1
|
Han L, Zhao C, Jin F, Jiang R, Wu H. LINC02282 promotes DNA methylation of TRIM6 by recruiting DNMTs to inhibit the progression of Parkinson's disease. Brain Res Bull 2025; 222:111224. [PMID: 39892584 DOI: 10.1016/j.brainresbull.2025.111224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Long non-coding RNAs (lncRNAs) are closely linked to the occurrence and development of neurodegenerative diseases, while the underlying mechanisms remain elusive. The goal of the present study was to elucidate the mechanism by which LINC02282, a significantly downregulated lncRNA in the GEO database, elicits neuroprotective effects on PD. LINC02282 was poorly expressed in SH-SY5Y and SK-N-AS cells exposed to MPP+ and mice injected with MPTP. LINC02282 overexpression plasmids inhibited apoptosis and promoted the proliferation of SH-SY5Y and SK-N-AS cells. In addition, LINC02282 overexpression using an adeno-associated virus reduced neuronal damage in PD mice. LINC02282 was mainly localized in the nucleus, and LINC02282 promoted the methylation of the tripartite motif-containing protein 6 (TRIM6) promoter to inhibit TRIM6 expression. LINC02282 bound to DNA methyltransferases (DNMTs) and LINC02282 overexpression increased the binding of DNMTs to the TRIM6 promoter. Overexpression of TRIM6 alone induced PD-like symptoms in mice and combined TRIM6 upregulation inhibited the neuroprotective effect of LINC02282 both in vitro and in vivo. In summary, LINC02282 alleviated neuronal injury in PD by recruiting DNMTs to the promoter region of TRIM6 and inhibiting TRIM6 expression.
Collapse
Affiliation(s)
- Lu Han
- Department of Neurology, Anshan Hospital, The First Hospital of China Medical University, Anshan, Liaoning 114000, PR China.
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Feng Jin
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Rongfeng Jiang
- Department of orthopedics department, Anshan Hospital, The First Hospital of China Medical University, Anshan, Liaoning 114000, PR China
| | - Hao Wu
- Department of orthopedics department, Anshan Hospital, The First Hospital of China Medical University, Anshan, Liaoning 114000, PR China
| |
Collapse
|
2
|
Balamurli G, Liew AQX, Tee WW, Pervaiz S. Interplay between epigenetics, senescence and cellular redox metabolism in cancer and its therapeutic implications. Redox Biol 2024; 78:103441. [PMID: 39612910 PMCID: PMC11629570 DOI: 10.1016/j.redox.2024.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
There is accumulating evidence indicating a close crosstalk between key molecular events regulating cell growth and proliferation, which could profoundly impact carcinogenesis and its progression. Here we focus on reviewing observations highlighting the interplay between epigenetic modifications, irreversible cell cycle arrest or senescence, and cellular redox metabolism. Epigenetic alterations, such as DNA methylation and histone modifications, dynamically influence tumour transcriptome, thereby impacting tumour phenotype, survival, growth and spread. Interestingly, the acquisition of senescent phenotype can be triggered by epigenetic changes, acting as a double-edged sword via its ability to suppress tumorigenesis or by facilitating an inflammatory milieu conducive for cancer progression. Concurrently, an aberrant redox metabolism, which is a function of the balance between reactive oxygen species (ROS) generation and intracellular anti-oxidant defences, influences signalling cascades and genomic stability in cancer cells by serving as a critical link between epigenetics and senescence. Recognizing this intricate interconnection offers a nuanced perspective for therapeutic intervention by simultaneously targeting specific epigenetic modifications, modulating senescence dynamics, and restoring redox homeostasis.
Collapse
Affiliation(s)
- Geoffrey Balamurli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Angeline Qiu Xia Liew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore
| | - Wee Wei Tee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore; Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore; NUS Medicine Healthy Longevity Program, NUS, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
3
|
Kempkes RWM, Prinjha RK, de Winther MPJ, Neele AE. Novel insights into the dynamic function of PRC2 in innate immunity. Trends Immunol 2024; 45:1015-1030. [PMID: 39603889 DOI: 10.1016/j.it.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
The polycomb repressive complex 2 (PRC2) is an established therapeutic target in cancer. PRC2 catalyzes methylation of histone H3 at lysine 27 (H3K27me3) and is known for maintaining eukaryote cell identity. Recent discoveries show that modulation of PRC2 not only impacts cell differentiation and tumor growth but also has immunomodulatory properties. Here, we integrate multiple immunological fields to understand PRC2 and its subunits in epigenetic canonical regulation and non-canonical mechanisms within innate immunity. We discuss how PRC2 regulates hematopoietic stem cell proliferation, myeloid cell differentiation, and shapes innate immune responses. The PRC2 catalytic domain EZH2 is upregulated in various human inflammatory diseases and its deletion or inhibition in experimental mouse models can reduce disease severity, emphasizing its importance in regulating inflammation.
Collapse
Affiliation(s)
- Rosalie W M Kempkes
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands
| | | | - Menno P J de Winther
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands.
| | - Annette E Neele
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Shelash SI, Shabeeb IA, Ahmad I, Saleem HM, Bansal P, Kumar A, Deorari M, Kareem AH, Al-Ani AM, Abosaoda MK. lncRNAs'p potential roles in the pathogenesis of cancer via interacting with signaling pathways; special focus on lncRNA-mediated signaling dysregulation in lung cancer. Med Oncol 2024; 41:310. [PMID: 39516331 DOI: 10.1007/s12032-024-02536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Lung cancer ranks among the most lethal types of cancer globally, with a high occurrence and fatality rate. The spread of cancer to other parts of the body, known as metastasis, is the primary cause of treatment failure and death in lung cancer cases. Current approaches for treating advanced lung cancer typically involve a combination of chemotherapy and targeted therapy. However, the majority of patients ultimately develop resistance to these treatments, leading to a worsened prognosis. In recent years, cancer biology research has predominantly focused on the role of protein-encoding genes in cancer development. Long non-coding RNAs (lncRNAs) are transcripts over 200 nucleotides in length that do not encode proteins but are crucial RNA molecules involved in numerous biological functions. While many functions of lncRNAs remain unknown, some have been linked to human diseases, including cancer. Studies have demonstrated that lncRNAs interact with other large molecules in the cell, such as proteins, DNA, and RNA, influencing various critical aspects of cancer. LncRNAs play a significant role in regulating gene expression and have a crucial function in the transcriptional regulation of cancer cells. They mediate various biological and clinical processes such as invasion, metastasis, apoptosis, and cell proliferation. Dysregulation of lncRNAs has been found to impact the process of carcinogenesis through advanced technologies like RNA sequencing and microarrays. Collectively, these long non-coding RNAs hold promise as potential biomarkers and therapeutic targets for human cancers. In this segment, we provide a comprehensive summary of the literature on the characteristics and formation of lncRNAs, along with an overview of their current known roles in lung cancer.
