1
|
Zhang Y, Yang Z, Jiang N, Tan X, Jiang P, Cao G, Yang Q. MAIT cell deficiency exacerbates neuroinflammation in P301S human tau transgenic mice. J Neuroinflammation 2025; 22:90. [PMID: 40114233 PMCID: PMC11927249 DOI: 10.1186/s12974-025-03413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The role of immune cells in neurodegeneration remains incompletely understood. Accumulation of misfolded tau proteins is a hallmark of neurodegenerative diseases. Our recent study revealed the presence of mucosal-associated invariant T (MAIT) cells in the meninges, where they express antioxidant molecules to maintain meningeal barrier integrity. However, the role of MAIT cells in tau-related neuroinflammation and neurodegeneration remains unknown. METHODS Flow cytometry analysis was performed to examine MAIT cells in human Tau P301S transgenic mice. Tau pathology, hippocampus atrophy, meningeal integrity, and microglial gene expression were examined in Mr1-/- P301S mice that lacked MAIT cells and control P301S transgenic mice, as well as Mr1-/- P301S mice with adoptive transfer of MAIT cells. RESULTS The meninges of P301S mutant human tau transgenic mice had increased numbers of MAIT cells, which retained their expression of antioxidant molecules. Mr1-/-P301S mice that lacked MAIT cells exhibited increased tau pathology and hippocampus atrophy compared to control Mr1+/+P301S mice. Adoptive transfer of MAIT cells reduced tau pathology and hippocampus atrophy in Mr1-/- P301S mice. Meningeal barrier integrity was compromised in Mr1-/-P301S mice, but not in control Mr1+/+P301S mice. A distinctive microglia subset with a proinflammatory gene expression profile (M-inflammatory) was enriched in the hippocampus of Mr1-/-P301S mice. The transcriptomes of the remaining microglia in these mice also shifted towards a proinflammatory state, with increased expression of inflammatory cytokines, chemokines, and genes related to ribosome biogenesis and immune responses to toxic substances. The transfer of MAIT cells restored meningeal barrier integrity and suppressed microglial inflammation in the Mr1-/- P301S mice. CONCLUSIONS Our data indicate an important role for MAIT cells in regulating tau-pathology-related neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Yuanyue Zhang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French St, New Brunswick, NJ, 08901, USA
| | - Zhi Yang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French St, New Brunswick, NJ, 08901, USA
| | - Na Jiang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French St, New Brunswick, NJ, 08901, USA
| | - Xiaosheng Tan
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French St, New Brunswick, NJ, 08901, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Qi Yang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French St, New Brunswick, NJ, 08901, USA.
- Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Pediatrics, Johnson Medical School, Rutgers Robert Wood, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
2
|
Zhang S, Gao Y, Zhao Y, Huang TY, Zheng Q, Wang X. Peripheral and central neuroimmune mechanisms in Alzheimer's disease pathogenesis. Mol Neurodegener 2025; 20:22. [PMID: 39985073 PMCID: PMC11846304 DOI: 10.1186/s13024-025-00812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025] Open
Abstract
Alzheimer's disease (AD) poses a growing global health challenge as populations age. Recent research highlights the crucial role of peripheral immunity in AD pathogenesis. This review explores how blood-brain barrier disruption allows peripheral immune cells to infiltrate the central nervous system (CNS), worsening neuroinflammation and disease progression. We examine recent findings on interactions between peripheral immune cells and CNS-resident microglia, forming a self-perpetuating inflammatory cycle leading to neuronal dysfunction. Moreover, this review emphasizes recent developments in the dysregulation of immune factors from both the periphery and CNS, and their impact on AD progression. With ongoing research and development of new therapeutic strategies, this review underscores the importance of modulating interactions between the peripheral immune system and CNS in AD therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China
| | - Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China
| | - Yini Zhao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
3
|
