1
|
Zhao X, Ma C, Sun Q, Huang X, Qu W, Chen Y, Liu Z, Bao A, Sun B, Yang Y, Li X. Mettl3 regulates the pathogenesis of Alzheimer's disease via fine-tuning Lingo2. Mol Psychiatry 2025:10.1038/s41380-025-02984-4. [PMID: 40169805 DOI: 10.1038/s41380-025-02984-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 01/14/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and diverse factors contribute to its pathogenesis. Previous studies have suggested the dysregulation of m6A modification involves in AD, but the underlying mechanism and targets remain largely unknown. In the present study, we have shown that the levels of Mettl3 and m6A modification are increased in specific brain regions of 5xFAD mice and post-mortem AD patients, respectively. Heterozygous deletion of neuronal Mettl3 (AD::Mettl3+/-) reduced Aβ plaques and inflammation, and improved learning and memory of AD mice, and vice versa for Mettl3 knock in (AD::Mettl3-KI). Mechanistically, we observed that the level of m6A modification of Lingo2 increased in 5xFAD mice and AD patients, which promoted the binding of Ythdf2 and enhanced the degradation of Lingo2 mRNA. The decreased level of Lingo2 promoted the interaction between APP and β-site amyloid precursor protein cleaving enzyme (Bace1), and subsequently enhanced Aβ production in AD mice, which can be inhibited by Mettl3 depletion. Both ectopic Lingo2 and the administration of Mettl3 inhibitor STM2457 significantly alleviated the neuropathology and behavioral deficits of AD mice. In summary, our study has revealed the important function of Mettl3 and m6A in the pathogenesis of AD and provided novel insight for the underlying mechanisms. Our study also suggests that m6A and Lingo2 could be potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Xingsen Zhao
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Chengyi Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Qihang Sun
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xiaoli Huang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Wenzheng Qu
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Yusheng Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Ziqin Liu
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Aimin Bao
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Binggui Sun
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| | - Ying Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Xuekun Li
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Jia L, Zheng H, Feng J, Ding Y, Sun X, Yu Y, Hao X, Wang J, Zhang X, Tian Y, Chen F, Cui J. Upregulation of Protein O-GlcNAcylation Levels Promotes Zebrafish Fin Regeneration. Mol Cell Proteomics 2025; 24:100936. [PMID: 40044042 PMCID: PMC12002929 DOI: 10.1016/j.mcpro.2025.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025] Open
Abstract
As one of the most important posttranslational modifications, glycosylation participates in various cellular activities in organisms and is closely associated with many pathogeneses. It has been reported that glycosylation affects the liver, spinal cord, and heart tissue regeneration. The zebrafish fin has become a valuable model due to its high regenerative capacity. The molecular mechanism of regeneration has been a hot research topic in the field for a long time. However, studies on the influence of glycosylation during limb regeneration in zebrafish are relatively scarce. We discovered that N-acetylglucosamine (O-GlcNAc) expression, identified by WGA, was elevated during the regeneration of the injured fin in zebrafish using lectin microarray. This phenomenon is due to the upregulation of the expression of OGT enzymes and elevated O-GlcNAcylation levels. To investigate the effects on the fin regeneration when O-GlcNAcylation changes, we used OSMI-1 or alloxan unilateral microinjection to decrease O-GlcNAcylation and observed that it prevented the fin regeneration. Conversely, the O-GlcNAcylation was impressed by a unilateral microinjection of thiamet-G or glucose into the fin, leading to a stimulation of the fin regeneration. To further understand the role of O-GlcNAcylation in fin regeneration, liquid chromatography-tandem mass spectrometry technology was performed to identify O-GlcNAc-glycoproteins. The results demonstrated that the O-GlcNAc glycoproteins, such as thrombospondin 4 and heparan sulfate proteoglycans, were involved in the regulation of zebrafish fin regeneration process and were closely associated with certain biological processes, such as stem cell differentiation, extracellular matrix-receptor interaction pathway, tissue remodeling, and so on. We demonstrated that O-GlcNAc glycoproteins are crucial for zebrafish fin regeneration, during which OGT promotes the process by upregulating the O-GlcNAcylation levels in the zebrafish fin.