Collapse
Affiliation(s)
- Sulieman Ibrahim Shelash
- Electronic Marketing and Social Media, Economic and Administrative Sciences Zarqa University, Zarqa, Jordan
- Research Follower, INTI International University, Negeri Sembilan, 71800, Nilai, Malaysia
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Hiba Muwafaq Saleem
- Department of Biology, College of Science, University Of Anbar, Ramadi, Iraq.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan
- Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | | | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
5
|
Hosseini M, Mokhtari MJ. Up-regulation of HOXA-AS2 and MEG3 long non-coding RNAs acts as a potential peripheral biomarker for bipolar disorder. J Cell Mol Med 2024; 28:e70150. [PMID: 39482996 PMCID: PMC11528130 DOI: 10.1111/jcmm.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Bipolar disorder (BD) is a psychiatric condition that is frequently misdiagnosed and linked to inadequate treatment. Long non-coding RNAs (lncRNAs) have lately gained recognition as crucial genetic elements and are now regarded as regulatory mechanisms in the neurological system. Our objective was to measure the quantities of HOXA-AS2 and MEG3 ncRNA transcripts. HOXA-AS2 and MEG3 ncRNA levels were checked in the peripheral blood of 50 type I BD and 50 control samples by real-time PCR. Furthermore, we conducted ROC curve analysis and correlation analysis to examine the association between gene expression and specific clinical characteristics in instances with BD. Additionally, a computational study was performed to investigate the binding sites of miRNAs on the HOXA-AS2 and MEG3 lncRNAs. BD subjects showed a significant increase in the expression of HOXA-AS2 and MEG3 compared to controls. The lncRNAs HOXA-AS2 and MEG3 have an area under the ROC curve (AUC) values of 0.70 and 0.71, respectively. There was a significant correlation between the expression levels of ncRNAs HOXA-AS2 and MEG3 in the peripheral blood of patients with BD and occupation scores. The data presented indicate a potential correlation between the expression of HOXA-AS2 and MEG3 lncRNAs with an elevated risk of BD. Furthermore, these lncRNAs may be linked to several molecular pathways. Our findings indicate that the amounts of lncRNAs HOXA-AS2 and MEG3 in transcripts might be a promising potential biomarker for patients with BD.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Biology, Zarghan BranchIslamic Azad UniversityZarghanIran
| | | |
Collapse
|
6
|
Sakurai K, Morita M, Aomine Y, Matsumoto M, Moriyama T, Kasahara E, Sekiyama A, Otani M, Oshima R, Loveland KL, Yamada M, Yoneda Y, Oka M, Hikida T, Miyamoto Y. Importin α4 deficiency induces psychiatric disorder-related behavioral deficits and neuroinflammation in mice. Transl Psychiatry 2024; 14:426. [PMID: 39379355 PMCID: PMC11461878 DOI: 10.1038/s41398-024-03138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Importin α4, which is encoded by the Kpna4 gene, is a well-characterized nuclear-cytoplasmic transport factor known to mediate transport of transcription factors including NF-κB. Here, we report that Kpna4 knock-out (KO) mice exhibit psychiatric disorder-related behavioral abnormalities such as anxiety-related behaviors, decreased social interaction, and sensorimotor gating deficits. Contrary to a previous study predicting attenuated NF-κB activity as a result of Kpna4 deficiency, we observed a significant increase in expression levels of NF-κB genes and proinflammatory cytokines such as TNFα, Il-1β or Il-6 in the prefrontal cortex or basolateral amygdala of the KO mice. Moreover, examination of inflammatory responses in primary cells revealed that Kpna4 deficient cells have an increased inflammatory response, which was rescued by addition of not only full length, but also a nuclear transport-deficient truncation mutant of importin α4, suggesting contribution of its non-transport functions. Furthermore, RNAseq of sorted adult microglia and astrocytes and subsequent transcription factor analysis suggested increases in polycomb repressor complex 2 (PRC2) activity in Kpna4 KO cells. Taken together, importin α4 deficiency induces psychiatric disorder-related behavioral deficits in mice, along with an increased inflammatory response and possible alteration of PRC2 activity in glial cells.
Collapse
Affiliation(s)
- Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Makiko Morita
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Yoshiatsu Aomine
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mitsunobu Matsumoto
- Department of Preemptive Medical Pharmacology for Mind and Body, Graduate School and School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Miltenyi Biotec K.K., Koto-ku, Tokyo, Japan
| | - Tetsuji Moriyama
- Department of Cell Biology and Biochemistry, Division of Medicine, School of Medical Sciences, University of Fukui, Eiheiji Cho, Fukui, Japan
| | - Emiko Kasahara
- Department of Preemptive Medical Pharmacology for Mind and Body, Graduate School and School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Atsuo Sekiyama
- Department of Preemptive Medical Pharmacology for Mind and Body, Graduate School and School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Mayumi Otani
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Rieko Oshima
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research Wright St, Clayton, VIC, Australia
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, School of Medical Sciences, University of Fukui, Eiheiji Cho, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Fukui, Japan
| | - Yoshihiro Yoneda
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.
- Department of Regulation of Infectious Cancer, Research Institute of Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan.