Zhang Y, Yang Z, Tan X, Jiang N, Cao G, Yang Q. MAIT cell deficiency exacerbates neuroinflammation in P301S human tau transgenic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631124. [PMID: 39803476 PMCID: PMC11722295 DOI: 10.1101/2025.01.03.631124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The role of immune cells in neurodegeneration remains incompletely understood. Our recent study revealed the presence of mucosal-associated invariant T (MAIT) cells in the meninges, where they express antioxidant molecules to maintain meningeal barrier integrity. Accumulation of misfolded tau proteins are a hallmark of neurodegenerative diseases. The role of MAIT cells in tau-related neuroinflammation and neurodegeneration, however, remains unclear. Here we report that the meninges of P301 mutant human tau transgenic mice had increased numbers of MAIT cells, which retained their expression of antioxidant molecules. Mr1 -/- P301S mice that lacked MAIT cells exhibited increased tau pathology and hippocampus atrophy compared to control Mr1 +/+ P301S mice. Adoptive transfer of MAIT cells reduced tau pathology and hippocampus atrophy in Mr1 -/- P301S mice. Meningeal barrier integrity was compromised in Mr/ -/- P301S mice, but not in control Mr1 +/+ P301S mice. A distinctive microglia subset with proinflammatory gene expression profile (M-inflammatory) was enriched in the hippocampus of Mr1 -/- P301S mice. The transcriptomes of the remaining microglia in these mice also shifted towards a proinflammatory state, with increased expression of inflammatory cytokines, chemokines, and genes related with ribosome biogenesis and immune responses to toxic substances. The transfer of MAIT cells restored meningeal barrier integrity and suppressed microglial inflammation in the Mr1 -/- P301S mice. Together, our data indicate an important role for MAIT cells in regulating tau-pathology-related neuroinflammation and neurodegeneration.
Collapse
|
4
|
Afify R, Lipsius K, Wyatt-Johnson SJ, Brutkiewicz RR. Myeloid antigen-presenting cells in neurodegenerative diseases: a focus on classical and non-classical MHC molecules. Front Neurosci 2024; 18:1488382. [PMID: 39720231 PMCID: PMC11667120 DOI: 10.3389/fnins.2024.1488382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
In recent years, increasing evidence has highlighted the critical role of myeloid cells, specifically those that present antigen (APCs) in health and disease. These shape the progression and development of neurodegenerative disorders, where considerable interplay between the immune system and neurons influences the course of disease pathogenesis. Antigen-presenting myeloid cells display different classes of major histocompatibility complex (MHC) and MHC-like proteins on their surface for presenting various types of antigens to a wide variety of T cells. While most studies focus on the role of myeloid MHC class I and II molecules in health and disease, there is still much that remains unknown about non-polymorphic MHC-like molecules such as CD1d and MR1. Thus, in this review, we will summarize the recent findings regarding the contributions of both classical and non-classical MHC molecules, particularly on myeloid microglial APCs, in neurodegenerative diseases. This will offer a better understanding of altered mechanisms that may pave the way for the development of novel therapeutic strategies targeting immune cell-MHC interactions, to mitigate neurodegeneration and its associated pathology.
Collapse
Affiliation(s)
| | | | | | - Randy R. Brutkiewicz
- Department of Microbiology and Immunology and Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
5
|
Lin CC'J, Tian Y, Tanzi RE, Jorfi M. Approaches for studying neuroimmune interactions in Alzheimer's disease. Trends Immunol 2024; 45:971-986. [PMID: 39537528 PMCID: PMC11624993 DOI: 10.1016/j.it.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Peripheral immune cells play an important role in the pathology of Alzheimer's disease (AD), impacting processes such as amyloid and tau protein aggregation, glial activation, neuronal integrity, and cognitive decline. Here, we examine cutting-edge strategies - encompassing animal and cellular models - used to investigate the roles of peripheral immune cells in AD. Approaches such as antibody-mediated depletion, genetic ablation, and bone marrow chimeras in mouse models have been instrumental in uncovering T, B, and innate immune cell disease-modifying functions. However, challenges such as specificity, off-target effects, and differences between human and mouse immune systems underscore the need for more human-relevant models. Emerging multicellular models replicating critical aspects of human brain tissue and neuroimmune interactions increasingly offer fresh insights into the role of immune cells in AD pathogenesis. Refining these methodologies can deepen our understanding of immune cell contributions to AD and support the development of novel immune-related therapeutic interventions.