Collapse
Affiliation(s)
- Liyuan Jia
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Hanxue Zheng
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Juantao Feng
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yi Ding
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Xiaotian Sun
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yuan Yu
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China
| | - Xue Hao
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Junxiang Wang
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Xinyu Zhang
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yuanfeng Tian
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Fulin Chen
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China.
| | - Jihong Cui
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China.
| |
Collapse
|
3
|
Chen L, Jiang H, Licinio J, Wu H. Brain O-GlcNAcylation: Bridging physiological functions, disease mechanisms, and therapeutic applications. Mol Psychiatry 2025:10.1038/s41380-025-02943-z. [PMID: 40033044 DOI: 10.1038/s41380-025-02943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
O-GlcNAcylation, a dynamic post-translational modification occurring on serine or threonine residues of numerous proteins, plays a pivotal role in various cellular processes, including gene regulation, metabolism, and stress response. Abundant in the brain, O-GlcNAcylation intricately governs neurodevelopment, synaptic assembly, and neuronal functions. Recent investigations have established a correlation between the dysregulation of brain O-GlcNAcylation and a broad spectrum of neurological disorders and injuries, spanning neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as injuries to the central nervous system (CNS). Manipulating O-GlcNAcylation has demonstrated neuroprotective properties against these afflictions. This review delineates the roles and mechanisms of O-GlcNAcylation in the CNS under both physiological and pathological circumstances, with a focus on its neuroprotective effects in neurological disorders and injuries. We discuss the involvement of O-GlcNAcylation in key processes such as neurogenesis, synaptic plasticity, and energy metabolism, as well as its implications in conditions like Alzheimer's disease, Parkinson's disease, and ischemic stroke. Additionally, we explore prospective therapeutic approaches for CNS disorders and injuries by targeting O-GlcNAcylation, highlighting recent clinical developments and future research directions. This comprehensive overview aims to provide insights into the potential of O-GlcNAcylation as a therapeutic target and guide future investigations in this promising field.
Collapse
Affiliation(s)
- Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huihui Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Julio Licinio
- Department of Psychiatry, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
4
|
Li Z, Chen P, Lin Y, Zhang J, Ding J, Ahmed RZ, Jin X, Zheng Y. Inhibition of platelet activation process upon tris (2-chloroethyl) phosphate exposure: Role of PFKP-mediated glycolysis and the pentose phosphate pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125714. [PMID: 39828204 DOI: 10.1016/j.envpol.2025.125714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Tris (2-chloroethyl) phosphate (TCEP), recognized as an emerging pollutant, has been frequently detected in human blood. Maintenance of blood homeostasis is indispensable for regulating various physiological states and overall health, yet hematological toxicology of TCEP has not been extensively investigated. Platelets, a vital component of blood, are fundamental in the processes of hemostasis and thrombosis through their activation; thus, this study was designed to elucidate the effects and underlying mechanisms of TCEP on platelet activation. Utilizing an in vivo model, we conducted a proteomic analysis of platelets and found that TCEP exposure inhibited platelet activation. An ex vivo platelet evaluation system was employed to further dissect the processes of platelet activation, revealing that TCEP predominantly suppressed platelet aggregation, degranulation and clot retraction. These processes were highly dependent on energy metabolism, and TCEP was found to decrease ATP levels, primarily by impairing glycolysis and pentose phosphate pathways. Subsequent investigation into the molecular mechanisms revealed that TCEP decreased the activity of phosphofructokinase platelet (PFKP) by enhancing O-linked N-acetylglucosamine (O-GlcNAc) transferase interaction with PFKP. This study is the first to uncover the disruptive effects of TCEP on platelet activation process, providing valuable insights into the assessment of hematologic health risks associated with TCEP-like emerging pollutants exposure.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Pu Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Jingxu Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Jian Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | | | - Xiaoting Jin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China.
