1
|
Tripathi A, Rai NK, Perles A, Courtney H, Jones C, Sapra A, Plemel J, Dutta R. Dicer deficiency affects microglial function during demyelination and impairs remyelination. Neurobiol Dis 2025; 208:106879. [PMID: 40120829 PMCID: PMC12068937 DOI: 10.1016/j.nbd.2025.106879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Microglia are essential regulators of central nervous system (CNS) homeostasis, playing key roles in demyelination and remyelination. Dysregulated microglial activity contributes to pathological inflammation and impaired repair processes in demyelinating diseases. Here, we investigate the role of Dicer1, a critical enzyme in microRNA biogenesis, in affecting microglial function, demyelination, and remyelination. Loss of Dicer1 in microglia resulted in amplified inflammatory responses, defective myelin debris clearance, and disruption of metabolic homeostasis, leading to exacerbated demyelination and delayed remyelination. Transcriptomic analysis revealed significant upregulation of inflammatory pathways, including interferon signaling and JAK/STAT activation, alongside a loss of homeostatic microglial gene expression. Protein-level validation confirmed sustained secretion of pro-inflammatory cytokines such as IFN-γ, IL-16, and CXCL12, creating a chronic inflammatory environment that impaired remyelination. Furthermore, Dicer1-deficient microglia failed to support oligodendrocyte progenitor cells (OPCs) differentiation/maturation, with increased apoptosis of mature oligodendrocytes (OLs), contributing to remyelination failure. These findings identify Dicer1 as a critical regulator of microglial homeostasis and inflammation resolution, highlighting its potential as a therapeutic target to mitigate inflammation and promote repair in demyelinating diseases.
Collapse
Affiliation(s)
- Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | | | - Aaron Perles
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | - Haley Courtney
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | - Claire Jones
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | - Adya Sapra
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA
| | - Jason Plemel
- Neuroscience and Mental Health Institute, Department of Medicine, Division of Neurology, Department of Medical Microbiology and Immunology, University of Alberta, Canada
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| |
Collapse
|
2
|
Ju J, Pan Y, Yang X, Li X, Chen J, Wu S, Hou ST. The "don't eat me" signal CD47 is associated with microglial phagocytosis defects and autism-like behaviors in 16p11.2 deletion mice. Proc Natl Acad Sci U S A 2025; 122:e2411080122. [PMID: 40238451 PMCID: PMC12036979 DOI: 10.1073/pnas.2411080122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Various pathological characteristics of autism spectrum disorder (ASD) stem from abnormalities in brain resident immune cells, specifically microglia, to prune unnecessary synapses or neural connections during early development. Animal models of ASD exhibit an abundance of synapses in different brain regions, which is strongly linked to the appearance of ASD behaviors. Overexpression of CD47 on neurons acts as a "don't eat me" signal, safeguarding synapses from inappropriate pruning by microglia. Indeed, CD47 overexpression occurs in 16p11.2 deletion carriers, causing decreased synaptic phagocytosis and the manifestation of ASD characteristics. However, the role of CD47 in synaptic pruning impairment leading to ASD phenotypes in the 16p11.2 deletion mouse model is unclear. Moreover, whether blocking CD47 can alleviate ASD mice's behavioral deficits remains unknown. Here, we demonstrate a strong link between increased CD47 expression, decreased microglia phagocytosis capacity, and increased impairment in social novelty preference in the 16p11.2 deletion mice. The reduction in microglia phagocytosis caused a rise in excitatory synapses and transmission in the prefrontal cortex of 16p11.2 deletion mice. Importantly, blocking CD47 using a specific CD47 antibody or reducing CD47 expression using a specific short hairpin RNA (shRNA) enhanced the microglia phagocytosis and reduced excitatory transmission. Reduction in CD47 expression improved social novelty preference deficits in 16p11.2 mice. These findings demonstrate that CD47 is associated with the ASD phenotypes in the 16p11.2 deletion mice and could be a promising target for the development of treatment for ASD.
Collapse
Affiliation(s)
- Jun Ju
- Brain Research Centre, Department of Neurobiology, School of Life Sciences, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong1088, People’s Republic of China
| | - Yifan Pan
- Brain Research Centre, Department of Neurobiology, School of Life Sciences, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong1088, People’s Republic of China
| | - Xinyi Yang
- Brain Research Centre, Department of Neurobiology, School of Life Sciences, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong1088, People’s Republic of China
| | - Xuanyi Li
- Brain Research Centre, Department of Neurobiology, School of Life Sciences, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong1088, People’s Republic of China
| | - Jinghong Chen
- Brain Research Centre, Department of Neurobiology, School of Life Sciences, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong1088, People’s Republic of China
| | - Shiyu Wu
- Brain Research Centre, Department of Neurobiology, School of Life Sciences, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong1088, People’s Republic of China
| | - Sheng-Tao Hou
- Brain Research Centre, Department of Neurobiology, School of Life Sciences, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong1088, People’s Republic of China
| |
Collapse
|
3
|
Zang H, Ji X, Yao W, Wan L, Zhang C, Zhu C, Liu T. Role of efferocytosis in chronic pain -- From molecular perspective. Neurobiol Dis 2025; 207:106857. [PMID: 40015655 DOI: 10.1016/j.nbd.2025.106857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
The complex nature of pain pathophysiology complicates the establishment of objective diagnostic criteria and targeted treatments. The heterogeneous manifestations of pain stemming from various primary diseases contribute to the complexity and diversity of underlying mechanisms, leading to challenges in treatment efficacy and undesirable side effects. Recent evidence suggests the presence of apoptotic cells at injury sites, the distal dorsal root ganglia (DRG), spinal cord, and certain brain regions, indicating a potential link between the ineffective clearance of dead cells and debris and pain persistence. This review highlights recent research findings indicating that efferocytosis plays a significant yet often overlooked role in lesion expansion while also representing a potentially reversible impairment that could be targeted therapeutically to mitigate chronic pain progression. We examine recent advances into how efferocytosis, a process by which phagocytes clear apoptotic cells without triggering inflammation, influences pain initiation and intensity in both human diseases and animal models. This review summarizes that efferocytosis contributes to pain progression from the perspective of defective and inefficient efferocytosis and its subsequent secondary necrocytosis, cascade inflammatory response, and the shift of phenotypic plasticity and metabolism. Additionally, we investigate the roles of newly discovered genetic alterations or modifications in biological signaling pathways in pain development and chronicity, providing insights into innovative treatment strategies that modulate efferocytosis, which are promising candidates and potential avenues for further research in pain management and prevention.