Collapse
Affiliation(s)
- Chih-Chung 'Jerry' Lin
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yuyao Tian
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
6
|
Lin H, Su L, Mao D, Yang G, Huang Q, Lan Y, Zeng J, Song W, Liang G, Wei Q, Zou D, Li R, Zou C. Identification of altered immune cell types and molecular mechanisms in Alzheimer's disease progression by single-cell RNA sequencing. Front Aging Neurosci 2024; 16:1477327. [PMID: 39610716 PMCID: PMC11602448 DOI: 10.3389/fnagi.2024.1477327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/24/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by gradual loss of cognitive function. Understanding the molecular mechanisms is crucial for developing effective therapies. Methods Data from single-cell RNA sequencing (scRNA-seq) in the GSE181279 dataset and gene chips in the GSE63060 and GSE63061 datasets were collected and analyzed to identify immune cell types and differentially expressed genes. Cell communication, pseudotime trajectory, enrichment analysis, co- expression network, and short time-series expression miner were analyzed to identify disease-specific molecular and cellular mechanisms. Results We identified eight cell types (B cells, monocytes, natural killer cells, gamma-delta T cells, CD8+ T cells, Tem/Temra cytotoxic T cells, Tem/Trm cytotoxic T cells, and mucosal-associated invariant T cells) using scRNA-seq. AD samples were enriched in monocytes, CD8+ T cells, Tem/Temra cytotoxic T cells, and Tem/Trm cytotoxic T cells, whereas samples from healthy controls were enriched in natural killer and mucosal-associated invariant T cells. Five co-expression modules that were identified through weighted gene correlation network analysis were enriched in immune- inflammatory pathways. Candidate genes with higher area under the receiver operating characteristic curve values were screened, and the expression trend of Ubiquitin-Fold Modifier Conjugating Enzyme 1 (UFC1) gradually decreased from healthy controls to mild cognitive impairment and then to AD. Conclusion Our study suggests that peripheral immune cells may be a potential therapeutic target for AD. Candidate genes, particularly UFC1, may serve as potential biomarkers for progression of AD.
Collapse
Affiliation(s)
- Hua Lin
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Su
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Daniel Mao
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Grace Yang
- State College Area High School, State College, PA, United States
| | - Qi Huang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yating Lan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingyi Zeng
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyi Song
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guining Liang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qingyan Wei
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongjie Li
- Department of Geriatrics, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chanhua Zou
- Department of Comprehensive Internal Medicine, Guangxi Medical University Caner Hospital, Nanning, China
| |
Collapse
|
7
|
Wyatt-Johnson SK, Kersey HN, Brutkiewicz RR. Enrichment of liver MAIT cells in a mouse model of Alzheimer's disease. J Neuroimmunol 2024; 390:578332. [PMID: 38537322 PMCID: PMC11382344 DOI: 10.1016/j.jneuroim.2024.578332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 05/13/2024]
Abstract
Emerging evidence has supported a role for the immune system and liver in Alzheimer's disease (AD). However, our understanding of how hepatic immune cells are altered in AD is limited. We previously found that brain mucosal-associated invariant T (MAIT) cell numbers are increased in AD. Furthermore, loss of MAIT cells and their antigen-presenting molecule, MR1, reduced amyloid-β accumulation in the brain. MAIT cells are also significantly present in the liver. Therefore, we sought to analyze MAIT and other immune cells in the AD liver. Increased frequency of activated MAIT cells (but not conventional T cells) were found in 8-month-old 5XFAD mouse livers. Therefore, these data raise the possibility that there is a role for peripheral MAIT cells in AD pathology.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America.