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Hao Y, Li Z, Du X, Xie Q, Li D, Lei S, Guo Y. Characterization and chemoproteomic profiling of protein O-GlcNAcylation in SOD1-G93A mouse model. Mol Med 2025; 31:82. [PMID: 40021952 PMCID: PMC11871760 DOI: 10.1186/s10020-025-01134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/15/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease. Protein O-linked β-N-acetylglucosamine (O-GlcNAc) modification has been found to affect the processing of several important proteins implicated in ALS. However, the overall level and cellular localization of O-GlcNAc during ALS progression are incompletely understood, and large-scale profiling of O-GlcNAcylation sites in this context remains unexplored. METHODS By using immunostaining analysis and chemoenzymatic labeling-based quantitative chemoproteomics, we assayed O-GlcNAcylation dynamics of lumbar spinal cords from SOD-G93A mice and their non-transgenic (NTG) littermates, the most widely used animal model for studying ALS pathogenesis. RESULTS We discovered that the global O-GlcNAcylation was significantly reduced at the disease end stage. Correlatively, a great increase of OGA was observed. Immunohistochemistry and immunofluorescence analysis showed a higher proportion of O-GlcNAc-positive neurons in the NTG group, while O-GlcNAc colocalization with astrocytes/microglia was elevated in SOD1-G93A mice. Moreover, we reported the identification of 568 high-confidence O-GlcNAc sites from end-stage SOD1-G93A and NTG mice. Of the 568 sites, 226-many of which occurred on neuronal function and structure-related proteins-were found to be dynamically regulated. CONCLUSION These data provide a valuable resource for dissecting the functional role of O-GlcNAcylation in ALS and shed light on promising therapeutic avenues for ALS. The chemoenzymatic labeling-based chemoproteomic approach is applicable for probing O-GlcNAc dynamics in various pathological processes.
Collapse
Affiliation(s)
- Yi Hao
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Zhongzhong Li
- Beijing Geriatric Healthcare and Disease Prevention Center, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Xinyan Du
- Beijing Geriatric Healthcare and Disease Prevention Center, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Qingsong Xie
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Dongxiao Li
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaoyuan Lei
- Evidence-Based Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yansu Guo
- Beijing Geriatric Healthcare and Disease Prevention Center, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China.
- Evidence-Based Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Beijing Municipal Geriatric Medical Research Center, Beijing, China.
| |
Collapse
|
6
|
Sun Q, Zhu J, Zhao X, Huang X, Qu W, Tang X, Ma D, Shu Q, Li X. Mettl3-m 6A-NPY axis governing neuron-microglia interaction regulates sleep amount of mice. Cell Discov 2025; 11:10. [PMID: 39905012 PMCID: PMC11794856 DOI: 10.1038/s41421-024-00756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/13/2024] [Indexed: 02/06/2025] Open
Abstract
Sleep behavior is regulated by diverse mechanisms including genetics, neuromodulation and environmental signals. However, it remains completely unknown regarding the roles of epitranscriptomics in regulating sleep behavior. In the present study, we showed that the deficiency of RNA m6A methyltransferase Mettl3 in excitatory neurons specifically induces microglia activation, neuroinflammation and neuronal loss in thalamus of mice. Mettl3 deficiency remarkably disrupts sleep rhythm and reduces the amount of non-rapid eye movement sleep. We also showed that Mettl3 regulates neuropeptide Y (NPY) via m6A modification and Mettl3 conditional knockout (cKO) mice displayed significantly decreased expression of NPY in thalamus. In addition, the dynamic distribution pattern of NPY is observed during wake-sleep cycle in cKO mice. Ectopic expression of Mettl3 and NPY significantly inhibits microglia activation and neuronal loss in thalamus, and restores the disrupted sleep behavior of cKO mice. Collectively, our study has revealed the critical function of Mettl3-m6A-NPY axis in regulating sleep behavior.
Collapse
Affiliation(s)
- Qihang Sun
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinpiao Zhu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Department of Rehabilitation, Perioperative and Systems Medicine Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| | - Xingsen Zhao
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, Zhejiang, China
| | - Xiaoli Huang
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Wenzheng Qu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xia Tang
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Daqing Ma
- Department of Rehabilitation, Perioperative and Systems Medicine Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Division of Anesthetics, Pain Medicine & Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| | - Qiang Shu
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| | - Xuekun Li
- Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Wang J, Jiang N, Liu F, Wang C, Zhou W. Uncovering the intricacies of O-GlcNAc modification in cognitive impairment: New insights from regulation to therapeutic targeting. Pharmacol Ther 2025; 266:108761. [PMID: 39603350 DOI: 10.1016/j.pharmthera.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) represents a post-translational modification that occurs on serine or threonine residues on various proteins. This conserved modification interacts with vital cellular pathways. Although O-GlcNAc is widely distributed throughout the body, it is particularly enriched in the brain, where most proteins are O-GlcNAcylated. Recent studies have established a causal link between O-GlcNAc regulation in the brain and alterations in neurophysiological function. Alterations in O-GlcNAc levels in the brain are associated with the pathogenesis of several neurogenic diseases that can lead to cognitive impairment. Remarkably, manipulation of O-GlcNAc levels demonstrated a protective effect on cognitive function. Although the precise molecular mechanism of O-GlcNAc modification in the nervous system remains elusive, its regulation is fundamental to multiple neural and cognitive functions, fluctuating levels during normal and pathological cognitive processes. In this review, we highlight the significant functional importance of O-GlcNAc modification in pathological cognitive impairments and the potential application of O-GlcNAc as a promising target for the intervention or amelioration of cognitive impairments.