Collapse
Affiliation(s)
- Hu Zang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoyu Ji
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenlong Yao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Wan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chuanhan Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chang Zhu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Tongtong Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
4
|
Wang X, Li K, Guo L, Liu X, Guo Y, Zhang W. The Influence of Changes in Microglia Development on the Plasticity of the Developing Visual Cortex Circuit in Juvenile Mice. Invest Ophthalmol Vis Sci 2025; 66:45. [PMID: 40244609 PMCID: PMC12013681 DOI: 10.1167/iovs.66.4.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Purpose To investigate the role of microglial subtypes in mouse visual cortex development, focusing on ocular dominance plasticity and interactions with GABAergic neurons and the extracellular matrix. Methods Immunofluorescence and single-nucleus RNA-sequencing (snRNA-seq) were used to study microglia in the binocular primary visual cortex (V1) from postnatal day (P) 11 to P42. Gene ontology (GO) analysis assessed synapse organization, and the impact of microglial disruption on ocular dominance plasticity was examined. Visual evoked potentials and miniature postsynaptic current recordings are used to monitor functional changes in V1. Results Microglia underwent a marked expansion between P11 and P21 and stabilized after P35, coinciding with notable changes in gene expression that aligned with synaptic remodeling. GO analysis at P14 and P28 revealed significant enrichment in synaptic organization linked to microglia. Single-nucleus RNA sequencing identified six distinct microglial clusters, among which two functionally relevant subpopulations were closely linked to cortical synaptic plasticity. One cluster, enriched in inflammatory responses and endocytosis, peaked at P21, whereas another cluster, associated with synapse organization and signaling, exhibited dynamic changes after eye opening and during the critical period, significantly influencing cortical synaptic plasticity. In parallel, perineuronal nets (PNNs) and PV(+) interneuron populations increased and reached steady levels by P42, suggesting that microglia help coordinate the timing of inhibitory circuit maturation. Disrupting microglial function during the critical period impaired ocular dominance plasticity, but this effect was reversed after treatment cessation. Mechanistically, microglial depletion enhanced PV(+) interneuron numbers, elevated PNN expression, and altered synapse development. Conclusions Our findings highlight specific microglial subtypes as key regulators of cortical synapse development and plasticity through their interactions with PV(+) interneurons and PNNs. These insights advance our understanding of microglial contributions to visual cortex development and provide potential avenues for targeting microglial function to modulate cortical plasticity.
Collapse
Affiliation(s)
- Xuechun Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Kuan Li
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Lingzhi Guo
- Institute of Ophthalmology, Nankai University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xinlong Liu
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
| | - Yatu Guo
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Institute of Ophthalmology, Nankai University, Tianjin, China
| | - Wei Zhang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, China
- Institute of Ophthalmology, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Fu J, Wang R, He J, Liu X, Wang X, Yao J, Liu Y, Ran C, Ye Q, He Y. Pathogenesis and therapeutic applications of microglia receptors in Alzheimer's disease. Front Immunol 2025; 16:1508023. [PMID: 40028337 PMCID: PMC11867950 DOI: 10.3389/fimmu.2025.1508023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Microglia, the resident immune cells of the central nervous system, continuously monitor the brain's microenvironment through their array of specific receptors. Once brain function is altered, microglia are recruited to specific sites to perform their immune functions, including phagocytosis of misfolded proteins, cellular debris, and apoptotic cells to maintain homeostasis. When toxic substances are overproduced, microglia are over-activated to produce large amounts of pro-inflammatory cytokines, which induce chronic inflammatory responses and lead to neurotoxicity. Additionally, microglia can also monitor and protect neuronal function through microglia-neuron crosstalk. Microglia receptors are important mediators for microglia to receive external stimuli, regulate the functional state of microglia, and transmit signals between cells. In this paper, we first review the role of microglia-expressed receptors in the pathogenesis and treatment of Alzheimer's disease; moreover, we emphasize the complexity of targeting microglia for therapeutic interventions in neurodegenerative disorders to inform the discovery of new biomarkers and the development of innovative therapeutics.
Collapse
Affiliation(s)
- Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - RuoXuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - JiHui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - XiaoJing Liu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - JuMing Yao
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - ChongZhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - QingSong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Liu Y, Wang A, Chen C, Zhang Q, Shen Q, Zhang D, Xiao X, Chen S, Lian L, Le Z, Liu S, Liang T, Zheng Q, Xu P, Zou J. Microglial cGAS-STING signaling underlies glaucoma pathogenesis. Proc Natl Acad Sci U S A 2024; 121:e2409493121. [PMID: 39190350 PMCID: PMC11388346 DOI: 10.1073/pnas.2409493121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Characterized by progressive degeneration of retinal ganglion cells (RGCs) and vision loss, glaucoma is the primary cause of irreversible blindness, incurable and affecting over 78 million patients. However, pathogenic mechanisms leading to glaucoma-induced RGC loss are incompletely understood. Unexpectedly, we found that cGAS-STING (2'3'-cyclic GMP-AMP-stimulator of interferon genes) signaling, which surveils displaced double-stranded DNA (dsDNA) in the cytosol and initiates innate immune responses, was robustly activated during glaucoma in retinal microglia in distinct murine models. Global or microglial deletion of STING markedly relieved glaucoma symptoms and protected RGC degeneration and vision loss, while mice bearing genetic cGAS-STING supersensitivity aggravated retinal neuroinflammation and RGC loss. Mechanistically, dsDNA from tissue injury activated microglial cGAS-STING signaling, causing deleterious macroglia reactivity in retinas by cytokine-mediated microglia-macroglia interactions, progressively driving apoptotic death of RGCs. Remarkably, preclinical investigations of targeting cGAS-STING signaling by intraocular injection of TBK1i or anti-IFNAR1 antibody prevented glaucoma-induced losses of RGCs and vision. Therefore, we unravel an essential role of cGAS-STING signaling underlying glaucoma pathogenesis and suggest promising therapeutic strategies for treating this devastating disease.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Ailian Wang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Chen Chen
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Qian Zhang
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Qin Shen
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
| | - Dan Zhang
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
| | - Xueqi Xiao
- Eye Center of the Second Affiliated Hospital School of Medicine, Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Hangzhou310029, China
| | - Shasha Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou325035, China
| | - Lili Lian
- National Clinical Research Center for Ocular Diseases, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou325027, China
| | - Zhenmin Le
- National Clinical Research Center for Ocular Diseases, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou325027, China
| | - Shengduo Liu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
| | - Qinxiang Zheng
- National Clinical Research Center for Ocular Diseases, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou325027, China
| | - Pinglong Xu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Institute of Intelligent Medicine, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou310058, China
- Ministry of Education Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Jian Zou
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, University School of Medicine, Zhejiang University, Hangzhou310058, China
- Eye Center of the Second Affiliated Hospital School of Medicine, Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Hangzhou310029, China
| |
Collapse
|
7
|
Zhang G, Wang L, Wang J, Zeng J, Yu C. RNA sequencing of the thalamus and rostral ventral medulla in rats with chronic orofacial pain. J Neural Transm (Vienna) 2024; 131:739-753. [PMID: 38630191 DOI: 10.1007/s00702-024-02780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/11/2024] [Indexed: 06/27/2024]
Abstract
Diagnosing and treating chronic orofacial pain is challenging due to its complex structure and limited understanding of its causes and mechanisms. In this study, we used RNA sequencing to identify differentially expressed genes (DEGs) in the rostral ventral medulla (RVM) and thalamus of rats with persistent orofacial pain, aiming to explore its development. DEGs were functionally analyzed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results showed a significant association between immune response and pain in this model. Key DEG mRNA expression trends were further validated using real-time quantitative polymerase chain reaction (RT-PCR), confirming their crucial roles in chronic orofacial pain. After injecting complete Freund's adjuvant (CFA) into the bilateral temporomandibular joint cavity for 14 days, we observed 293 upregulated genes and 14 downregulated genes in the RVM, and 1086 upregulated genes and 37 downregulated genes in the thalamus. Furthermore, we identified 27 common DEGs with altered expression (upregulation) in both the thalamus and RVM, including Cd74, C3, Cxcl13, C1qb, Itgal, Fcgr2b, C5ar1, and Tlr2, which are pain-associated genes. Protein-protein interaction (PPI) analysis using Cytoscape revealed the involvement of Toll-like receptors, complement system, differentiation clusters, and antigen presentation-related proteins in the interaction between the thalamus and RVM. The results of this study show that the immune system seems to have a more significant influence on chronic orofacial pain. There may be direct or indirect influence between the thalamus and RVM, which may participate in the regulation of chronic orofacial pain.