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan.
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.
- Laboratory of Biofunctional Molecular Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.
| |
Collapse
|
7
|
Feng D, Liu Y, Zuo F, Liu F, Liu Y, Wang Y, Chen L, Guo X, Tian J. LncRNA SOX21-AS1 Promotes Activation of BV2 Cells via Epigenetical Silencing of SOCS3 and Aggravates Parkinson's Disease. Gerontology 2024; 70:1063-1073. [PMID: 39047719 DOI: 10.1159/000539784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND LncRNAs perform a crucial impact on microglia's activation in Parkinson's disease (PD). Here, our purpose was to probe the function and involved mechanism of lncRNA SOX21-AS1 on microglial activation in PD. METHODS Mice were treated with MPTP, and BV2 cells were treated with LPS/ATP to build PD animal and cell models. Genes' expression was measured using RT-qPCR, immunoblotting, and IHC stain. ELISA was applied for testing inflammatory factors' levels. Cell viability and apoptosis were tested using kits. RIP and RNA pull-down assay were utilized for monitoring the bond of SOX21-AS1 to EZH2, and ChIP was applied for affirming the bond between EZH2 and SOCS3's promoter. RESULTS The expression of SOX21-AS1 and SOCS3 was abnormal in PD cell and animal models. Inhibition of SOX21-AS1 repressed LPS/ATP-induced activation in BV2 cells and nerve damage caused by activated BV2 cells, alleviating the pathological features of PD mice. Further studies found that SOX21-AS1 epigenetically inhibited SOCS3 by recruiting EZH2 to SOCS3 promoter. SOX21-AS1 overexpression partially offset the repressive impact of SOCS3 enhancement on BV2 cell activation and the protective effect on nerve cells. CONCLUSION SOX21-AS1 enhances LPS/ATP-induced activation of BV2 cells and nerve damage caused by activated BV2 cells though recruiting EZH2 to SOCS3's promoter, thereby alleviating PD progression. Our research supplies new potential target for curing PD.
Collapse
Affiliation(s)
- Dan Feng
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yun Liu
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fangya Zuo
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fenfen Liu
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yuqi Liu
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yujie Wang
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lanlan Chen
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
- Zunyi Medical University, Zunyi, China
| | - Xiuhong Guo
- The First Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jinyong Tian
- General Medicine Department, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
8
|
Li Y, Yu C, Jiang X, Fu J, Sun N, Zhang D. The mechanistic view of non-coding RNAs as a regulator of inflammatory pathogenesis of Parkinson's disease. Pathol Res Pract 2024; 258:155349. [PMID: 38772115 DOI: 10.1016/j.prp.2024.155349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. Emerging evidence suggests that inflammation plays a crucial role in the pathogenesis of PD, with the NLRP3 inflammasome implicated as a key mediator. Nfon-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have recently garnered attention for their regulatory roles in various biological processes, including inflammation. This review aims to provide a mechanistic insight into how ncRNAs function as regulators of inflammatory pathways in PD, with a specific focus on the NLRP3 inflammasome. We discuss the dysregulation of miRNAs and lncRNAs in PD pathogenesis and their impact on neuroinflammation through modulation of NLRP3 activation, cytokine production, and microglial activation. Additionally, we explore the crosstalk between ncRNAs, alpha-synuclein pathology, and mitochondrial dysfunction, further elucidating the intricate network underlying PD-associated inflammation. Understanding the mechanistic roles of ncRNAs in regulating inflammatory pathways may offer novel therapeutic targets for the treatment of PD and provide insights into the broader implications of ncRNA-mediated regulation in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yu'an Li
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Chunlei Yu
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Jia Fu
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Ning Sun
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Daquan Zhang
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China.
| |
Collapse
|
9
|
Qin Y, Ren J, Yu H, He X, Cheng S, Chen W, Yang Z, Sun F, Wang C, Yuan S, Chen P, Wu D, Ren F, Huang A, Chen J. HOXA-AS2 Epigenetically Inhibits HBV Transcription by Recruiting the MTA1-HDAC1/2 Deacetylase Complex to cccDNA Minichromosome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306810. [PMID: 38647380 PMCID: PMC11200093 DOI: 10.1002/advs.202306810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Persistent transcription of HBV covalently closed circular DNA (cccDNA) is critical for chronic HBV infection. Silencing cccDNA transcription through epigenetic mechanisms offers an effective strategy to control HBV. Long non-coding RNAs (lncRNAs), as important epigenetic regulators, have an unclear role in cccDNA transcription regulation. In this study, lncRNA sequencing (lncRNA seq) is conducted on five pairs of HBV-positive and HBV-negative liver tissue. Through analysis, HOXA-AS2 (HOXA cluster antisense RNA 2) is identified as a significantly upregulated lncRNA in HBV-infected livers. Further experiments demonstrate that HBV DNA polymerase (DNA pol) induces HOXA-AS2 after establishing persistent high-level HBV replication. Functional studies reveal that HOXA-AS2 physically binds to cccDNA and significantly inhibits its transcription. Mechanistically, HOXA-AS2 recruits the MTA1-HDAC1/2 deacetylase complex to cccDNA minichromosome by physically interacting with metastasis associated 1 (MTA1) subunit, resulting in reduced acetylation of histone H3 at lysine 9 (H3K9ac) and lysine 27 (H3K27ac) associated with cccDNA and subsequently suppressing cccDNA transcription. Altogether, the study reveals a mechanism to self-limit HBV replication, wherein the upregulation of lncRNA HOXA-AS2, induced by HBV DNA pol, can epigenetically suppress cccDNA transcription.