Collapse
Affiliation(s)
- Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| |
Collapse
|
8
|
Yang D, Su J, Chen Y, Chen G. The NF-κB pathway: Key players in neurocognitive functions and related disorders. Eur J Pharmacol 2024; 984:177038. [PMID: 39369877 DOI: 10.1016/j.ejphar.2024.177038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Perioperative neurocognitive disorder (PND) is a common complication of surgical anesthesia, yet its precise etiology remains unclear. Neuroinflammation is a key feature of PND, influenced by both patient -related and surgical variables. The nuclear factor-κB (NF-κB) transcription factor family plays a critical role in regulating the body's immunological proinflammatory response, which is pivotal in the development of PND. Surgery and anesthesia trigger the activation of the NF-κB signaling pathway, leading to the initiation of inflammatory cascades, disruption of the blood-brain barrier, and neuronal injury. Immune cells and glial cells are central to these pathological processes in PND. Furthermore, this study explores the interactions between NF-κB and various signaling molecules, including Tlr4, P2X, α7-nAChR, ROS, HIF-1α, PI3K/Ak, MicroRNA, Circular RNA, and histone deacetylases, within the context of PND. Targeting NF-κB as a therapeutic approach for PND shows promise as a potential treatment strategy.
Collapse
Affiliation(s)
- Danfeng Yang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junwei Su
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
9
|
Wei J, Zhou S, Chen G, Chen T, Wang Y, Zou J, Zhou F, Liu J, Gong Q. GFPT2: A novel biomarker in mesothelioma for diagnosis and prognosis and its molecular mechanism in malignant progression. Br J Cancer 2024; 131:1529-1542. [PMID: 39317702 PMCID: PMC11519369 DOI: 10.1038/s41416-024-02830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Mesothelioma (MESO) is an insidious malignancy with a complex diagnosis and a poor prognosis. Our study unveils Glutamine-Fructose-6-Phosphate Transaminase 2 (GFPT2) as a valuable diagnostic and prognostic marker for MESO, exploring its role in MESO pathogenesis. METHODS We utilised tissue samples and clinicopathologic data to evaluate the diagnostic and prognostic significance of GFPT2 as a biomarker for MESO. The role of GFPT2 in the malignant progression of MESO was investigated through in vitro and in vivo experiments. The activation of NF-κB-p65 through O-GlcNAcylation at Ser75 was elucidated using experiments like HPLC-QTRAP-MS/MS and mass spectrometry analysis. RESULTS The study demonstrates that GFPT2 exhibits a sensitivity of 92.60% in diagnosing MESO. Overexpression of it has been linked to an unfavourable prognosis. Through rigorous verification, we have confirmed that elevated GFPT2 levels drive malignant proliferation, invasiveness, and metastasis in MESO. At the molecular level, GFPT2 augments p65 O-GlcNAcylation, orchestrating its nuclear translocation and activating the NF-κB signalling pathway. CONCLUSIONS Our insights suggest GFPT2's potential as a distinctive biomarker for MESO diagnosis and prognosis, and as an innovative therapeutic target, offering a new horizon for identification and treatment strategies in MESO management.
Collapse
Affiliation(s)
- Jia Wei
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Suiqing Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Chen
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan Wang
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jue Zou
- Department of Pathology, Nanjing Chest Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Zhou
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jiali Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Qixing Gong
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Chen R, Hu J, Zhang Y, Liu Y, Cao L, He F, Wang Q, Chen Y, Zhang S, Tang S, Min B. Sodium aescinate alleviates neuropathic pain through suppressing OGT-mediated O-GlcNAc modification of TLR3 to inactivate MAPK signaling pathway. Brain Res Bull 2024; 217:111077. [PMID: 39265741 DOI: 10.1016/j.brainresbull.2024.111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Neuropathic pain results from damage to nerves or the brain, and is characterized by symptoms such as allodynia, spontaneous pain, and hyperalgesia. The causes of this type of pain are intricate, which can make it difficult to treat. Sodium aescinate (SA), a natural extract from horse chestnut tree seeds, has been shown to act as a neuroprotector by inhibiting microglia activation. This study aims to explore the therapeutic potential of SA for neuropathic pain and the molecular mechanisms regulated by SA treatment. Through in vivo animal models and experiments, we found that SA treatment significantly reduced mechanical allodynia and heat hyperalgesia in neuropathic pain models. Additionally, SA inhibited O-GlcNAc-transferase (OGT)-induced O-GlcNAcylation (O-GlcNAc) modification in neuropathic pain mice. OGT overexpression could impede the therapeutic effects of SA on neuropathic pain. Further investigation revealed that Toll-like receptor 3 (TLR3), stabilized by OGT-induced O-GlcNAc modification, could activate the Mitogen activated protein kinase (MAPK) signaling pathway. Further in vivo experiments demonstrated that TLR3-mediated p38 mitogen-activated protein kinase (p38MAPK) activation is involved in SA-mediated relief of neuropathic pain. In conclusion, this study uncovers a novel molecular pathway deactivated by SA treatment in neuropathic pain.