Collapse
Affiliation(s)
- Guangyan Zhang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lan Wang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jing Wang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zeng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, No. 426 Songshi North Road, Yubei District, Chongqing, China.
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
8
|
Huang Y, Hu R, Wu L, He K, Ma R. Immunoregulation of Glia after spinal cord injury: a bibliometric analysis. Front Immunol 2024; 15:1402349. [PMID: 38938572 PMCID: PMC11208308 DOI: 10.3389/fimmu.2024.1402349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
Objective Immunoregulation is a complex and critical process in the pathological process of spinal cord injury (SCI), which is regulated by various factors and plays an important role in the functional repair of SCI. This study aimed to explore the research hotspots and trends of glial cell immunoregulation after SCI from a bibliometric perspective. Methods Data on publications related to glial cell immunoregulation after SCI, published from 2004 to 2023, were obtained from the Web of Science Core Collection. Countries, institutions, authors, journals, and keywords in the topic were quantitatively analyzed using the R package "bibliometrix", VOSviewer, Citespace, and the Bibliometrics Online Analysis Platform. Results A total of 613 papers were included, with an average annual growth rate of 9.39%. The papers came from 36 countries, with the United States having the highest output, initiating collaborations with 27 countries. Nantong University was the most influential institution. We identified 3,177 authors, of whom Schwartz, m, of the Weizmann Institute of Science, was ranked first regarding both field-specific H-index (18) and average number of citations per document (151.44). Glia ranked first among journals with 2,574 total citations. The keywords "microglia," "activation," "macrophages," "astrocytes," and "neuroinflammation" represented recent hot topics and are expected to remain a focus of future research. Conclusion These findings strongly suggest that the immunomodulatory effects of microglia, astrocytes, and glial cell interactions may be critical in promoting nerve regeneration and repair after SCI. Research on the immunoregulation of glial cells after SCI is emerging, and there should be greater cooperation and communication between countries and institutions to promote the development of this field and benefit more SCI patients.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Wu
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kelin He
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruijie Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Jiang S, Li W, Song M, Liang J, Liu G, Du Q, Wang L, Meng H, Tang L, Yang Y, Zhang B. CXCL1-CXCR2 axis mediates inflammatory response after sciatic nerve injury by regulating macrophage infiltration. Mol Immunol 2024; 169:50-65. [PMID: 38493581 DOI: 10.1016/j.molimm.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Macrophages play a crucial role in the inflammatory response following sciatic nerve injury. Studies have demonstrated that C-X-C motif chemokine (CXCL) 1 recruit macrophages by binding to C-X-C chemokine receptor (CXCR) 2 and participates in the inflammatory response of various diseases. Based on these findings, we aimed to explore the role of the CXCL1-CXCR2 axis in the repair process after peripheral nerve injury. Initially, we simulated sciatic nerve injury and observed an increased expression of CXCL1 and CXCR2 in the nerves of the injury group. Both in vivo and in vitro experiments confirmed that the heightened CXCL1 expression occurs in Schwann cells and is secreted, while the elevated CXCR2 is expressed by recruited macrophages. In addition, in vitro experiments demonstrated that the binding of CXCL1 to CXCR2 can activate the NLRP3 inflammasome and promote the production of interleukin-1 beta (IL-1β) in macrophages. However, after mice were subjected to sciatic nerve injury, the number of macrophages and the expression of inflammatory factors in the sciatic nerve were reduced following treatment with the CXCR2 inhibitor SB225002. Simultaneously, we evaluated the sciatic nerve function index, the expression of p75 neurotrophic factor receptor (p75NTR), and myelin proteins, and all of these results were improved with the use of SB225002. Thus, our results suggest that after sciatic nerve injury, the CXCL1-CXCR2 axis mediates the inflammatory response by promoting the recruitment and activation of macrophages, which is detrimental to the repair of the injured nerves. In contrast, treatment with SB225002 promotes the repair of injured sciatic nerves.
Collapse
Affiliation(s)
- Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
10
|
Isenberg JS, Montero E. Tolerating CD47. Clin Transl Med 2024; 14:e1584. [PMID: 38362603 PMCID: PMC10870051 DOI: 10.1002/ctm2.1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cluster of differentiation 47 (CD47) occupies the outer membrane of human cells, where it binds to soluble and cell surface receptors on the same and other cells, sculpting their topography and resulting in a pleiotropic receptor-multiligand interaction network. It is a focus of drug development to temper and accentuate CD47-driven immune cell liaisons, although consideration of on-target CD47 effects remain neglected. And yet, a late clinical trial of a CD47-blocking antibody was discontinued, existent trials were restrained, and development of CD47-targeting agents halted by some pharmaceutical companies. At this point, if CD47 can be exploited for clinical advantage remains to be determined. Herein an airing is made of the seemingly conflicting actions of CD47 that reflect its position as a junction connecting receptors and signalling pathways that impact numerous human cell types. Prospects of CD47 boosting and blocking are considered along with potential therapeutic implications for autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Jeffrey S. Isenberg
- Department of Diabetes Complications & MetabolismArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Enrique Montero
- Department of Molecular & Cellular EndocrinologyArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
11
|
Gitik M, Elberg G, Reichert F, Tal M, Rotshenker S. Deletion of CD47 from Schwann cells and macrophages hastens myelin disruption/dismantling and scavenging in Schwann cells and augments myelin debris phagocytosis in macrophages. J Neuroinflammation 2023; 20:243. [PMID: 37872624 PMCID: PMC10594853 DOI: 10.1186/s12974-023-02929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Myelin that surrounds axons breaks in trauma and disease; e.g., peripheral nerve and spinal cord injuries (PNI and SCI) and multiple sclerosis (MS). Resulting myelin debris hinders repair if not effectively scavenged by Schwann cells and macrophages in PNI and by microglia in SCI and MS. We showed previously that myelin debris evades phagocytosis as CD47 on myelin ligates SIRPα (signal regulatory protein-α) on macrophages and microglia, triggering SIRPα to inhibit phagocytosis in phagocytes. Using PNI as a model, we tested the in vivo significance of SIRPα-dependent phagocytosis inhibition in SIRPα null mice, showing that SIRPα deletion leads to accelerated myelin debris clearance, axon regeneration and recovery of function from PNI. Herein, we tested how deletion of CD47, a SIRPα ligand and a cell surface receptor on Schwann cells and phagocytes, affects recovery from PNI. METHODS Using CD47 null (CD47-/-) and wild type mice, we studied myelin disruption/dismantling and debris clearance, axon regeneration and recovery of function from PNI. RESULTS As expected from CD47 on myelin acting as a SIRPα ligand that normally triggers SIRPα-dependent phagocytosis inhibition in phagocytes, myelin debris clearance, axon regeneration and function recovery were all faster in CD47-/- mice than in wild type mice. Unexpectedly compared with wild type mice, myelin debris clearance started sooner and CD47-deleted Schwann cells displayed enhanced disruption/dismantling and scavenging of myelin in CD47-/- mice. Furthermore, CD47-deleted macrophages from CD47-/- mice phagocytosed more myelin debris than CD47-expressing phagocytes from wild type mice. CONCLUSIONS This study reveals two novel normally occurring CD47-dependent mechanisms that impede myelin debris clearance. First, CD47 expressed on Schwann cells inhibits myelin disruption/dismantling and debris scavenging in Schwann cells. Second, CD47 expressed on macrophages inhibits myelin debris phagocytosis in phagocytes. The two add to a third mechanism that we previously documented whereby CD47 on myelin ligates SIRPα on macrophages and microglia, triggering SIRPα-dependent phagocytosis inhibition in phagocytes. Thus, CD47 plays multiple inhibitory roles that combined impede myelin debris clearance, leading to delayed recovery from PNI. Similar inhibitory roles in microglia may hinder recovery from other pathologies in which repair depends on efficient phagocytosis (e.g., SCI and MS).
