1
|
Kim JE, Wang SH, Lee DS, Kim TH, Kang TC. Neuronal PLPP/CIN exaggerates the immune response of hippocampal microglia to LPS challenge dependent on PAK1-NF-κB-COX-2 signaling pathway. Brain Res 2025; 1849:149345. [PMID: 39581524 DOI: 10.1016/j.brainres.2024.149345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Recently, we have reported that pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates neurofibromin 2 (NF2, also known as merlin) at serine (S) 10 site. Since NF2 inhibits p21-activated kinase 1 (PAK1)-mediated nuclear factor-κB (NF-κB) activation, in the present study, we investigated the role of PLPP/CIN-mediated NF2 S10 dephosphorylation in lipopolysaccharide (LPS)-induced neuroinflammation and explored its related signaling pathways in the mouse hippocampus. PLPP/CIN overexpression increased NF2 S10 dephosphorylation and PAK1 S204 autophosphorylation under physiological condition, which were reversed by PLPP/CIN deletion. Following LPS injection, PLPP/CIN overexpression exacerbated microglial activation, although microglial PLPP/CIN expression was undetectable. In addition, PLPP/CIN overexpression enhanced PAK1 and NF-κB phosphorylations, and upregulated cyclooxygenase-2 (COX-2) and prostaglandin E synthase 2 (PTGES2) expressions in CA1 neurons. PLPP/CIN overexpression also augmented microglial interleukin-1β induction. PLPP/CIN ablation and 1,1'-dithiodi-2-naphthtol (IPA-3, a PAK1 inhibitor) pretreatment ameliorated these LPS-induced neuroinflammatory responses. These findings indicate that PLPP/CIN-mediated NF2 S10 dephosphorylation may facilitate PAK1-NF-κB-COX-2-PTGES2 signaling pathway in CA1 neurons, which would subsequently exaggerate immune response of microglia following LPS treatment. Therefore, our findings suggest that this PLPP/CIN-mediated neuron-microglia interaction may play an important role in the pathogenesis of inflammation-related neurological diseases.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Su Hyeon Wang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
2
|
Yan J, Li T, Ji K, Zhou X, Yao W, Zhou L, Huang P, Zhong K. Safranal alleviates pentetrazole-induced epileptic seizures in mice by inhibiting the NF-κB signaling pathway and mitochondrial-dependent apoptosis through GSK-3β inactivation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118408. [PMID: 38823659 DOI: 10.1016/j.jep.2024.118408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron, a traditional Chinese medicine, is derived from Crocus sativus L. stigmas and has been reported to possess neuroprotective properties and potentially contribute to the inhibition of apoptosis and inflammation. Safranal, a potent monothyral aldehyde, is a main component of saffron that has been reported to have antiepileptic activity. However, the specific mechanism by which safranal suppresses epileptic seizures via its antiapoptotic and anti-inflammatory properties is unclear. AIM To evaluate the effect of safranal on seizure severity, inflammation, and postictal neuronal apoptosis in a mouse model of pentetrazole (PTZ)-induced seizures and explore the underlying mechanism involved. MATERIALS AND METHODS The seizure stage and latency of stage 2 and 4 were quantified to assess the efficacy of safranal in mitigating PTZ-induced epileptic seizures in mice. Electroencephalography (EEG) was employed to monitor epileptiform afterdischarges in each experimental group. The cognitive abilities and motor functions of the mice were evaluated using the novel object recognition test and the open field test, respectively. Neurons were quantified using hematoxylin and eosin staining. Additionally, bioinformatics tools were utilized to predict the interactions between safranal and specific target proteins. Glycogen synthase kinase-3β (GSK-3β), mitochondrial apoptosis-related proteins, and inflammatory factor levels were analyzed through western blotting. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) concentrations in brain tissue were assessed by ELISA. RESULTS Safranal decreased the average seizure stage and increased the lantency of stage 2 and 4 seizures in PTZ-induced epileptic mice. Additionally, safranal exhibited neuroprotective effects on hippocampal CA1 and CA3 neurons and reduced hyperactivity caused by postictal hyperexcitability. Bioinformatics analysis revealed that safranal can bind to five specific proteins, including GSK-3β. By promoting Ser9 phosphorylation and inhibiting GSK-3β activity, safranal effectively suppressed the NF-κB signaling pathway. Moreover, the findings indicate that safranal treatment can decrease TNF-α and IL-1β levels in the cerebral tissues of epileptic mice and downregulate mitochondrial apoptosis-related proteins, including Bcl-2, Bax, Bak, Caspase 9, and Caspase 3. CONCLUSION Safranal can suppress the NF-κB signaling pathway and mitochondrial-dependent apoptosis through GSK-3β inactivation, suggesting that it is a promising therapeutic agent for epilepsy treatment.
Collapse
Affiliation(s)
- Jieping Yan
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China
| | - Tingting Li
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Kaiyue Ji
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310014, China
| | - Weiyi Yao
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Department of Pharmacology, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Liujing Zhou
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310014, China
| | - Ping Huang
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Kai Zhong
- Center for Clinical Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Ghareeb MA, Mohammed HS, Aboushousha T, Lotfy DM, El-Shazly MAM, Sobeh M, Taha EFS. Ipomoea carnea mitigates ethanol-induced ulcers in irradiated rats via Nrf2/HO -1 pathway: an in vivo and in silico study. Sci Rep 2024; 14:3469. [PMID: 38342928 PMCID: PMC10859386 DOI: 10.1038/s41598-024-53336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 02/13/2024] Open
Abstract
The aim of this study was to investigate the potential of Ipomoea carnea flower methanolic extract (ICME) as a natural gastroprotective therapy against ethanol-induced gastric ulcers, particularly in individuals exposed to ionizing radiation (IR). The study focused on the Nrf2/HO-1 signaling pathway, which plays a crucial role in protecting the gastrointestinal mucosa from oxidative stress and inflammation. Male Wistar rats were divided into nine groups, the control group received distilled water orally for one week, while other groups were treated with ethanol to induce stomach ulcers, IR exposure, omeprazole, and different doses of ICME in combination with ethanol and/or IR. The study conducted comprehensive analyses, including LC-HRESI-MS/MS, to characterize the phenolic contents of ICME. Additionally, the Nrf2/HO-1 pathway, oxidative stress parameters, gastric pH, and histopathological changes were examined. The results showed that rats treated with IR and/or ethanol exhibited histopathological alterations, increased lipid peroxidation, decreased antioxidant enzyme activity, and reduced expression levels of Nrf2 and HO-1. However, pretreatment with ICME significantly improved these parameters. Phytochemical analysis identified 39 compounds in ICME, with flavonoids, hydroxybenzoic acids, and fatty acids as the predominant compounds. Virtual screening and molecular dynamics simulations suggested that ICME may protect against gastric ulceration by inhibiting oxidative stress and inflammatory mediators. In conclusion, this study demonstrates the potential of ICME as a natural gastroprotective therapy for preventing gastric ulcers. These findings contribute to the development of novel interventions for gastrointestinal disorders using natural plant extracts particularly in individuals with a history of radiation exposure.
Collapse
Affiliation(s)
- Mosad A Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornaish El-Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Hala Sh Mohammed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11311, Egypt
| | - Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Kornaish El-Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Dina M Lotfy
- Drug Radiation Research Department, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Maha A M El-Shazly
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornaish El-Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza, 12411, Egypt
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Ben-Guerir, Morocco
| | - Eman F S Taha
- Health Radiation Research Department, National Center for Radiation Research and Technology, (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|