Collapse
Affiliation(s)
- Rong Chen
- Department of Pain, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Jiantao Hu
- Department of Respiratory Medicine, Bijie City Qixingguan District People's Hospital, Bijie, Guizhou 551700, China
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Liujian Cao
- Department of Anorectal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Fan He
- Department of Oncology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Qin Wang
- Department of Rheumatology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Ying Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Shengwei Zhang
- Graduate School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| | - Songjiang Tang
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Baojun Min
- Department of Anesthesiology, Qianxi People's Hospital, Bijie, Guizhou 551500, China.
| |
Collapse
|
11
|
Li Q, Shi WR, Huang YL. Comparison of the protective effects of chitosan oligosaccharides and chitin oligosaccharide on apoptosis, inflammation and oxidative stress. Exp Ther Med 2024; 28:310. [PMID: 38873041 PMCID: PMC11170321 DOI: 10.3892/etm.2024.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 06/15/2024] Open
Abstract
Chitin degradation products, especially chitosan oligosaccharides (COSs), are highly valued in various industrial fields, such as food, medicine, cosmetics and agriculture, for their rich resources and high cost-effectiveness. However, little is known about the impact of acetylation on COS cellular bioactivity. The present study aimed to compare the differential effects of COS and highly N-acetylated COS (NACOS), known as chitin oligosaccharide, on H2O2-induced cell stress. MTT assay showed that pretreatment with NACOS and COS markedly inhibited H2O2-induced RAW264.7 cell death in a concentration-dependent manner. Flow cytometry indicated that NACOS and COS exerted an anti-apoptosis effect on H2O2-induced oxidative damage in RAW264.7 cells. NACOS and COS treatment ameliorated H2O2-induced RAW264.7 cell cycle arrest. Western blotting revealed that the anti-oxidation effects of NACOS and COS were mediated by suppressing expression of proteins involved in H2O2-induced apoptosis, including Bax, Bcl-2 and cleaved PARP. Furthermore, the antagonist effects of NACOS were greater than those of COS, suggesting that acetylation was essential for the protective effects of COS.
Collapse
Affiliation(s)
- Qiongyu Li
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, P.R. China
| | - Wan-Rong Shi
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, P.R. China
| | - Yun-Lin Huang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
12
|
Leng Y, Tian T, Tang B, Ma Y, Li Z, Shi Q, Liu J, Zhou Y, Wang W, Huang C, Zhao X, Feng W, Liu Y, Liang J, Liu T, Liu S, Ren Q, Liu J, Zhang T, Zhou J, Huang Q, Zhang Y, Yin B, Xu Y, Liu L, Shen L, Zhao H. The oncogenic role and regulatory mechanism of ACAA2 in human ovarian cancer. Mol Carcinog 2024; 63:1362-1377. [PMID: 38656551 DOI: 10.1002/mc.23729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024]
Abstract
Acetyl-CoAacyltransferase2 (ACAA2) is a key enzyme in the fatty acid oxidation pathway that catalyzes the final step of mitochondrial β oxidation, which plays an important role in fatty acid metabolism. The expression of ACAA2 is closely related to the occurrence and malignant progression of tumors. However, the function of ACAA2 in ovarian cancer is unclear. The expression level and prognostic value of ACAA2 were analyzed by databases. Gain and loss of function were carried out to explore the function of ACAA2 in ovarian cancer. RNA-seq and bioinformatics methods were applied to illustrate the regulatory mechanism of ACAA2. ACAA2 overexpression promoted the growth, proliferation, migration, and invasion of ovarian cancer, and ACAA2 knockdown inhibited the malignant progression of ovarian cancer as well as the ability of subcutaneous tumor formation in nude mice. At the same time, we found that OGT can induce glycosylation modification of ACAA2 and regulate the karyoplasmic distribution of ACAA2. OGT plays a vital role in ovarian cancer as a function of oncogenes. In addition, through RNA-seq sequencing, we found that ACAA2 regulates the expression of DIXDC1. ACAA2 regulated the malignant progression of ovarian cancer through the WNT/β-Catenin signaling pathway probably. ACAA2 is an oncogene in ovarian cancer and has the potential to be a target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Yahui Leng
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tian Tian
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bingbing Tang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yongqing Ma
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zihang Li
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qin Shi
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiaqi Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yang Zhou