Collapse
Affiliation(s)
- YiPing Qin
- Institute for Viral HepatitisKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized TreatmentChongqing University Cancer HospitalChongqing400030China
| | - JiHua Ren
- Institute for Viral HepatitisKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - HaiBo Yu
- Institute for Viral HepatitisKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Xin He
- Institute for Viral HepatitisKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - ShengTao Cheng
- Institute for Viral HepatitisKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - WeiXian Chen
- Institute for Viral HepatitisKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Zhen Yang
- Institute for Viral HepatitisKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - FengMing Sun
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education)College of Laboratory MedicineChongqing Medical UniversityChongqing400016China
| | - ChunDuo Wang
- Institute for Viral HepatitisKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - SiYu Yuan
- Institute for Viral HepatitisKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Peng Chen
- Institute for Viral HepatitisKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - DaiQing Wu
- Institute for Viral HepatitisKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Fang Ren
- Institute for Viral HepatitisKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - AiLong Huang
- Institute for Viral HepatitisKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Juan Chen
- Institute for Viral HepatitisKey Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
- State Key Laboratory of Ultrasound in Medicine and EngineeringCollege of Biomedical EngineeringChongqing Medical UniversityChongqing400016China
| |
Collapse
|
10
|
Zhao Z, Zheng X, Wang H, Guo J, Liu R, Yang G, Huo M. LncRNA-PCat19 acts as a ceRNA of miR-378a-3p to facilitate microglia activation and accelerate chronic neuropathic pain in rats by promoting KDM3A-mediated BDNF demethylation. Mol Immunol 2024; 170:88-98. [PMID: 38643689 DOI: 10.1016/j.molimm.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/05/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
The pathogenesis of neuropathic pain (NP) is complex, and there are various pathological processes. Previous studies have suggested that lncRNA PCAT19 is abnormally expressed in NP conduction and affects the occurrence and development of pain. The aim of this study is to analyze the role and mechanism of PCAT19 in NP induced by chronic compressive nerve injury (CCI) in mice. In this study, C57BL/6 mice were applied to establish the CCI model. sh-PCAT19 was intrathecally injected once a day for 5 consecutive days from the second day after surgery. We discovered that PCat19 level was gradually up-regulated with the passage of modeling time. Downregulation of Iba-1-positive expression, M1/M2 ratio of microglia, and pro-inflammatory factors in the spinal cords of CCI-mice after PCat19 knock-downed was observed. Mechanically, the expression of miR-378a-3p was negatively correlated with KDM3A and PCat19. Deletion of KDM3A prevented H3K9me2 demethylation of BDNF promoter and suppressed BDNF expression. Further, KDM3A promotes CCI-induced neuroinflammation and microglia activation by mediating Brain-derived neurotrophic factor (BDNF) demethylation. Together, the results suggest that PCat19 may be involved in the development of NP and that PCat19 shRNA injection can attenuate microglia-induced neuroinflammation by blocking KDM3A-mediated demethylation of BDNF and BDNF release.
Collapse
Affiliation(s)
- Ziyu Zhao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Xingxing Zheng
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Hui Wang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Jiao Guo
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Ruixia Liu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Guang Yang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Miao Huo
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China.
| |
Collapse
|
11
|
Prasanth MI, Sivamaruthi BS, Cheong CSY, Verma K, Tencomnao T, Brimson JM, Prasansuklab A. Role of Epigenetic Modulation in Neurodegenerative Diseases: Implications of Phytochemical Interventions. Antioxidants (Basel) 2024; 13:606. [PMID: 38790711 PMCID: PMC11118909 DOI: 10.3390/antiox13050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epigenetics defines changes in cell function without involving alterations in DNA sequence. Neuroepigenetics bridges neuroscience and epigenetics by regulating gene expression in the nervous system and its impact on brain function. With the increase in research in recent years, it was observed that alterations in the gene expression did not always originate from changes in the genetic sequence, which has led to understanding the role of epigenetics in neurodegenerative diseases (NDDs) including Alzheimer's disease (AD) and Parkinson's disease (PD). Epigenetic alterations contribute to the aberrant expression of genes involved in neuroinflammation, protein aggregation, and neuronal death. Natural phytochemicals have shown promise as potential therapeutic agents against NDDs because of their antioxidant, anti-inflammatory, and neuroprotective effects in cellular and animal models. For instance, resveratrol (grapes), curcumin (turmeric), and epigallocatechin gallate (EGCG; green tea) exhibit neuroprotective effects through their influence on DNA methylation patterns, histone acetylation, and non-coding RNA expression profiles. Phytochemicals also aid in slowing disease progression, preserving neuronal function, and enhancing cognitive and motor abilities. The present review focuses on various epigenetic modifications involved in the pathology of NDDs, including AD and PD, gene expression regulation related to epigenetic alterations, and the role of specific polyphenols in influencing epigenetic modifications in AD and PD.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Clerance Su Yee Cheong
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Rao Y, Li J, Qiao R, Luo J, Liu Y. Synergistic effects of tetramethylpyrazine and astragaloside IV on spinal cord injury via alteration of astrocyte A1/A2 polarization through the Sirt1-NF-κB pathway. Int Immunopharmacol 2024; 131:111686. [PMID: 38461631 DOI: 10.1016/j.intimp.2024.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Reactive astrocytes are hallmarks of traumatic spinal cord injury (T-SCI) and are associated with neuropathic pain (NP). Mediating the functional phenotype of reactive astrocytes helps neural repair and ameliorates NP in T-SCI. Here, we aimed to explore the role of tetramethylpyrazine (TMPZ) and astragaloside IV (AGS-IV) in astrocyte polarization and the underlying molecular mechanism in T-SCI. METHODS Primary cultured astrocytes from mice were treated with LPS or conditioned medium from "M1" polarized microglia (M1-CM), followed by TMPZ and/or AGS-IV administration. The expression levels of "A1" astrocyte-specific markers (including C3, GBP2, Serping1, iNOS), "A2" astrocyte-specific markers (including S100a10 and PTX3), Sirt1 and NF-κB were detected via western blotting. TNF-α and IL-1β levels were detected via ELISA. RT-PCR was used to evaluate OIP5-AS1 and miR-34a expression. si-OIP5-AS1 or the Sirt1 inhibitor EX-527 was administered to astrocytes. A spinal cord injury (SCI) model was constructed in Sprague-Dawley (SD) rats. Alterations in astrocytic "A1/A2" polarization in the spinal cord tissues were evaluated. RESULTS LPS and M1-CM induced "A1" polarization of primary astrocytes. TMPZ and ASG IV could substantially reduce the expression of "A1"-related biomarkers but enhance "A2"-related biomarkers. OIP5-AS1 and Sirt1 levels were reduced in "A1"-polarized astrocytes, while miR-34a and p-NF-κB p65 were elevated. TMPZ and ASG IV enhanced OIP5-AS1 and Sirt1 levels and, in contrast, attenuated the changes in miR-34a and p-NF-κB p65 levels. Notably, the TMPZ and ASG IV combination had stronger effects on astrocyte polarization than the single treatment with TMPZ or ASG IV. OIP5-AS1 knockdown and Sirt1 inhibition both reversed the regulatory effects of TMPZ and ASG IV in astrocytic polarization. According to the in vivo experiments, the expression of "A1"-associated markers was enhanced in the spinal cords of SCI rats. The TMPZ and ASG IV combination reduced astrocytic "A1" polarization and enhanced astrocytic "A2" polarization. The expression of lncRNA OIP5-AS1 and Sirt1 was enhanced by TMPZ and ASG IV, while that of miR-34a and p-NF-κB p65 was inhibited. CONCLUSION The combination of TMPZ and ASG IV can ameliorate dysregulated astrocytic polarization induced by spinal cord injury by affecting the lncRNA OIP5-AS1-Sirt1-NF-κB pathway.