Collapse
Affiliation(s)
- Miri Gitik
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel
- Genomic Research Branch, Division of Neuroscience and Basic Behavioral Science (DNBBS), National Institute of Mental Health (NIMH), NIH, Rockville, USA
| | - Gerard Elberg
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel
| | - Fanny Reichert
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel
| | - Michael Tal
- Medical Neurobiology, Faculties of Medicine and Dentistry, Center for Research on Pain, Hebrew University, Jerusalem, Israel
| | - Shlomo Rotshenker
- Medical Neurobiology, Faculty of Medicine, IMRIC, Hebrew University, Ein-Kerem Campus, 12272, 91120, Jerusalem, Israel.
| |
Collapse
|
12
|
Tripathi A, Rai N, Perles A, Jones C, Dutta R. Dicer deficiency in microglia leads to accelerated demyelination and failed remyelination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562812. [PMID: 37905110 PMCID: PMC10614879 DOI: 10.1101/2023.10.17.562812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and are important regulators of normal brain functions. In CNS demyelinating diseases like multiple sclerosis (MS), the functions of these cells are of particular interest. Here we probed the impact of microRNA (miRNA)-mediated post-transcriptional gene regulation using a mouse model lacking microglia/macrophage-specific Dicer expression during demyelination and remyelination. Conditional Dicer ablation and loss of miRNAs in adult microglia led to extensive demyelination and impaired myelin processing. Interestingly, demyelination was accompanied by increased apoptosis of mature oligodendrocytes (OLs) and arresting OL progenitor cells (OPCs) in the precursor stage. At the transcriptional level, Dicer -deficient microglia led to downregulation of microglial homeostatic genes, increased cell proliferation, and a shift towards a disease-associated phenotype. Loss of remyelination efficiency in these mice was accompanied by stalling of OPCs in the precursor stage. Collectively, these results highlight a new role of microglial miRNAs in promoting a pro-regenerative phenotype in addition to promoting OPC maturation and differentiation during demyelination and remyelination.
Collapse
|
13
|
Xiao H, Wei C, Liu H, Li Z, Zheng C, Luo J. Lentinan alleviates sciatic nerve injury by promoting autophagy to remove myelin fragments. Phytother Res 2023; 37:4042-4058. [PMID: 37165703 DOI: 10.1002/ptr.7862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Lentinan, a natural drug with wide-ranging pharmacological activities, can regulate autophagy-the process through which Schwann cells (SCs) eliminate myelin fragments after peripheral nerve injury (PNI). However, the effect of lentinan after PNI and the role of accelerated myelin debris removal via autophagy in this process are unclear. This study examined the effect of lentinan on rat sciatic nerve repair following crush injury and the underlying mechanisms. After the successful establishment of the sciatic nerve compression injury model, group-specific treatments were performed. The treatment group received 20 mg/kg lentinan via intraperitoneal injection, while the model group was treated with normal saline. The recovery in each group was then evaluated. Further, a rat SC line (RSC96) was cultured in medium with/without lentinan after supplementation with homogenous myelin fractions to evaluate the removal of myelin particles. Our results showed that lentinan promotes autophagic flux in vivo via the AMPK/mTOR signaling pathway, accelerates the clearance of myelin debris by SCs, and inhibits neuronal apoptosis, thereby promoting neurological recovery. Similarly, in vitro experiments showed that lentinan promotes the phagocytosis of myelin debris by SCs. In conclusion, our results suggest that lentinan primarily promotes nerve regeneration by accelerating the autophagic clearance of myelin debris in SCs, and this process is likely regulated by the AMPK/mTOR signaling pathway. Therefore, this study provides compelling evidence that lentinan may be a cost-effective and natural treatment agent for PNI.
Collapse
Affiliation(s)
- Haili Xiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Wei
- Department of Hepatobiliary surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huiying Liu
- Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiqiang Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cihua Zheng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Qiao C, Liu Z, Qie S. The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules 2023; 13:biom13030571. [PMID: 36979506 PMCID: PMC10046452 DOI: 10.3390/biom13030571] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Stroke causes varying degrees of neurological deficits, leading to corresponding dysfunctions. There are different therapeutic principles for each stage of pathological development. Neuroprotection is the main treatment in the acute phase, and functional recovery becomes primary in the subacute and chronic phases. Neuroplasticity is considered the basis of functional restoration and neurological rehabilitation after stroke, including the remodeling of dendrites and dendritic spines, axonal sprouting, myelin regeneration, synapse shaping, and neurogenesis. Spatiotemporal development affects the spontaneous rewiring of neural circuits and brain networks. Microglia are resident immune cells in the brain that contribute to homeostasis under physiological conditions. Microglia are activated immediately after stroke, and phenotypic polarization changes and phagocytic function are crucial for regulating focal and global brain inflammation and neurological recovery. We have previously shown that the development of neuroplasticity is spatiotemporally consistent with microglial activation, suggesting that microglia may have a profound impact on neuroplasticity after stroke and may be a key therapeutic target for post-stroke rehabilitation. In this review, we explore the impact of neuroplasticity on post-stroke restoration as well as the functions and mechanisms of microglial activation, polarization, and phagocytosis. This is followed by a summary of microglia-targeted rehabilitative interventions that influence neuroplasticity and promote stroke recovery.
Collapse
Affiliation(s)
- Chenye Qiao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| |
Collapse
|
15
|
Yuan Y, Wang Y, Wu S, Zhao MY. Review: Myelin clearance is critical for regeneration after peripheral nerve injury. Front Neurol 2022; 13:908148. [PMID: 36588879 PMCID: PMC9801717 DOI: 10.3389/fneur.2022.908148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic peripheral nerve injury occurs frequently and is a major clinical and public health problem that can lead to functional impairment and permanent disability. Despite the availability of modern diagnostic procedures and advanced microsurgical techniques, active recovery after peripheral nerve repair is often unsatisfactory. Peripheral nerve regeneration involves several critical events, including the recreation of the microenvironment and remyelination. Results from previous studies suggest that the peripheral nervous system (PNS) has a greater capacity for repair than the central nervous system. Thus, it will be important to understand myelin and myelination specifically in the PNS. This review provides an update on myelin biology and myelination in the PNS and discusses the mechanisms that promote myelin clearance after injury. The roles of Schwann cells and macrophages are considered at length, together with the possibility of exogenous intervention.