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wenlong Wang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chengyang Huang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xuan Zhao
- The Second Clinical College, Xi'an Medical University, Xi'an, China
| | - Wenxiao Feng
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yanni Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jingyin Liang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tianhui Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Song Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qiulei Ren
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiakun Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Te Zhang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Junsuo Zhou
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qian Huang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yaling Zhang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bin Yin
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuewen Xu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Liaoyuan Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Shen
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongyan Zhao
- School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
13
|
Guo H, Sun Q, Huang X, Wang X, Zhang F, Qu W, Liu J, Cheng X, Zhu Q, Yi W, Shu Q, Li X. Fucosyltransferase 8 regulates adult neurogenesis and cognition of mice by modulating the Itga6-PI3K/Akt signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1427-1440. [PMID: 38523237 DOI: 10.1007/s11427-023-2510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024]
Abstract
Fucosyltransferase 8 (Fut8) and core fucosylation play critical roles in regulating various biological processes, including immune response, signal transduction, proteasomal degradation, and energy metabolism. However, the function and underlying mechanism of Fut8 and core fucosylation in regulating adult neurogenesis remains unknown. We have shown that Fut8 and core fucosylation display dynamic features during the differentiation of adult neural stem/progenitor cells (aNSPCs) and postnatal brain development. Fut8 depletion reduces the proliferation of aNSPCs and inhibits neuronal differentiation of aNSPCs in vitro and in vivo, respectively. Additionally, Fut8 deficiency impairs learning and memory in mice. Mechanistically, Fut8 directly interacts with integrin α6 (Itga6), an upstream regulator of the PI3k-Akt signaling pathway, and catalyzes core fucosylation of Itga6. Deletion of Fut8 enhances the ubiquitination of Itga6 by promoting the binding of ubiquitin ligase Trim21 to Itga6. Low levels of Itga6 inhibit the activity of the PI3K/Akt signaling pathway. Moreover, the Akt agonist SC79 can rescue neurogenic and behavioral deficits caused by Fut8 deficiency. In summary, our study uncovers an essential function of Fut8 and core fucosylation in regulating adult neurogenesis and sheds light on the underlying mechanisms.
Collapse
Affiliation(s)
- Hongfeng Guo
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Qihang Sun
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xiaohao Wang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Feng Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Wenzheng Qu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Jinling Liu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xuejun Cheng
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Qiang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen Yi
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Shu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
14
|
Bu X, Yang L, Han X, Liu S, Lu X, Wan J, Zhang X, Tang P, Zhang W, Zhong L. DHM/SERS reveals cellular morphology and molecular changes during iPSCs-derived activation of astrocytes. BIOMEDICAL OPTICS EXPRESS 2024; 15:4010-4023. [PMID: 38867782 PMCID: PMC11166415 DOI: 10.1364/boe.524356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
The activation of astrocytes derived from induced pluripotent stem cells (iPSCs) is of great significance in neuroscience research, and it is crucial to obtain both cellular morphology and biomolecular information non-destructively in situ, which is still complicated by the traditional optical microscopy and biochemical methods such as immunofluorescence and western blot. In this study, we combined digital holographic microscopy (DHM) and surface-enhanced Raman scattering (SERS) to investigate the activation characteristics of iPSCs-derived astrocytes. It was found that the projected area of activated astrocytes decreased by 67%, while the cell dry mass increased by 23%, and the cells changed from a flat polygonal shape to an elongated star-shaped morphology. SERS analysis further revealed an increase in the intensities of protein spectral peaks (phenylalanine 1001 cm-1, proline 1043 cm-1, etc.) and lipid-related peaks (phosphatidylserine 524 cm-1, triglycerides 1264 cm-1, etc.) decreased in intensity. Principal component analysis-linear discriminant analysis (PCA-LDA) modeling based on spectral data distinguished resting and reactive astrocytes with a high accuracy of 96.5%. The increase in dry mass correlated with the increase in protein content, while the decrease in projected area indicated the adjustment of lipid composition and cell membrane remodeling. Importantly, the results not only reveal the cellular morphology and molecular changes during iPSCs-derived astrocytes activation but also reflect their mapping relationship, thereby providing new insights into diagnosing and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoya Bu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Liwei Yang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xianxin Han