Collapse
Affiliation(s)
- Yaojian Rao
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Junjie Li
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Ruofei Qiao
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jinxin Luo
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yan Liu
- Department of Spine Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
13
|
Słowikowski B, Owecki W, Jeske J, Jezierski M, Draguła M, Goutor U, Jagodziński PP, Kozubski W, Dorszewska J. Epigenetics and the neurodegenerative process. Epigenomics 2024; 16:473-491. [PMID: 38511224 DOI: 10.2217/epi-2023-0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Neurological diseases are multifactorial, genetic and environmental. Environmental factors such as diet, physical activity and emotional state are epigenetic factors. Environmental markers are responsible for epigenetic modifications. The effect of epigenetic changes is increased inflammation of the nervous system and neuronal damage. In recent years, it has been shown that epigenetic changes may cause an increased risk of neurological disorders but, currently, the relationship between epigenetic modifications and neurodegeneration remains unclear. This review summarizes current knowledge about neurological disorders caused by epigenetic changes in diseases such as Alzheimer's disease, Parkinson's disease, stroke and epilepsy. Advances in epigenetic techniques may be key to understanding the epigenetics of central changes in neurological diseases.
Collapse
Affiliation(s)
- Bartosz Słowikowski
- Department of Biochemistry & Molecular Biology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Wojciech Owecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Jan Jeske
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Michał Jezierski
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Michał Draguła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Ulyana Goutor
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry & Molecular Biology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Wojciech Kozubski
- Chair & Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| |
Collapse
|
14
|
Wang L, Sun H, Cao L, Wang J. Role of HOXA1-4 in the development of genetic and malignant diseases. Biomark Res 2024; 12:18. [PMID: 38311789 PMCID: PMC10840290 DOI: 10.1186/s40364-024-00569-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024] Open
Abstract
The HOXA genes, belonging to the HOX family, encompass 11 members (HOXA1-11) and exert critical functions in early embryonic development, as well as various adult processes. Furthermore, dysregulation of HOXA genes is implicated in genetic diseases, heart disease, and various cancers. In this comprehensive overview, we primarily focused on the HOXA1-4 genes and their associated functions and diseases. Emphasis was placed on elucidating the impact of abnormal expression of these genes and highlighting their significance in maintaining optimal health and their involvement in the development of genetic and malignant diseases. Furthermore, we delved into their regulatory mechanisms, functional roles, and underlying biology and explored the therapeutic potential of targeting HOXA1-4 genes for the treatment of malignancies. Additionally, we explored the utility of HOXA1-4 genes as biomarkers for monitoring cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Lumin Wang
- Gastroenterology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Haifeng Sun
- The Third Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Li Cao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Jinhai Wang
- Gastroenterology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
15
|
Liu T, Du D, Zhao R, Xie Q, Dong Z. Gut microbes influence the development of central nervous system disorders through epigenetic inheritance. Microbiol Res 2023; 274:127440. [PMID: 37343494 DOI: 10.1016/j.micres.2023.127440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Central nervous system (CNS) disorders, such as depression, anxiety, and Alzheimer's disease (AD), affect quality of life of patients and pose significant economic and social burdens worldwide. Due to their obscure and complex pathogeneses, current therapies for these diseases have limited efficacy. Over the past decade, the gut microbiome has been shown to exhibit direct and indirect influences on the structure and function of the CNS, affecting multiple pathological pathways. In addition to the direct interactions between the gut microbiota and CNS, the gut microbiota and their metabolites can regulate epigenetic processes, including DNA methylation, histone modification, and regulation of non-coding RNAs. In this review, we discuss the tripartite relationship among gut microbiota, epigenetic inheritance, and CNS disorders. We suggest that gut microbes and their metabolites influence the pathogenesis of CNS disorders at the epigenetic level, which may inform the development of effective therapeutic strategies for CNS disorders.
Collapse
Affiliation(s)
- Tianyou Liu
- West China School of Medicine, Sichuan University, Chengdu 610072, PR China
| | - Dongru Du
- West China School of Medicine, Sichuan University, Chengdu 610072, PR China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu 610072, PR China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Zaiquan Dong
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
16
|
Jiang Y, Xu N. The Emerging Role of Autophagy-Associated lncRNAs in the Pathogenesis of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24119686. [PMID: 37298636 DOI: 10.3390/ijms24119686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neurodegenerative diseases (NDDs) have become a significant global public health problem and a major societal burden. The World Health Organization predicts that NDDs will overtake cancer as the second most common cause of human mortality within 20 years. Thus, it is urgently important to identify pathogenic and diagnostic molecular markers related to neurodegenerative processes. Autophagy is a powerful process for removing aggregate-prone proteins in neurons; defects in autophagy are often associated with the pathogenesis of NDDs. Long non-coding RNAs (lncRNAs) have been suggested as key regulators in neurodevelopment; aberrant regulation of lncRNAs contributes to neurological disorders. In this review, we summarize the recent progress in the study of lncRNAs and autophagy in the context of neurodegenerative disorders, especially Alzheimer's disease (AD) and Parkinson's disease (PD). The information presented here should provide guidance for future in-depth investigations of neurodegenerative processes and related diagnostic molecular markers and treatment targets.
