbes. Environmental factors, lifestyle, age and other factors can affect the balance of intestinal microbiota and their impact on human health. A large amount of data show that dietary, prebiotics, antibiotics can regulate various diseases through gut microbes. In this review, we focus on the role of gut microbes in the development of metabolic, gastrointestinal, neurological, immune diseases and, cancer. We also discuss the interaction between gut microbes and the host with respect to their beneficial and harmful effects, including their metabolites, microbial enzymes, small molecules and inflammatory molecules. More specifically, we evaluate the potential ability of gut microbes to cure diseases through Fecal Microbial Transplantation (FMT), which is expected to become a new type of clinical strategy for the treatment of various diseases.
Collapse
Affiliation(s)
- Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Xin Meng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands;
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Amit K. Maiti
- Department of Genetics and Genomics, Mydnavar, 2645 Somerset Boulevard, Troy, MI 48084, USA
| |
Collapse
|
44
|
Jiang J, Liu H, Wang Z, Tian H, Wang S, Yang J, Ren J. Electroacupuncture could balance the gut microbiota and improve the learning and memory abilities of Alzheimer's disease animal model. PLoS One 2021; 16:e0259530. [PMID: 34748592 PMCID: PMC8575259 DOI: 10.1371/journal.pone.0259530] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD), as one of most common dementia, mainly affects older people from the worldwide. In this study, we intended to explore the possible mechanism of improving cognitive function and protecting the neuron effect by electroacupuncture. METHOD We applied senescence-accelerated mouse prone 8 (SAMP8) mice as AD animal model, used Morris water maze, HE staining, 16S rDNA amplicon sequencing of gut microbiota and ELISA to demonstrate our hypothesis. RESULTS electroacupuncture improved the learning and memory abilities in SAMP8 mice (P<0.05) and could protect the frontal lobe cortex and hippocampus of SAMP8 mice; electroacupuncture significantly decreased the expression of IL-1β (P<0.01), IL-6 (P<0.01) and TNF-α (P<0.01 in hippocampus, P<0.05 in serum) in serum and hippocampus; electroacupuncture balanced the quantity and composition of gut microbiome, especially of the relative abundance in Delta-proteobacteria (P<0.05) and Epsilon-proteobacteria (P<0.05). CONCLUSION electroacupuncture treatment could inhibit the peripheral and central nerve system inflammatory response by balancing the gut microbiota.
Collapse
Affiliation(s)
- Jing Jiang
- Beijing University of Chinese Medicine, Beijing, China
| | - Hao Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Zidong Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Huiling Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Shun Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiayi Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingyu Ren
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
45
|
Paciello F, Rinaudo M, Longo V, Cocco S, Conforto G, Pisani A, Podda MV, Fetoni AR, Paludetti G, Grassi C. Auditory sensory deprivation induced by noise exposure exacerbates cognitive decline in a mouse model of Alzheimer's disease. eLife 2021; 10:70908. [PMID: 34699347 PMCID: PMC8547960 DOI: 10.7554/elife.70908] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
Although association between hearing impairment and dementia has been widely documented by epidemiological studies, the role of auditory sensory deprivation in cognitive decline remains to be fully understood. To address this issue we investigated the impact of hearing loss on the onset and time-course of cognitive decline in an animal model of Alzheimer's disease (AD), that is the 3×Tg-AD mice and the underlying mechanisms. We found that hearing loss induced by noise exposure in the 3×Tg-AD mice before the phenotype is manifested caused persistent synaptic and morphological alterations in the auditory cortex. This was associated with earlier hippocampal dysfunction, increased tau phosphorylation, neuroinflammation, and redox imbalance, along with anticipated memory deficits compared to the expected time-course of the neurodegenerative phenotype. Our data suggest that a mouse model of AD is more vulnerable to central damage induced by hearing loss and shows reduced ability to counteract noise-induced detrimental effects, which accelerates the neurodegenerative disease onset.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Longo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Conforto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Vittoria Podda
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
46
|
Huang L, Zhang Y, Wang Y, Lan Y. Relationship Between Chronic Noise Exposure, Cognitive Impairment, and Degenerative Dementia: Update on the Experimental and Epidemiological Evidence and Prospects for Further Research. J Alzheimers Dis 2021; 79:1409-1427. [PMID: 33459723 DOI: 10.3233/jad-201037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Degenerative dementia, of which Alzheimer's disease is the most common form, is characterized by the gradual deterioration of cognitive function. The events that trigger and promote degenerative dementia are not clear, and treatment options are limited. Experimental and epidemiological studies have revealed chronic noise exposure (CNE) as a potential risk factor for cognitive impairment and degenerative dementia. Experimental studies have indicated that long-term exposure to noise might accelerate cognitive dysfunction, amyloid-β deposition, and tau hyperphosphorylation in different brain regions such as the hippocampus and cortex. Epidemiological studies are increasingly examining the possible association between external noise exposure and dementia. In this review, we sought to construct a comprehensive summary of the relationship between CNE, cognitive dysfunction, and degenerative dementia. We also present the limitations of existing evidence as a guide regarding important prospects for future research.