Collapse
Affiliation(s)
- YiMing Yuan
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Yan Wang
| | - ShanHong Wu
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Yue Zhao
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
16
|
Yu F, Wang Y, Stetler AR, Leak RK, Hu X, Chen J. Phagocytic microglia and macrophages in brain injury and repair. CNS Neurosci Ther 2022; 28:1279-1293. [PMID: 35751629 PMCID: PMC9344092 DOI: 10.1111/cns.13899] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 12/21/2022] Open
Abstract
AIMS Phagocytosis is the cellular digestion of extracellular particles, such as pathogens and dying cells, and is a key element in the evolution of central nervous system (CNS) disorders. Microglia and macrophages are the professional phagocytes of the CNS. By clearing toxic cellular debris and reshaping the extracellular matrix, microglia/macrophages help pilot the brain repair and functional recovery process. However, CNS resident and invading immune cells can also magnify tissue damage by igniting runaway inflammation and phagocytosing stressed-but viable-neurons. DISCUSSION Microglia/macrophages help mediate intercellular communication and react quickly to the "find-me" signals expressed by dead/dying neurons. The activated microglia/macrophages then migrate to the injury site to initiate the phagocytic process upon encountering "eat-me" signals on the surfaces of endangered cells. Thus, healthy cells attempt to avoid inappropriate engulfment by expressing "do not-eat-me" signals. Microglia/macrophages also have the capacity to phagocytose immune cells that invade the injured brain (e.g., neutrophils) and to regulate their pro-inflammatory properties. During brain recovery, microglia/macrophages engulf myelin debris, initiate synaptogenesis and neurogenesis, and sculpt a favorable extracellular matrix to support network rewiring, among other favorable roles. Here, we review the multilayered nature of phagocytotic microglia/macrophages, including the molecular and cellular mechanisms that govern microglia/macrophage-induced phagocytosis in acute brain injury, and discuss strategies that tap into the therapeutic potential of this engulfment process. CONCLUSION Identification of biological targets that can temper neuroinflammation after brain injury without hindering the essential phagocytic functions of microglia/macrophages will expedite better medical management of the stroke recovery stage.
Collapse
Affiliation(s)
- Fang Yu
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yangfan Wang
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Anne R. Stetler
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rehana K. Leak
- Graduate School of Pharmaceutical SciencesSchool of Pharmacy, Duquesne UniversityPittsburghPennsylvaniaUSA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jun Chen
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
17
|
Li Y, Cai M, Feng Y, Yung B, Wang Y, Gao N, Xu X, Zhang H, Huang H, Yao D. Effect of lncRNA H19 on nerve degeneration and regeneration after sciatic nerve injury in rats. Dev Neurobiol 2021; 82:98-111. [PMID: 34818452 DOI: 10.1002/dneu.22861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022]
Abstract
Hundreds of millions of people worldwide suffer from peripheral nerve damage resulting from car accidents, falls, industrial accidents, residential accidents, and wars. The purpose of our study was to further investigate the effects of Wallerian degeneration (WD) after rat sciatic nerve injury and to screen for critical long noncoding RNAs (lncRNAs) in WD. We found H19 to be essential for nerve degeneration and regeneration and to be highly expressed in the sciatic nerves of rats with WD. lncRNA H19 potentially impaired the recovery of sciatic nerve function in rats. H19 was mainly localized in the cytoplasm of Schwann cells (SCs) and promoted their migration. H19 promoted the apoptosis of dorsal root ganglion (DRG) neurons and slowed the growth of DRG axons. The lncRNA H19 may play a role in WD through the Wnt/β-catenin signaling pathway and is coexpressed with a variety of crucial mRNAs during WD. These data provide further insight into the molecular mechanisms of WD.
Collapse
Affiliation(s)
- Yuting Li
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Min Cai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China.,Diagnostic laboratory, Medical School of Nantong University, Nantong, P. R. China
| | - Yumei Feng
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Bryant Yung
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Yi Wang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Nannan Gao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Xi Xu
- Rehabilitation Medical Center, Affiliated Hospital of Nantong University, Nantong, P. R. China
| | - Huanhuan Zhang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Huiwei Huang
- Diagnostic laboratory, Medical School of Nantong University, Nantong, P. R. China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| |
Collapse
|
18
|
Wang H, Newton G, Wu L, Lin LL, Miracco AS, Natesan S, Luscinskas FW. CD47 antibody blockade suppresses microglia-dependent phagocytosis and monocyte transition to macrophages, impairing recovery in EAE. JCI Insight 2021; 6:148719. [PMID: 34591795 PMCID: PMC8663579 DOI: 10.1172/jci.insight.148719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a well-characterized animal model of multiple sclerosis. During the early phase of EAE, infiltrating monocytes and monocyte-derived macrophages contribute to T cell recruitment, especially CD4+ T cells, into the CNS, resulting in neuronal demyelination; however, in later stages, they promote remyelination and recovery by removal of myelin debris by phagocytosis. Signal regulatory protein α and CD47 are abundantly expressed in the CNS, and deletion of either molecule is protective in myelin oligodendrocyte glycoprotein–induced EAE because of failed effector T cell expansion and trafficking. Here we report that treatment with the function blocking CD47 Ab Miap410 substantially reduced the infiltration of pathogenic immune cells but impaired recovery from paresis. The underlying mechanism was by blocking the emergence of CD11chiMHCIIhi microglia at peak disease that expressed receptors for phagocytosis, scavenging, and lipid catabolism, which mediated clearance of myelin debris and the transition of monocytes to macrophages in the CNS. In the recovery phase of EAE, Miap410 Ab–treated mice had worsening paresis with sustained inflammation and limited remyelination as compared with control Ab–treated mice. In summary, Ab blockade of CD47 impaired resolution of CNS inflammation, thus worsening EAE.