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Shengde Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoxu Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Jianhui Wan
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao Zhang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Tang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Weina Zhang
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| | - Liyun Zhong
- Key Laboratory of Photonics Technology for Integrated Sensing and Communication of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Xue Q, Ji S, Xu H, Yu S. O-GlcNAcylation: a pro-survival response to acute stress in the cardiovascular and central nervous systems. Eur J Med Res 2024; 29:174. [PMID: 38491477 PMCID: PMC10943874 DOI: 10.1186/s40001-024-01773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
O-GlcNAcylation is a unique monosaccharide modification that is ubiquitously present in numerous nucleoplasmic and mitochondrial proteins. The hexosamine biosynthesis pathway (HBP), which is a key branch of glycolysis, provides the unique sugar donor UDP-GlcNAc for the O-GlcNAc modification. Thus, HBP/O-GlcNAcylation can act as a nutrient sensor to perceive changes in nutrient levels and trigger O-GlcNAc modifications of functional proteins in cellular (patho-)physiology, thereby regulating diverse metabolic processes. An imbalance in O-GlcNAcylation has been shown to be a pathogenic contributor to dysfunction in metabolic diseases, including type 2 diabetes, cancer, and neurodegeneration. However, under acute stress conditions, protein O-GlcNAc modification exhibits rapid and transient upregulation, which is strongly correlated with stress tolerance and cell survival. In this context, we discuss the metabolic, pharmacological and genetic modulation of HBP/O-GlcNAc modification in the biological system, the beneficial role of O-GlcNAcylation in regulating stress tolerance for cardioprotection, and neuroprotection, which is a novel and rapidly growing field. Current evidence suggests that transient activation of the O-GlcNAc modification represents a potent pro-survival signalling pathway and may provide a promising strategy for stress-related disorder therapy.
Collapse
Affiliation(s)
- Qiu Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Department of General Surgery, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, 30 Tongyang North Road, Nantong, 226361, China
| | - Shengtao Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Hui Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, 399 Century Avenue, Nantong, 226001, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, 226001, China.
| |
Collapse
|
16
|
Ye L, Ding W, Xiao D, Jia Y, Zhao Z, Ao X, Wang J. O-GlcNAcylation: cellular physiology and therapeutic target for human diseases. MedComm (Beijing) 2023; 4:e456. [PMID: 38116061 PMCID: PMC10728774 DOI: 10.1002/mco2.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
O-linked-β-N-acetylglucosamine (O-GlcNAcylation) is a distinctive posttranslational protein modification involving the coordinated action of O-GlcNAc transferase and O-GlcNAcase, primarily targeting serine or threonine residues in various proteins. This modification impacts protein functionality, influencing stability, protein-protein interactions, and localization. Its interaction with other modifications such as phosphorylation and ubiquitination is becoming increasingly evident. Dysregulation of O-GlcNAcylation is associated with numerous human diseases, including diabetes, nervous system degeneration, and cancers. This review extensively explores the regulatory mechanisms of O-GlcNAcylation, its effects on cellular physiology, and its role in the pathogenesis of diseases. It examines the implications of aberrant O-GlcNAcylation in diabetes and tumorigenesis, highlighting novel insights into its potential role in cardiovascular diseases. The review also discusses the interplay of O-GlcNAcylation with other protein modifications and its impact on cell growth and metabolism. By synthesizing current research, this review elucidates the multifaceted roles of O-GlcNAcylation, providing a comprehensive reference for future studies. It underscores the potential of targeting the O-GlcNAcylation cycle in developing novel therapeutic strategies for various pathologies.