Collapse
Affiliation(s)
- Yapei Jiang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
17
|
Shen H, Song H, Wang S, Su D, Sun Q. NEAT1 enhances MPP + -induced pyroptosis in a cell model of Parkinson's disease via targeting miR-5047/YAF2 signaling. Immun Inflamm Dis 2023; 11:e817. [PMID: 37382256 PMCID: PMC10288836 DOI: 10.1002/iid3.817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/11/2023] [Accepted: 03/07/2023] [Indexed: 06/30/2023] Open
Abstract
PURPOSE Parkinson's disease (PD) is the second most frequent neurodegenerative disease. The aim of our study is to explore the role and the regulatory mechanism of long noncoding RNA (lncRNA) NEAT1 in MPP+ -induced pyroptosis in a cell model of PD. MATERIALS AND METHODS MPP+ -treated SH-SY5Y cells were used as an in vitro model of dopaminergic neurons for PD. Expression levels of miR-5047 and YAF2 mRNA were determined through qRT-PCR. TUNEL staining was carried out to analyze neuronal apoptosis. Luciferase activity assay was accomplished to analyze the combination of miR-5047 with NEAT1 or YAF2 3'-UTR region. Besides, concentrations of IL-1β and IL-18 in supernatant samples were analyzed by using ELISA assay. Expression level of proteins were examined through Western blot. RESULTS NEAT1 and YAF2 expression were increased, while miR-5047 expression was declined in the SH-SY5Y cells treated with MPP+ . NEAT1 was a positively regulator to SH-SY5Y cells pyroptosis induced by MPP+ . In addition, YAF2 was a downstream target of miR-5047. NEAT1 promoted YAF2 expression via inhibiting miR-5047. Importantly, the promotion of NEAT1 to SH-SY5Y cells pyroptosis induced by MPP+ was rescued by miR-5047 mimic transfection or YAF2 downregulation. CONCLUSION In conclusion, NEAT1 was increased in MPP+ -induced SH-SY5Y cells, and it promoted MPP+ -induced pyroptosis through facilitating YAF2 expression by sponging miR-5047.
Collapse
Affiliation(s)
- Hong Shen
- Department of EncephalopathySecond People's HospitalSuzhou CityJiangsu ProvinceChina
| | - Hui Song
- Department of Neurology, TaiHe HospitalHubei University of MedicineShiyan CityHubei ProvinceChina
| | - Songlin Wang
- Department of Neurology, TaiHe HospitalHubei University of MedicineShiyan CityHubei ProvinceChina
| | - Daojing Su
- Department of Orthopaedic Rehabilitation, TaiHe HospitalHubei University of MedicineShiyan CityHubei ProvinceChina
| | - Qiang Sun
- Department of Neurology, TaiHe HospitalHubei University of MedicineShiyan CityHubei ProvinceChina
| |
Collapse
|
18
|
He X, Huang Y, Liu Y, Zhang X, Wang Q, Liu Y, Ma X, Long X, Ruan Y, Lei H, Gan C, Wang X, Zou X, Xiong B, Shu K, Lei T, Zhang H. Astrocyte-derived exosomal lncRNA 4933431K23Rik modulates microglial phenotype and improves post-traumatic recovery via SMAD7 regulation. Mol Ther 2023; 31:1313-1331. [PMID: 36739479 PMCID: PMC10188635 DOI: 10.1016/j.ymthe.2023.01.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/07/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Astrocyte-microglial interaction plays a crucial role in brain injury-associated neuroinflammation. Our previous data illustrated that astrocytes secrete microRNA, leading to anti-inflammatory effects on microglia. Long non-coding RNAs participate in neuroinflammation regulation after traumatic brain injury. However, the effect of astrocytes on microglial phenotype via long non-coding RNAs and the underlying molecular mechanisms remain elusive. We used long non-coding RNA sequencing on murine astrocytes and found that exosomal long non-coding RNA 4933431K23Rik attenuated traumatic brain injury-induced microglial activation in vitro and in vivo and ameliorated cognitive function deficiency. Furthermore, microRNA and messenger RNA sequencing together with binding prediction illustrated that exosomal long non-coding RNA 4933431K23Rik up-regulates E2F7 and TFAP2C expression by sponging miR-10a-5p. Additionally, E2F7 and TFAP2C, as transcription factors, regulated microglial Smad7 expression. Using Cx3cr1-Smad7 overexpression of adeno-associated virus, microglia specifically overexpressed Smad7 in the attenuation of neuroinflammation, resulting in less cognitive deficiency after traumatic brain injury. Mechanically, overexpressed Smad7 physically binds to IκBα and inhibits its ubiquitination, preventing NF-κB signaling activation. The Smad7 activator asiaticoside alleviates neuroinflammation and protects neuronal function in traumatic brain injury mice. This study revealed that an exosomal long non-coding RNA from astrocytes attenuates microglial activation after traumatic brain injury by up-regulating Smad7, providing a potential therapeutic target.