Collapse
Affiliation(s)
- Huan Wang
- Center for Excellence in Vascular Biology, Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts, USA
| | - Gail Newton
- Center for Excellence in Vascular Biology, Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts, USA
| | - Liguo Wu
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, Massachusetts, USA
| | - Lih-Ling Lin
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, Massachusetts, USA
| | - Amy S Miracco
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, Massachusetts, USA
| | - Sridaran Natesan
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, Massachusetts, USA
| | - Francis W Luscinskas
- Center for Excellence in Vascular Biology, Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
De La Rosa-Reyes V, Duprey-Díaz MV, Blagburn JM, Blanco RE. Retinoic acid treatment recruits macrophages and increases axonal regeneration after optic nerve injury in the frog Rana pipiens. PLoS One 2021; 16:e0255196. [PMID: 34739478 PMCID: PMC8570512 DOI: 10.1371/journal.pone.0255196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Retinoic acid (RA) plays major roles during nervous system development, and during regeneration of the adult nervous system. We have previously shown that components of the RA signaling pathway are upregulated after optic nerve injury, and that exogenous application of all-trans retinoic acid (ATRA) greatly increases the survival of axotomized retinal ganglion cells (RGCs). The objective of the present study is to investigate the effects of ATRA application on the macrophages in the optic nerve after injury, and to determine whether this affects axonal regeneration. The optic nerve was crushed and treated with PBS, ATRA and/or clodronate-loaded liposomes. Nerves were examined at one and two weeks after axotomy with light microscopy, immunocytochemistry and electron microscopy. ATRA application to the optic nerve caused transient increases in the number of macrophages and microglia one week after injury. The macrophages are consistently labeled with M2-type markers, and have considerable phagocytic activity. ATRA increased ultrastructural features of ongoing phagocytic activity in macrophages at one and two weeks. ATRA treatment also significantly increased the numbers of regenerating GAP-43-labeled axons. Clodronate liposome treatment depleted macrophage numbers by 80%, completely eliminated the ATRA-mediated increase in axonal regeneration, and clodronate treatment alone decreased axonal numbers by 30%. These results suggest that the success of axon regeneration is partially dependent on the presence of debris-phagocytosing macrophages, and that the increases in regeneration caused by ATRA are in part due to their increased numbers. Further studies will examine whether macrophage depletion affects RGC survival.
Collapse
Affiliation(s)
- Valeria De La Rosa-Reyes
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, United States of America
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Mildred V. Duprey-Díaz
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, United States of America
| | - Jonathan M. Blagburn
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Rosa E. Blanco
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, United States of America
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
20
|
Cornell J, Salinas S, Huang HY, Zhou M. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res 2021; 17:705-716. [PMID: 34472455 PMCID: PMC8530121 DOI: 10.4103/1673-5374.322423] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microglia are the resident macrophages of the central nervous system. Microglia possess varied morphologies and functions. Under normal physiological conditions, microglia mainly exist in a resting state and constantly monitor their microenvironment and survey neuronal and synaptic activity. Through the C1q, C3 and CR3 “Eat Me” and CD47 and SIRPα “Don’t Eat Me” complement pathways, as well as other pathways such as CX3CR1 signaling, resting microglia regulate synaptic pruning, a process crucial for the promotion of synapse formation and the regulation of neuronal activity and synaptic plasticity. By mediating synaptic pruning, resting microglia play an important role in the regulation of experience-dependent plasticity in the barrel cortex and visual cortex after whisker removal or monocular deprivation, and also in the regulation of learning and memory, including the modulation of memory strength, forgetfulness, and memory quality. As a response to brain injury, infection or neuroinflammation, microglia become activated and increase in number. Activated microglia change to an amoeboid shape, migrate to sites of inflammation and secrete proteins such as cytokines, chemokines and reactive oxygen species. These molecules released by microglia can lead to synaptic plasticity and learning and memory deficits associated with aging, Alzheimer’s disease, traumatic brain injury, HIV-associated neurocognitive disorder, and other neurological or mental disorders such as autism, depression and post-traumatic stress disorder. With a focus mainly on recently published literature, here we reviewed the studies investigating the role of resting microglia in synaptic plasticity and learning and memory, as well as how activated microglia modulate disease-related plasticity and learning and memory deficits. By summarizing the function of microglia in these processes, we aim to provide an overview of microglia regulation of synaptic plasticity and learning and memory, and to discuss the possibility of microglia manipulation as a therapeutic to ameliorate cognitive deficits associated with aging, Alzheimer’s disease, traumatic brain injury, HIV-associated neurocognitive disorder, and mental disorders.
Collapse
Affiliation(s)
- Jessica Cornell
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Shelbi Salinas
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Hou-Yuan Huang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
21
|
Aldskogius H, Kozlova EN. Dorsal Root Injury-A Model for Exploring Pathophysiology and Therapeutic Strategies in Spinal Cord Injury. Cells 2021; 10:2185. [PMID: 34571835 PMCID: PMC8470715 DOI: 10.3390/cells10092185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the cellular and molecular mechanisms of spinal cord injury is fundamental for our possibility to develop successful therapeutic approaches. These approaches need to address the issues of the emergence of a non-permissive environment for axonal growth in the spinal cord, in combination with a failure of injured neurons to mount an effective regeneration program. Experimental in vivo models are of critical importance for exploring the potential clinical relevance of mechanistic findings and therapeutic innovations. However, the highly complex organization of the spinal cord, comprising multiple types of neurons, which form local neural networks, as well as short and long-ranging ascending or descending pathways, complicates detailed dissection of mechanistic processes, as well as identification/verification of therapeutic targets. Inducing different types of dorsal root injury at specific proximo-distal locations provide opportunities to distinguish key components underlying spinal cord regeneration failure. Crushing or cutting the dorsal root allows detailed analysis of the regeneration program of the sensory neurons, as well as of the glial response at the dorsal root-spinal cord interface without direct trauma to the spinal cord. At the same time, a lesion at this interface creates a localized injury of the spinal cord itself, but with an initial neuronal injury affecting only the axons of dorsal root ganglion neurons, and still a glial cell response closely resembling the one seen after direct spinal cord injury. In this review, we provide examples of previous research on dorsal root injury models and how these models can help future exploration of mechanisms and potential therapies for spinal cord injury repair.
Collapse
Affiliation(s)
- Håkan Aldskogius
- Laboratory of Regenertive Neurobiology, Biomedical Center, Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden;
| | | |
Collapse
|
22
|
Abstract
Significant advances have been made in recent years in identifying the genetic components of Wallerian degeneration, the process that brings the progressive destruction and removal of injured axons. It has now been accepted that Wallerian degeneration is an active and dynamic cellular process that is well regulated at molecular and cellular levels. In this review, we describe our current understanding of Wallerian degeneration, focusing on the molecular players and mechanisms that mediate the injury response, activate the degenerative program, transduce the death signal, execute the destruction order, and finally, clear away the debris. By highlighting the starring roles and sketching out the molecular script of Wallerian degeneration, we hope to provide a useful framework to understand Wallerian and Wallerian-like degeneration and to lay a foundation for developing new therapeutic strategies to treat axon degeneration in neural injury as well as in neurodegenerative disease. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingsheng Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Butler CA, Popescu AS, Kitchener EJA, Allendorf DH, Puigdellívol M, Brown GC. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J Neurochem 2021; 158:621-639. [PMID: 33608912 DOI: 10.1111/jnc.15327] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
There is growing evidence that excessive microglial phagocytosis of neurons and synapses contributes to multiple brain pathologies. RNA-seq and genome-wide association (GWAS) studies have linked multiple phagocytic genes to neurodegenerative diseases, and knock-out of phagocytic genes has been found to protect against neurodegeneration in animal models, suggesting that excessive microglial phagocytosis contributes to neurodegeneration. Here, we review recent evidence that microglial phagocytosis of live neurons and synapses causes neurodegeneration in animal models of Alzheimer's disease and other tauopathies, Parkinson's disease, frontotemporal dementias, multiple sclerosis, retinal degeneration and neurodegeneration induced by ischaemia, infection or ageing. We also review factors regulating microglial phagocytosis of neurons, including: nucleotides, frackalkine, phosphatidylserine, calreticulin, UDP, CD47, sialylation, complement, galectin-3, Apolipoprotein E, phagocytic receptors, Siglec receptors, cytokines, microglial epigenetics and expression profile. Some of these factors may be potential treatment targets to prevent neurodegeneration mediated by excessive microglial phagocytosis of live neurons and synapses.