Collapse
Affiliation(s)
- Lei Huang
- Department of Environmental Health and Occupational Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Department of Occupational Hazard Assessment, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yongwei Wang
- Department of Occupational Hazard Assessment, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yajia Lan
- Department of Environmental Health and Occupational Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
47
|
Abstract
Alzheimer disease (AD) is the most common type of dementia characterized by the progressive cognitive and social decline. Clinical drug targets have heavily focused on the amyloid hypothesis, with amyloid beta (Aβ), and tau proteins as key pathophysiologic markers of AD. However, no effective treatment has been developed so far, which prompts researchers to focus on other aspects of AD beyond Aβ, and tau proteins. Additionally, there is a mounting epidemiologic evidence that various environmental factors influence the development of dementia and that dementia etiology is likely heterogenous. In the past decades, new risk factors or potential etiologies have been widely studied. Here, we review several novel epidemiologic and clinical research developments that focus on sleep, hypoxia, diet, gut microbiota, and hearing impairment and their links to AD published in recent years. At the frontiers of AD research, these findings and updates could be worthy of further attention.
Collapse
|
48
|
Cantuaria ML, Waldorff FB, Wermuth L, Pedersen ER, Poulsen AH, Thacher JD, Raaschou-Nielsen O, Ketzel M, Khan J, Valencia VH, Schmidt JH, Sørensen M. Residential exposure to transportation noise in Denmark and incidence of dementia: national cohort study. BMJ 2021; 374:n1954. [PMID: 34497091 PMCID: PMC8424489 DOI: 10.1136/bmj.n1954] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate the association between long term residential exposure to road traffic and railway noise and risk of incident dementia. DESIGN Nationwide prospective register based cohort study. SETTING Denmark. PARTICIPANTS 1 938 994 adults aged ≥60 years living in Denmark between 1 January 2004 and 31 December 2017. MAIN OUTCOME MEASURES Incident cases of all cause dementia and dementia subtypes (Alzheimer's disease, vascular dementia, and Parkinson's disease related dementia), identified from national hospital and prescription registries. RESULTS The study population included 103 500 participants with incident dementia, and of those, 31 219 received a diagnosis of Alzheimer's disease, 8664 of vascular dementia, and 2192 of Parkinson's disease related dementia. Using Cox regression models, 10 year mean exposure to road traffic and railway noise at the most (Ldenmax) and least (Ldenmin) exposed façades of buildings were associated with a higher risk of all cause dementia. These associations showed a general pattern of higher hazard ratios with higher noise exposure, but with a levelling off or even small declines in risk at higher noise levels. In subtype analyses, both road traffic noise and railway noise were associated with a higher risk of Alzheimer's disease, with hazard ratios of 1.16 (95% confidence interval 1.11 to 1.22) for road Ldenmax ≥65 dB compared with <45 dB, 1.27 (1.22 to 1.34) for road Ldenmin ≥55 dB compared with <40 dB, 1.16 (1.10 to 1.23) for railway Ldenmax ≥60 dB compared with <40 dB, and 1.24 (1.17 to 1.30) for railway Ldenmin ≥50 dB compared with <40 dB. Road traffic, but not railway, noise was associated with an increased risk of vascular dementia. Results indicated associations between road traffic Ldenmin and Parkinson's disease related dementia. CONCLUSIONS This nationwide cohort study found transportation noise to be associated with a higher risk of all cause dementia and dementia subtypes, especially Alzheimer's disease.