Collapse
Affiliation(s)
- Xuejun He
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China; Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Yuan Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Xincheng Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Quanji Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Yanchao Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Xiaopeng Ma
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Xiaobing Long
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Ruan
- Wuhan United Imaging Life Science Instruments Ltd., Wuhan, Hubei 430030, P.R. China
| | - Hongxia Lei
- Wuhan United Imaging Life Science Instruments Ltd., Wuhan, Hubei 430030, P.R. China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China.
| |
Collapse
|
19
|
Huang T, Zhao JY, Pan RR, Jiang T, Fu XX, Huang Q, Wang XX, Gong PY, Tian YY, Zhang YD. Dysregulation of Circulatory Levels of lncRNAs in Parkinson's Disease. Mol Neurobiol 2023; 60:317-328. [PMID: 36264433 DOI: 10.1007/s12035-022-03086-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/05/2022] [Indexed: 12/30/2022]
Abstract
Emerging evidence suggested that long non-coding RNAs (lncRNAs) were involved in Parkinson's disease (PD) pathogenesis. Herein, we used gene expression profiles from GEO database to construct a PD-specific ceRNA network. Functional enrichment analysis suggested that ceRNA network might participate in the development of PD. PPI networks were constructed, and the ceRNA subnetwork based on five hub genes was set up. In a cohort of 32 PD patients and 31 healthy controls, the expression of 10 DElncRNAs (TTC3-AS1, LINC01259, ZMYND10-AS1, CHRM3-AS1, MYO16-AS1, AGBL5-IT1, HOTAIRM1, RABGAP1L-IT1, HLCS-IT1, and LINC00393) were further verified. Consistent with the microarray data, LINC01259 expression was significantly lower in PD patients compared with controls (P = 0.008). Intriguingly, such a difference was only observed among male patients and male controls when dividing study participants based on their gender (P = 0.016). However, the expression of other lncRNAs did not differ significantly between the two groups. Receiver operating characteristic (ROC) curve analysis revealed that the diagnostic power of LINC01259 was 0.694 for PD and 0.677 for early-stage PD. GSEA enrichment analysis revealed that LINC01259 was mainly enriched in biological processes associated with immune function and inflammatory response. Moreover, LINC01259 expression was not correlated with age of patients, disease duration, disease stage, MDS-UPDRS score, MDS-UPDRS III score, MMSE score, and MOCA score. The current study provides further evidence for the dysregulation of lncRNAs in circulating leukocytes of PD patients, revealing that LINC01259 has clinical potential as a novel immune and inflammatory biomarker for PD and early-stage PD diagnosis.
Collapse
Affiliation(s)
- Ting Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Jin-Ying Zhao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Rong-Rong Pan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Xin-Xin Fu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210000, China
| | - Qing Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Xi-Xi Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - Peng-Yu Gong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China
| | - You-Yong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China.
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
20
|
Feng F, Jiao P, Wang J, Li Y, Bao B, Luoreng Z, Wang X. Role of Long Noncoding RNAs in the Regulation of Cellular Immune Response and Inflammatory Diseases. Cells 2022; 11:cells11223642. [PMID: 36429069 PMCID: PMC9688074 DOI: 10.3390/cells11223642] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are recently discovered genetic regulatory molecules that regulate immune responses and are closely associated with the occurrence and development of various diseases, including inflammation, in humans and animals. Under specific physiological conditions, lncRNA expression varies at the cell or tissue level, and lncRNAs can bind to specific miRNAs, target mRNAs, and target proteins to participate in certain processes, such as cell differentiation and inflammatory responses, via the corresponding signaling pathways. This review article summarizes the regulatory role of lncRNAs in macrophage polarization, dendritic cell differentiation, T cell differentiation, and endothelial and epithelial inflammation. In addition, it describes the molecular mechanism of lncRNAs in acute kidney injury, hepatitis, inflammatory injury of the lung, osteoarthritis, mastitis, and neuroinflammation to provide a reference for the molecular regulatory network as well as the genetic diagnosis and treatment of inflammatory diseases in humans and animals.
Collapse
Affiliation(s)
- Fen Feng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Peng Jiao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jinpeng Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yanxia Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Binwu Bao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| | - Xingping Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| |
Collapse
|
21
|
Na C, Wen-Wen C, Li W, Ao-Jia Z, Ting W. Significant Role of Long Non-coding RNAs in Parkinson's Disease. Curr Pharm Des 2022; 28:3085-3094. [PMID: 36154598 DOI: 10.2174/1381612828666220922110551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, with clinical manifestations of resting tremor, akinesia (or bradykinesia), rigidity, and postural instability. However, the molecular pathogenesis of PD is still unclear, and its effective treatments are limited. Substantial evidence demonstrates that long non-coding RNAs (lncRNAs) have important functions in various human diseases, such as cancer, cardiovascular disease, and neurodegenerative diseases. Therefore, the main purpose of this study is to review the role of lncRNAs in the pathogenesis of PD. METHODS The role of lncRNAs in the pathogenesis of PD is summarized by reviewing Pubmed. RESULTS Thirty different lncRNAs are aberrantly expressed in PD and promote or inhibit PD by mediating ubiquitin-proteasome system, autophagy-lysosomal pathway, dopamine (DA) neuronal apoptosis, mitochondrial function, oxidative stress, and neuroinflammation. CONCLUSION In this direction, lncRNA may contribute to the treatment of PD as a diagnostic and therapeutic target for PD.