| | - Holly N Kersey
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
8
|
Wyatt-Johnson SK, Afify R, Brutkiewicz RR. The immune system in neurological diseases: What innate-like T cells have to say. J Allergy Clin Immunol 2024; 153:913-923. [PMID: 38365015 PMCID: PMC10999338 DOI: 10.1016/j.jaci.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The immune system classically consists of 2 lines of defense, innate and adaptive, both of which interact with one another effectively to protect us against any pathogenic threats. Importantly, there is a diverse subset of cells known as innate-like T cells that act as a bridge between the innate and adaptive immune systems and are pivotal players in eliciting inflammatory immune responses. A growing body of evidence has demonstrated the regulatory impact of these innate-like T cells in central nervous system (CNS) diseases and that such immune cells can traffic into the brain in multiple pathological conditions, which can be typically attributed to the breakdown of the blood-brain barrier. However, until now, it has been poorly understood whether innate-like T cells have direct protective or causative properties, particularly in CNS diseases. Therefore, in this review, our attention is focused on discussing the critical roles of 3 unique subsets of unconventional T cells, namely, natural killer T cells, γδ T cells, and mucosal-associated invariant T cells, in the context of CNS diseases, disorders, and injuries and how the interplay of these immune cells modulates CNS pathology, in an attempt to gain a better understanding of their complex functions.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind
| | - Reham Afify
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind.
| |
Collapse
|
9
|
Zeng J, Liao Z, Yang H, Wang Q, Wu Z, Hua F, Zhou Z. T cell infiltration mediates neurodegeneration and cognitive decline in Alzheimer's disease. Neurobiol Dis 2024; 193:106461. [PMID: 38437992 DOI: 10.1016/j.nbd.2024.106461] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder with pathological features of β-amyloid (Aβ) and hyperphosphorylated tau protein accumulation in the brain, often accompanied by cognitive decline. So far, our understanding of the extent and role of adaptive immune responses in AD has been quite limited. T cells, as essential members of the adaptive immune system, exhibit quantitative and functional abnormalities in the brains of AD patients. Dysfunction of the blood-brain barrier (BBB) in AD is considered one of the factors leading to T cell infiltration. Moreover, the degree of neuronal loss in AD is correlated with the quantity of T cells. We first describe the differentiation and subset functions of peripheral T cells in AD patients and provide an overview of the key findings related to BBB dysfunction and how T cells infiltrate the brain parenchyma through the BBB. Furthermore, we emphasize the risk factors associated with AD, including Aβ, Tau protein, microglial cells, apolipoprotein E (ApoE), and neuroinflammation. We discuss their regulation of T cell activation and proliferation, as well as the connection between T cells, neurodegeneration, and cognitive decline. Understanding the innate immune response is crucial for providing comprehensive personalized therapeutic strategies for AD.
Collapse
Affiliation(s)
- Junjian Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Zhiqiang Liao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Hanqin Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Qiong Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Zhiyong Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China.
| | - Zhidong Zhou
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China.
| |
Collapse
|
10
|
Shrinivasan R, Wyatt-Johnson SK, Brutkiewicz RR. The MR1/MAIT cell axis in CNS diseases. Brain Behav Immun 2024; 116:321-328. [PMID: 38157945 PMCID: PMC10842441 DOI: 10.1016/j.bbi.2023.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subpopulation of innate-like T cells that can be found throughout the body, predominantly in mucosal sites, the lungs and in the peripheral blood. MAIT cells recognize microbial-derived vitamin B (e.g., riboflavin) metabolite antigens that are presented by the major histocompatibility complex class I-like protein, MR1, found on a variety of cell types in the periphery and the CNS. Since their original discovery, MAIT cells have been studied predominantly in their roles in diseases in the periphery; however, it was not until the early 2000s that these cells were first examined for their contributions to disorders of the CNS, with the bulk of the work being done within the past few years. Currently, the MR1/MAIT cell axis has been investigated in only a few neurological diseases including, multiple sclerosis and experimental autoimmune encephalomyelitis, brain cancer/tumors, ischemia, cerebral palsy, general aging and, most recently, Alzheimer's disease. Each of these diseases demonstrates a role for this under-studied innate immune axis in its neuropathology. Together, they highlight the importance of studying the MR1/MAIT cell axis in CNS disorders. Here, we review the contributions of the MR1/MAIT cell axis in the progression or remission of these neurological diseases. This work has shed some light in terms of potentially exploiting the MR1/MAIT cell axis in novel therapeutic applications.