Collapse
Affiliation(s)
- Manuella Lech Cantuaria
- The Mærsk McKinney Møller Institute, University of Southern Denmark, Odense, Denmark
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Frans Boch Waldorff
- Department of Public Health, The Research Unit for General Practice and Section of General Practice, University of Copenhagen, Copenhagen, Denmark
- Research Unit of General Practice, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Lene Wermuth
- Department of Neurology, Slagelse Hospital, Slagelse, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Ellen Raben Pedersen
- The Mærsk McKinney Møller Institute, University of Southern Denmark, Odense, Denmark
| | - Aslak Harbo Poulsen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jesse Daniel Thacher
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Ole Raaschou-Nielsen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, United Kingdom
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Roskilde, Denmark
| | - Victor H Valencia
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head and Neck Surgery and Audiology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
- BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Mette Sørensen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
49
|
Abstract
Epidemiological studies have found that transportation noise increases the risk of cardiovascular morbidity and mortality, with high-quality evidence for ischaemic heart disease. According to the WHO, ≥1.6 million healthy life-years are lost annually from traffic-related noise in Western Europe. Traffic noise at night causes fragmentation and shortening of sleep, elevation of stress hormone levels, and increased oxidative stress in the vasculature and the brain. These factors can promote vascular dysfunction, inflammation and hypertension, thereby elevating the risk of cardiovascular disease. In this Review, we focus on the indirect, non-auditory cardiovascular health effects of transportation noise. We provide an updated overview of epidemiological research on the effects of transportation noise on cardiovascular risk factors and disease, discuss the mechanistic insights from the latest clinical and experimental studies, and propose new risk markers to address noise-induced cardiovascular effects in the general population. We also explain, in detail, the potential effects of noise on alterations of gene networks, epigenetic pathways, gut microbiota, circadian rhythm, signal transduction along the neuronal-cardiovascular axis, oxidative stress, inflammation and metabolism. Lastly, we describe current and future noise-mitigation strategies and evaluate the status of the existing evidence on noise as a cardiovascular risk factor.
Collapse
|
50
|
Elmaleh DR, Downey MA, Kundakovic L, Wilkinson JE, Neeman Z, Segal E. New Approaches to Profile the Microbiome for Treatment of Neurodegenerative Disease. J Alzheimers Dis 2021; 82:1373-1401. [PMID: 34219718 DOI: 10.3233/jad-210198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progressive neurodegenerative diseases represent some of the largest growing treatment challenges for public health in modern society. These diseases mainly progress due to aging and are driven by microglial surveillance and activation in response to changes occurring in the aging brain. The lack of efficacious treatment options for Alzheimer's disease (AD), as the focus of this review, and other neurodegenerative disorders has encouraged new approaches to address neuroinflammation for potential treatments. Here we will focus on the increasing evidence that dysbiosis of the gut microbiome is characterized by inflammation that may carry over to the central nervous system and into the brain. Neuroinflammation is the common thread associated with neurodegenerative diseases, but it is yet unknown at what point and how innate immune function turns pathogenic for an individual. This review will address extensive efforts to identify constituents of the gut microbiome and their neuroactive metabolites as a peripheral path to treatment. This approach is still in its infancy in substantive clinical trials and requires thorough human studies to elucidate the metabolic microbiome profile to design appropriate treatment strategies for early stages of neurodegenerative disease. We view that in order to address neurodegenerative mechanisms of the gut, microbiome and metabolite profiles must be determined to pre-screen AD subjects prior to the design of specific, chronic titrations of gut microbiota with low-dose antibiotics. This represents an exciting treatment strategy designed to balance inflammatory microglial involvement in disease progression with an individual's manifestation of AD as influenced by a coercive inflammatory gut.
Collapse
Affiliation(s)
- David R Elmaleh
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,AZTherapies, Inc., Boston, MA, USA
| | | | | | - Jeremy E Wilkinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ziv Neeman
- Department of Radiology, Emek Medical Center, Afula, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|