Collapse
Affiliation(s)
- Claire A Butler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alma S Popescu
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, UK.,Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Fissel JA, Farah MH. The influence of BACE1 on macrophage recruitment and activity in the injured peripheral nerve. J Neuroinflammation 2021; 18:71. [PMID: 33722254 PMCID: PMC7962400 DOI: 10.1186/s12974-021-02121-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
Following peripheral nerve injury, multiple cell types, including axons, Schwann cells, and macrophages, coordinate to promote nerve regeneration. However, this capacity for repair is limited, particularly in older populations, and current treatments are insufficient. A critical component of the regeneration response is the network of cell-to-cell signaling in the injured nerve microenvironment. Sheddases are expressed in the peripheral nerve and play a role in the regulation if this cell-to-cell signaling through cleavage of transmembrane proteins, enabling the regulation of multiple pathways through cis- and trans-cellular regulatory mechanisms. Enhanced axonal regeneration has been observed in mice with deletion of the sheddase beta-secretase (BACE1), a transmembrane aspartyl protease that has been studied in the context of Alzheimer’s disease. BACE1 knockout (KO) mice display enhanced macrophage recruitment and activity following nerve injury, although it is unclear whether this plays a role in driving the enhanced axonal regeneration. Further, it is unknown by what mechanism(s) BACE1 increases macrophage recruitment and activity. BACE1 has many substrates, several of which are known to have immunomodulatory activity. This review will discuss current knowledge of the role of BACE1 and other sheddases in peripheral nerve regeneration and outline known immunomodulatory BACE1 substrates and what potential roles they could play in peripheral nerve regeneration. Currently, the literature suggests that BACE1 and substrates that are expressed by neurons and Schwann cells are likely to be more important for this process than those expressed by macrophages. More broadly, BACE1 may play a role as an effector of immunomodulation beyond the peripheral nerve.
Collapse
Affiliation(s)
- John A Fissel
- Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Mohamed H Farah
- Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
25
|
Jiang Y, Liang J, Li R, Peng Y, Huang J, Huang L. Basic fibroblast growth factor accelerates myelin debris clearance through activating autophagy to facilitate early peripheral nerve regeneration. J Cell Mol Med 2021; 25:2596-2608. [PMID: 33512767 PMCID: PMC7933946 DOI: 10.1111/jcmm.16274] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/01/2020] [Accepted: 12/31/2020] [Indexed: 01/17/2023] Open
Abstract
The successful removal of damaged myelin sheaths during Wallerian degeneration (WD) is essential for ensuring structural remodelling and functional recovery following traumatic peripheral nerve injury (PNI). Recent studies have established that autophagy involves myelin phagocytosis and cellular homoeostasis, and its disorder impairs myelin clearance. Based on the role of basic fibroblast growth factor (bFGF) on exerting neuroprotection and angiogenesis during nerve tissue regeneration, we now explicitly focus on the issue about whether the therapeutic effect of bFGF on supporting nerve regeneration is closely related to accelerate the autophagic clearance of myelin debris during WD. Using sciatic nerve crushed model, we found that bFGF remarkedly improved axonal outgrowth and nerve reconstruction at the early phase of PNI (14 days after PNI). More importantly, we further observed that bFGF could enhance phagocytic capacity of Schwann cells (SCs) to engulf myelin debris. Additionally, this enhancing effect is accomplished by autophagy activation and the increase of autophagy flux by immunoblotting and immune‐histochemical analyses. Taken together, our data suggest that the action of bFGF on modulating early peripheral nerve regeneration is closely associated with myelin debris removal by SCs, which might result in SC‐mediated autophagy activation, highlighting its insight molecular mechanism as a neuroprotective agent for repairing PNI.
Collapse
Affiliation(s)
- Yongsheng Jiang
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
| | - Jiahong Liang
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
- HangZhou Zhuyangxin Pharmaceutical Co.,LTD Hangzhou Zhejiang China
| | - Rui Li
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
- PCFM Lab, GD HPPC Lab School of Chemistry Sun Yat‐sen University Guangzhou China
| | - Yan Peng
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
- Hangzhou Institute for Food and Drug control Hangzhou Zhejiang China
| | - JiangLi Huang
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
| | - Lijiang Huang
- The Affiliated Xiangshan Hospital of Wenzhou Medial University Zhejiang China
| |
Collapse
|
26
|
Long Q, Wu B, Yang Y, Wang S, Shen Y, Bao Q, Xu F. Nerve guidance conduit promoted peripheral nerve regeneration in rats. Artif Organs 2021; 45:616-624. [PMID: 33270261 DOI: 10.1111/aor.13881] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
Nerve growth factor (NGF) is important for peripheral nerve regeneration. However, its short half-life and rapid diffusion in body fluids limit its clinical efficacy. Collagen has favorable biocompatibility and biodegradability, and weak immunogenicity. Because it possesses an NGF binding domain, we cross-linked heparin to collagen tubes to construct nerve guidance conduits for delivering NGF. The conduits were implanted to bridge a facial nerve defect in rats. Histological and functional analyses were performed to assess the effect of the nerve guidance conduit on facial nerve regeneration. Heparin enhanced the binding of NGF to collagen while retaining its bioactivity. Also, the nerve guidance conduit significantly promoted axonal growth and Schwan cell proliferation at 12 weeks after surgery. The nerve regeneration and functional recovery outcomes using the nerve guidance conduit were similar to those of autologous nerve grafting. Therefore, the nerve guidance conduit may promote safer nerve regeneration.
Collapse
Affiliation(s)
- Qingshan Long
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, China
| | - Bingshan Wu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei City, China
| | - Yu Yang
- Department of Psychiatry, Zigong Mental Health Center, Zigong City, China
| | - Shanhong Wang
- Department of Psychiatry, Zigong Mental Health Center, Zigong City, China
| | - Yiwen Shen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinghua Bao
- Department of Neurosurgery, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, China
| | - Feng Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Li L, Xu Y, Wang X, Liu J, Hu X, Tan D, Li Z, Guo J. Ascorbic acid accelerates Wallerian degeneration after peripheral nerve injury. Neural Regen Res 2021; 16:1078-1085. [PMID: 33269753 PMCID: PMC8224114 DOI: 10.4103/1673-5374.300459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wallerian degeneration occurs after peripheral nerve injury and provides a beneficial microenvironment for nerve regeneration. Our previous study demonstrated that ascorbic acid promotes peripheral nerve regeneration, possibly through promoting Schwann cell proliferation and phagocytosis and enhancing macrophage proliferation, migration, and phagocytosis. Because Schwann cells and macrophages are the main cells involved in Wallerian degeneration, we speculated that ascorbic acid may accelerate this degenerative process. To test this hypothesis, 400 mg/kg ascorbic acid was administered intragastrically immediately after sciatic nerve transection, and 200 mg/kg ascorbic acid was then administered intragastrically every day. In addition, rat sciatic nerve explants were treated with 200 μM ascorbic acid. Ascorbic acid significantly accelerated the degradation of myelin basic protein-positive myelin and neurofilament 200-positive axons in both the transected nerves and nerve explants. Furthermore, ascorbic acid inhibited myelin-associated glycoprotein expression, increased c-Jun expression in Schwann cells, and increased both the number of macrophages and the amount of myelin fragments in the macrophages. These findings suggest that ascorbic acid accelerates Wallerian degeneration by accelerating the degeneration of axons and myelin in the injured nerve, promoting the dedifferentiation of Schwann cells, and enhancing macrophage recruitment and phagocytosis. The study was approved by the Southern Medical University Animal Care and Use Committee (approval No. SMU-L2015081) on October 15, 2015.