Collapse
Affiliation(s)
- Lin Ye
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- The Affiliated Hospital of Qingdao UniversityQingdao Medical CollegeQingdao UniversityQingdaoChina
| | - Dandan Xiao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yi Jia
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Zhonghao Zhao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
17
|
Leonel AV, Alisson-Silva F, Santos RCM, Silva-Aguiar RP, Gomes JC, Longo GMC, Faria BM, Siqueira MS, Pereira MG, Vasconcelos-dos-Santos A, Chiarini LB, Slawson C, Caruso-Neves C, Romão L, Travassos LH, Carneiro K, Todeschini AR, Dias WB. Inhibition of O-GlcNAcylation Reduces Cell Viability and Autophagy and Increases Sensitivity to Chemotherapeutic Temozolomide in Glioblastoma. Cancers (Basel) 2023; 15:4740. [PMID: 37835434 PMCID: PMC10571858 DOI: 10.3390/cancers15194740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma (GB) is the most aggressive primary malignant brain tumor and is associated with short survival. O-GlcNAcylation is an intracellular glycosylation that regulates protein function, enzymatic activity, protein stability, and subcellular localization. Aberrant O-GlcNAcylation is related to the tumorigenesis of different tumors, and mounting evidence supports O-GlcNAc transferase (OGT) as a potential therapeutic target. Here, we used two human GB cell lines alongside primary human astrocytes as a non-tumoral control to investigate the role of O-GlcNAcylation in cell proliferation, cell cycle, autophagy, and cell death. We observed that hyper O-GlcNAcylation promoted increased cellular proliferation, independent of alterations in the cell cycle, through the activation of autophagy. On the other hand, hypo O-GlcNAcylation inhibited autophagy, promoted cell death by apoptosis, and reduced cell proliferation. In addition, the decrease in O-GlcNAcylation sensitized GB cells to the chemotherapeutic temozolomide (TMZ) without affecting human astrocytes. Combined, these results indicated a role for O-GlcNAcylation in governing cell proliferation, autophagy, cell death, and TMZ response, thereby indicating possible therapeutic implications for treating GB. These findings pave the way for further research and the development of novel treatment approaches which may contribute to improved outcomes and increased survival rates for patients facing this challenging disease.
Collapse
Affiliation(s)
- Amanda V. Leonel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Frederico Alisson-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Ronan C. M. Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Rodrigo P. Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Julia C. Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Gabriel M. C. Longo
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Bruna M. Faria
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil (L.R.); (K.C.)
| | - Mariana S. Siqueira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Miria G. Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Andreia Vasconcelos-dos-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Luciana B. Chiarini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Luciana Romão
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil (L.R.); (K.C.)
| | - Leonardo H. Travassos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Katia Carneiro
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil (L.R.); (K.C.)
| | - Adriane R. Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| | - Wagner B. Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.V.L.); (C.C.-N.); (L.H.T.); (A.R.T.)
| |
Collapse
|
18
|
Zheng Y, Wang W, Huo Y, Gui Y. Maternal Obesity and Kawasaki Disease-like Vasculitis: A New Perspective on Cardiovascular Injury and Inflammatory Response in Offspring Male Mice. Nutrients 2023; 15:3823. [PMID: 37686855 PMCID: PMC10490206 DOI: 10.3390/nu15173823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Maternal obesity affects the risk of cardiovascular disease and inflammatory response in offspring. However, the impact of maternal obesity on offspring with Kawasaki disease (KD), the leading cause of childhood acquired heart disease, is still an understudied area. This study aimed to elucidate the impact of maternal obesity on offspring in KD-like vasculitis and the underlying mechanisms. Offspring of obese female mice and normal diet dams were randomly divided into two subgroups. The pups were injected intraperitoneally with either Candida albicans water-soluble fraction (CAWS) or phosphate buffered saline (PBS) to establish the obesity (OB)-CAWS group, OB group, wild type (WT)-CAWS group, and WT group. Their weight was monitored during the study. After four weeks, echocardiography was applied to obtain the alternation of cardiac structures. Mouse cytokine panel, Hematoxylin-Eosin (HE) staining, western blot, and real-time qPCR were used to study the pathological changes and protein and RNA expression alternations. Based on the study of pathology, serology and molecular biology, maternal obesity lead to more severe vasculitis and induced altered cardiac structure in the offspring mice and promoted the expression of pro-inflammatory cytokines through activating the NF-κB signaling pathway. Maternal obesity aggravated the inflammatory response of offspring mice in KD-like vasculitis.
Collapse
Affiliation(s)
- Yuanzheng Zheng
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| | - Wenji Wang
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510080, China
| | - Yu Huo
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| | - Yonghao Gui
- Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai 201102, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai 201102, China
| |
Collapse
|