Collapse
Affiliation(s)
- Chen Na
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chen Wen-Wen
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wang Li
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhou Ao-Jia
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wang Ting
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.,Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
22
|
Zhang Y, Wang Z, Wang R, Xia L, Cai Y, Tong F, Gao Y, Ding J, Wang X. Conditional knockout of ASK1 in microglia/macrophages attenuates epileptic seizures and long-term neurobehavioural comorbidities by modulating the inflammatory responses of microglia/macrophages. J Neuroinflammation 2022; 19:202. [PMID: 35941644 PMCID: PMC9361603 DOI: 10.1186/s12974-022-02560-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Background Apoptosis signal-regulating kinase 1 (ASK1) not only causes neuronal programmed cell death via the mitochondrial pathway but also is an essential component of the signalling cascade during microglial activation. We hypothesize that ASK1 selective deletion modulates inflammatory responses in microglia/macrophages(Mi/Mϕ) and attenuates seizure severity and long-term cognitive impairments in an epileptic mouse model. Methods Mi/Mϕ-specific ASK1 conditional knockout (ASK1 cKO) mice were obtained for experiments by mating ASK1flox/flox mice with CX3CR1creER mice with tamoxifen induction. Epileptic seizures were induced by intrahippocampal injection of kainic acid (KA). ASK1 expression and distribution were detected by western blotting and immunofluorescence staining. Seizures were monitored for 24 h per day with video recordings. Cognition, social and stress related activities were assessed with the Y maze test and the three-chamber social novelty preference test. The heterogeneous Mi/Mϕ status and inflammatory profiles were assessed with immunofluorescence staining and real-time polymerase chain reaction (q-PCR). Immunofluorescence staining was used to detect the proportion of Mi/Mϕ in contact with apoptotic neurons, as well as neuronal damage. Results ASK1 was highly expressed in Mi/Mϕ during the acute phase of epilepsy. Conditional knockout of ASK1 in Mi/Mϕ markedly reduced the frequency of seizures in the acute phase and the frequency of spontaneous recurrent seizures (SRSs) in the chronic phase. In addition, ASK1 conditional knockout mice displayed long-term neurobehavioral improvements during the Y maze test and the three-chamber social novelty preference test. ASK1 selective knockout mitigated neuroinflammation, as evidenced by lower levels of Iba1+/CD16+ proinflammatory Mi/Mϕ. Conditional knockout of ASK1 increased Mi/Mϕ proportion in contact with apoptotic neurons. Neuronal loss was partially restored by ASK1 selective knockout. Conclusion Conditional knockout of ASK1 in Mi/Mϕ reduced seizure severity, neurobehavioral impairments, and histological damage, at least via inhibiting proinflammatory microglia/macrophages responses. ASK1 in microglia/macrophages is a potential therapeutic target for inflammatory responses in epilepsy. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02560-5.
Collapse
Affiliation(s)
- Yiying Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhangyang Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Rongrong Wang
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lu Xia
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yiying Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Fangchao Tong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yanqin Gao
- Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Gao X, Cao Z, Tan H, Li P, Su W, Wan T, Guo W. LncRNA, an Emerging Approach for Neurological Diseases Treatment by Regulating Microglia Polarization. Front Neurosci 2022; 16:903472. [PMID: 35860297 PMCID: PMC9289270 DOI: 10.3389/fnins.2022.903472] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders cause untold human disability and death each year. For most neurological disorders, the efficacy of their primary treatment strategies remains suboptimal. Microglia are associated with the development and progression of multiple neurological disorders. Targeting the regulation of microglia polarization has emerged as an important therapeutic strategy for neurological disorders. Their pro-inflammatory (M1)/anti-inflammatory (M2) phenotype microglia are closely associated with neuronal apoptosis, synaptic plasticity, blood-brain barrier integrity, resistance to iron death, and astrocyte regulation. LncRNA, a recently extensively studied non-coding transcript of over 200 nucleotides, has shown great value to intervene in microglia polarization. It can often participate in gene regulation of microglia by directly regulating transcription or sponging downstream miRNAs, for example. Through proper regulation, microglia can exert neuroprotective effects, reduce neurological damage and improve the prognosis of many neurological diseases. This paper reviews the progress of research linking lncRNAs to microglia polarization and neurological diseases.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zilong Cao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Haifeng Tan
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Peiling Li
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Wenen Su
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Teng Wan
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Teng Wan,
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Weiming Guo,
| |
Collapse
|
24
|
The Role of Non-Coding RNAs in the Pathogenesis of Parkinson’s Disease: Recent Advancement. Pharmaceuticals (Basel) 2022; 15:ph15070811. [PMID: 35890110 PMCID: PMC9315906 DOI: 10.3390/ph15070811] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson’s disease (PD) is a prevalent neurodegenerative aging disorder that manifests as motor and non-motor symptoms, and its etiopathogenesis is influenced by non-coding RNAs (ncRNAs). Signal pathway and gene sequence studies have proposed that alteration of ncRNAs is relevant to the occurrence and development of PD. Furthermore, many studies on brain tissues and body fluids from patients with PD indicate that variations in ncRNAs and their target genes could trigger or exacerbate neurodegenerative pathogenesis and serve as potential non-invasive biomarkers of PD. Numerous ncRNAs have been considered regulators of apoptosis, α-syn misfolding and aggregation, mitochondrial dysfunction, autophagy, and neuroinflammation in PD etiology, and evidence is mounting for the determination of the role of competing endogenous RNA (ceRNA) mechanisms in disease development. In this review, we discuss the current knowledge regarding the regulation and function of ncRNAs as well as ceRNA networks in PD pathogenesis, focusing on microRNAs, long ncRNAs, and circular RNAs to increase the understanding of the disease and propose potential target identification and treatment in the early stages of PD.
Collapse
|
25
|
Guo S, Wang H, Yin Y. Microglia Polarization From M1 to M2 in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:815347. [PMID: 35250543 PMCID: PMC8888930 DOI: 10.3389/fnagi.2022.815347] [Citation(s) in RCA: 403] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia-mediated neuroinflammation is a common feature of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Microglia can be categorized into two opposite types: classical (M1) or alternative (M2), though there’s a continuum of different intermediate phenotypes between M1 and M2, and microglia can transit from one phenotype to another. M1 microglia release inflammatory mediators and induce inflammation and neurotoxicity, while M2 microglia release anti-inflammatory mediators and induce anti-inflammatory and neuroprotectivity. Microglia-mediated neuroinflammation is considered as a double-edged sword, performing both harmful and helpful effects in neurodegenerative diseases. Previous studies showed that balancing microglia M1/M2 polarization had a promising therapeutic prospect in neurodegenerative diseases. We suggest that shifting microglia from M1 to M2 may be significant and we focus on the modulation of microglia polarization from M1 to M2, especially by important signal pathways, in neurodegenerative diseases.
Collapse
|
26
|
Zeng X, Qin H. Stem Cell Transplantation for Parkinson’s Disease: Current Challenges and Perspectives. Aging Dis 2022; 13:1652-1663. [DOI: 10.14336/ad.2022.0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/12/2022] [Indexed: 11/19/2022] Open
|