Collapse
Affiliation(s)
- Lixia Li
- Department of Histology and Embryology; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University; Department of Anatomy, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yizhou Xu
- Department of Histology and Embryology; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xianghai Wang
- Department of Histology and Embryology; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China;, China
| | - Jingmin Liu
- Department of Histology and Embryology; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China;, China
| | - Xiaofang Hu
- Department of Histology and Embryology; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China;, China
| | - Dandan Tan
- Department of Histology and Embryology; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhenlin Li
- Department of Histology and Embryology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiasong Guo
- Department of Histology and Embryology; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
28
|
Lyu J, Jiang X, Leak RK, Shi Y, Hu X, Chen J. Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Transl Stroke Res 2020; 12:474-495. [PMID: 33128703 DOI: 10.1007/s12975-020-00857-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022]
Abstract
As an integral part of the innate immune system of the brain, resident microglia must react rapidly to the onset of brain injury and neurological disease. These dynamic cells then continue to shift their phenotype along a multidimensional continuum with overlapping pro- and anti-inflammatory states, allowing them to adapt to microenvironmental changes during the progression of brain disorders. However, the ability of microglia to shift phenotype through nimble molecular, structural, and functional changes comes at a cost, as the extreme pro-inflammatory states may prevent these professional phagocytes from clearing toxic debris and secreting tissue-repairing neurotrophic factors. Evolution has strongly favored heterogeneity in microglia in both the spatial and temporal dimensions-they can assume diverse roles in different brain regions, throughout the course of brain development and aging, and during the spatiotemporal progression of brain injuries and neurological diseases. Age and sex differences add further diversity to microglia functional status under physiological and pathological conditions. This article reviews recent advances in our knowledge of microglia with emphases on molecular mediators of phenotype shifts and functional diversity. We describe microglia-targeted therapeutic opportunities, including pharmacologic modulation of phenotype and repopulation of the brain with fresh microglia. With the advent of powerful new tools, research on microglia has recently accelerated in pace and may translate into potential therapeutics against brain injury and neurological disease.
Collapse
Affiliation(s)
- Junxuan Lyu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiaoyan Jiang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
29
|
Chu X, Wang C, Wu Z, Fan L, Tao C, Lin J, Chen S, Lin Y, Ge Y. JNK/c-Jun-driven NLRP3 inflammasome activation in microglia contributed to retinal ganglion cells degeneration induced by indirect traumatic optic neuropathy. Exp Eye Res 2020; 202:108335. [PMID: 33141050 DOI: 10.1016/j.exer.2020.108335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Indirect traumatic optic neuropathy (ITON) is a major cause of permanent loss of vision after blunt head trauma. Neuroinflammation plays a crucial role in neurodegenerative diseases. The present study concentrated on JNK/c-Jun-driven NLRP3 inflammasome activation in microglia during the degeneration of retinal ganglion cells (RGCs) in ITON. METHODS An impact acceleration (IA) model was employed to induce ITON, which could produce significant neurodegeneration in the visual system. Pharmacological approaches were employed to disrupt JNK and to explore whether JNK and the microglial response contribute to RGC death and axonal degeneration. RESULTS Our results indicated that the ITON model induced significant RGC death and axonal degeneration and activated JNK/c-Jun signaling, which could further induce the microglial response and NLRP3 inflammasome activation. Moreover, JNK disruption is sufficient to suppress NLRP3 inflammasome activation in microglia and to prevent RGC death and axonal degeneration. CONCLUSIONS ITON could promote JNK/c-Jun signaling, which further activates the NLRP3 inflammasome in microglia and contributes to the degeneration of axons and death of RGCs. JNK inhibition is able to suppress the inflammatory reaction and improve RGC survival. Although further work is needed to determine whether pharmacological inhibition of the NLRP3 inflammasome can prevent ITON, our findings indicated that such intervention could be promising for translational work.
Collapse
Affiliation(s)
- Xiaoqi Chu
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China
| | - Chun Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China
| | - Zheng Wu
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China
| | - Liting Fan
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China
| | - Chunmei Tao
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China
| | - Jiaqi Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China
| | - Shuang Chen
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China
| | - Yongzhong Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China.
| | - Yusong Ge
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian City, Liaoning Province, 116023, China.
| |
Collapse
|
30
|
Huang TC, Wu HL, Chen SH, Wang YT, Wu CC. Thrombomodulin facilitates peripheral nerve regeneration through regulating M1/M2 switching. J Neuroinflammation 2020; 17:240. [PMID: 32799887 PMCID: PMC7477856 DOI: 10.1186/s12974-020-01897-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Background Excessive inflammation within damaged tissue usually leads to delayed or insufficient regeneration, and nerves in the peripheral nervous system (PNS) generally do not recover fully following damage. Consequently, there is growing interest in whether modulation of the inflammatory response could help to promote nerve regeneration in the PNS. However, to date, there are no practical therapeutic strategies for manipulating inflammation after nerve injury. Thrombomodulin (TM) is a transmembrane glycoprotein containing five domains. The lectin-like domain of TM has the ability to suppress the inflammatory response. However, whether TM can modulate inflammation in the PNS during nerve regeneration has yet to be elucidated. Methods We investigated the role of TM in switching proinflammatory type 1 macrophages (M1) to anti-inflammatory type 2 macrophages (M2) in a human monocytic cell line (THP-1) and evaluated the therapeutic application of TM in transected sciatic nerve injury in rats. Results The administration of TM during M1 induction significantly reduced the expression levels of inflammatory cytokines, including TNF-a (p < 0.05), IL-6 (p < 0.05), and CD86 (p < 0.05), in THP-1 cells. Simultaneously, the expression levels of M2 markers, including IL-10 (p < 0.05) and CD206 (p < 0.05), were significantly increased in TM-treated THP-1 cells. Inhibition of IL-4R-c-Myc-pSTAT6-PPARγ signaling abolished the expression levels of IL-10 (p < 0.05) and CD206 (p < 0.05). The conditioned medium (CM) collected from M1 cells triggered an inflammatory response in primary Schwann cells, while CM collected from M1 cells treated with TM resulted in a dose-dependent reduction in inflammation. TM treatment led to better nerve regeneration when tested 6 weeks after injury and preserved effector muscle function. In addition, TM treatment reduced macrophage infiltration at the site of injury and led to potent M1 to M2 transition, thus indicating the anti-inflammatory capacity of TM. Conclusions Collectively, our findings demonstrate the anti-inflammatory role of TM during nerve regeneration. Therefore, TM represents a potential drug for the promotion and modulation of functional recovery in peripheral nerves that acts by regulating the M1/M2 ratio.
Collapse
Affiliation(s)
- Tzu-Chieh Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Rd, Tainan, 701, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Hua-Lin Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Szu-Han Chen
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Ting Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Rd, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan. .,Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|