Collapse
Affiliation(s)
- Rashmi Shrinivasan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
11
|
Li J, Li Y, Niu J, Zhang J, Cheng X. Exploration of the shared genetic biomarkers in Alzheimer's disease and chronic kidney disease using integrated bioinformatics analysis. Medicine (Baltimore) 2023; 102:e35555. [PMID: 37933012 PMCID: PMC10627605 DOI: 10.1097/md.0000000000035555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 11/08/2023] Open
Abstract
In order to investigate the potential link between Alzheimer's disease (AD) and chronic kidney disease (CKD), we conducted a comprehensive analysis using a bioinformatics approach. We downloaded AD and CKD datasets from the Gene Expression Omnibus database and analyzed differentially expressed genes and weighted gene co-expression networks to identify candidate genes for AD and CKD. We used a combination of the least absolute shrinkage and selection operator and random forest algorithms to select the shared genes. Subsequently, we shared genes and performed an immune infiltration analysis to investigate the association between different immune cell types and shared genes. Finally, we elucidated the relationship between the expression levels of the shared genes in disease samples and cells using single-cell analysis. Our analysis identified 150 candidate genes that may be primarily involved in immune inflammatory responses and energy metabolism pathways. We found that JunD Proto-Oncogene, ALF transcription elongation factor 1, and ZFP36 Ring Finger Protein Like 1 were the best co-diagnostic markers for AD and CKD based on the results of Least Absolute Shrinkage Selection Operator analysis and the random forest algorithm. Based on the results of immune infiltration analysis, macrophages and T-cells play a significant role in the progression of AD and CKD. Our scRNA-sequencing data showed that the 3 shared genes in AD were significantly expressed in astrocytes, excitatory neurons, oligodendrocytes, and MAIT cells. The 3 shared genes in CKD were significantly expressed in oligodendrocytes, neutrophils, fibroblasts, astrocytes, and T-cells. JunD Proto-Oncogene, ALF transcription elongation factor 1, and ZFP36 Ring Finger Protein Like 1 genes are the best diagnostic markers for AD and CKD.
Collapse
Affiliation(s)
- Junqi Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiachang Niu
- Pediatric Surgery Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Jiacheng Zhang
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xunshu Cheng
- Medical College, Sichuan University of Arts and Science, Dazhou, China
| |
Collapse
|
12
|
Lv M, Zhang Z, Cui Y. Unconventional T cells in brain homeostasis, injury and neurodegeneration. Front Immunol 2023; 14:1273459. [PMID: 37854609 PMCID: PMC10579804 DOI: 10.3389/fimmu.2023.1273459] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
The interaction between peripheral immune cells and the brain is an important component of the neuroimmune axis. Unconventional T cells, which include natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, γδ T cells, and other poorly defined subsets, are a special group of T lymphocytes that recognize a wide range of nonpolymorphic ligands and are the connection between adaptive and innate immunity. Recently, an increasing number of complex functions of these unconventional T cells in brain homeostasis and various brain disorders have been revealed. In this review, we describe the classification and effector function of unconventional T cells, review the evidence for the involvement of unconventional T cells in the regulation of brain homeostasis, summarize the roles and mechanisms of unconventional T cells in the regulation of brain injury and neurodegeneration, and discuss immunotherapeutic potential as well as future research goals. Insight of these processes can shed light on the regulation of T cell immunity on brain homeostasis and diseases and provide new clues for therapeutic approaches targeting brain injury and neurodegeneration.
Collapse
Affiliation(s)
- Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Kurioka A, Klenerman P. Aging unconventionally: γδ T cells, iNKT cells, and MAIT cells in aging. Semin Immunol 2023; 69:101816. [PMID: 37536148 PMCID: PMC10804939 DOI: 10.1016/j.smim.2023.101816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Unconventional T cells include γδ T cells, invariant Natural Killer T cells (iNKT) cells and Mucosal Associated Invariant T (MAIT) cells, which are distinguished from conventional T cells by their recognition of non-peptide ligands presented by non-polymorphic antigen presenting molecules and rapid effector functions that are pre-programmed during their development. Here we review current knowledge of the effect of age on unconventional T cells, from early life to old age, in both mice and humans. We then discuss the role of unconventional T cells in age-associated diseases and infections, highlighting the similarities between members of the unconventional T cell family in the context of aging.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| |
Collapse
|