1
|
Saito H, Sukegawa S, Kao S, Strebel K. Human Mannose Receptor 1 Attenuates HIV-1 Infectivity in a Virus Isolate-Specific Manner. Viruses 2023; 15:2057. [PMID: 37896833 PMCID: PMC10612104 DOI: 10.3390/v15102057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Human mannose receptor 1 (hMRC1) is a transmembrane glycoprotein that belongs to the C-type lectin family and is expressed on the surface of most tissue macrophages. hMRC1 contributes to the binding and transmission of HIV-1 and is involved in the endocytic uptake of HIV-1 for subsequent antigen presentation. We previously reported that hMRC1 functions as an antiviral factor by inhibiting virus release through a BST-2-like mechanism. The inhibition of virus release was not virus isolate-specific and, surprisingly, was not Env-dependent. We now report on another hMRC1 antiviral function that affects the infectivity of viral particles. Unlike its effect on virus release, the inhibition of viral infectivity by hMRC1 was virus isolate-specific. An analysis of chimeric Env revealed that the Env V3 region was a critical determinant for the inhibitory effect of hMRC1. Of note, exogenously expressed hMRC1 was packaged into viral particles in an Env-independent manner. Co-immunoprecipitation studies revealed a strong interaction of the hMRC1-sensitive NL43 Env with hMRC1, while the hMRC1-insensitive Envs of AD8 and 49.5 isolates interacted poorly if at all with hMRC1. An analysis of a panel of Transmitted/Founder (T/F) viruses revealed that all of them were R5-tropic, and more than half of them were inhibited by hMRC1. The detailed mechanism of how hMRC1 inhibits viral infectivity remains to be investigated. However, the high-affinity binding of hMRC1 to Env may cause a conformational change around the Env V3 region or obstruct the Env V3 region and may make it inaccessible for subsequent interaction with the coreceptor during virus entry.
Collapse
Affiliation(s)
| | | | | | - Klaus Strebel
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892, USA; (H.S.); (S.S.); (S.K.)
| |
Collapse
|
2
|
Moranguinho I, Taveira N, Bártolo I. Antiretroviral Treatment of HIV-2 Infection: Available Drugs, Resistance Pathways, and Promising New Compounds. Int J Mol Sci 2023; 24:ijms24065905. [PMID: 36982978 PMCID: PMC10053740 DOI: 10.3390/ijms24065905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Currently, it is estimated that 1-2 million people worldwide are infected with HIV-2, accounting for 3-5% of the global burden of HIV. The course of HIV-2 infection is longer compared to HIV-1 infection, but without effective antiretroviral therapy (ART), a substantial proportion of infected patients will progress to AIDS and die. Antiretroviral drugs in clinical use were designed for HIV-1 and, unfortunately, some do not work as well, or do not work at all, for HIV-2. This is the case for non-nucleoside reverse transcriptase inhibitors (NNRTIs), the fusion inhibitor enfuvirtide (T-20), most protease inhibitors (PIs), the attachment inhibitor fostemsavir and most broadly neutralizing antibodies. Integrase inhibitors work well against HIV-2 and are included in first-line therapeutic regimens for HIV-2-infected patients. However, rapid emergence of drug resistance and cross-resistance within each drug class dramatically reduces second-line treatment options. New drugs are needed to treat infection with drug-resistant isolates. Here, we review the therapeutic armamentarium available to treat HIV-2-infected patients, as well as promising drugs in development. We also review HIV-2 drug resistance mutations and resistance pathways that develop in HIV-2-infected patients under treatment.
Collapse
Affiliation(s)
- Inês Moranguinho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| | - Nuno Taveira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
| | - Inês Bártolo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-019 Lisboa, Portugal
| |
Collapse
|
3
|
Palm AA, Esbjörnsson J, Kvist A, Månsson F, Biague A, Norrgren H, Jansson M, Medstrand P. Intra-Patient Evolution of HIV-2 Molecular Properties. Viruses 2022; 14:v14112447. [PMID: 36366545 PMCID: PMC9698092 DOI: 10.3390/v14112447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Limited data are available on the pathogenesis of HIV-2, and the evolution of Env molecular properties during disease progression is not fully elucidated. We investigated the intra-patient evolution of molecular properties of HIV-2 Env regions (V1-C3) during the asymptomatic, treatment-naïve phase of the infection in 16 study participants, stratified into faster or slower progressors. Most notably, the rate of change in the number of potential N-linked glycosylation sites (PNGS) within the Env (V1-C3) regions differed between progressor groups. With declining CD4+ T-cell levels, slower progressors showed, on average, a decrease in the number of PNGSs, while faster progressors showed no significant change. Furthermore, diversity increased significantly with time in faster progressors, whereas no such change was observed in slower progressors. No differences were identified between the progressor groups in the evolution of length or charge of the analyzed Env regions. Predicted virus CXCR4 use was rare and did not emerge as a dominating viral population during the studied disease course (median 7.9 years, interquartile range [IQR]: 5.2-14.0) in either progressor groups. Further work building on our observations may explain molecular hallmarks of HIV-2 disease progression and differences in pathogenesis between HIV-1 and HIV-2.
Collapse
Affiliation(s)
- Angelica A. Palm
- Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Department of Translational Medicine, Lund University, 20502 Lund, Sweden
- Correspondence:
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, 20502 Lund, Sweden
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Anders Kvist
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Fredrik Månsson
- Department of Translational Medicine, Lund University, 20502 Lund, Sweden
| | - Antonio Biague
- National Public Health Laboratory, Bissau 1041, Guinea-Bissau
| | - Hans Norrgren
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Patrik Medstrand
- Department of Translational Medicine, Lund University, 20502 Lund, Sweden
| |
Collapse
|
4
|
HIV-2 Neutralization Sensitivity in Relation to Co-Receptor Entry Pathways and Env Motifs. Int J Mol Sci 2022; 23:ijms23094766. [PMID: 35563157 PMCID: PMC9101540 DOI: 10.3390/ijms23094766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/24/2022] Open
Abstract
HIV-2, compared to HIV-1, elicits potent and broadly neutralizing antibodies, and uses a broad range of co-receptors. However, both sensitivity to neutralization and breadth of co-receptor use varies between HIV-2 isolates, and the molecular background is still not fully understood. Thus, in the current study, we have deciphered relationships between HIV-2 neutralization sensitivity, co-receptor use and viral envelope glycoprotein (Env) molecular motifs. A panel of primary HIV-2 isolates, with predefined use of co-receptors, was assessed for neutralization sensitivity using a set of HIV-2 Env-directed monoclonal antibodies and co-receptor indicator cell lines. Neutralization sensitivity of the isolates was analysed in relation target cell co-receptor expression, in addition to amino acid motifs and predicted structures of Env regions. Results showed that HIV-2 isolates were more resistant to neutralizing antibodies when entering target cells via the alternative co-receptor GPR15, as compared to CCR5. A similar pattern was noted for isolates using the alternative co-receptor CXCR6. Sensitivity to neutralizing antibodies appeared also to be linked to specific Env motifs in V1/V2 and C3 regions. Our findings suggest that HIV-2 sensitivity to neutralization depends both on which co-receptor is used for cell entry and on specific Env motifs. This study highlights the multifactorial mechanisms behind HIV-2 neutralization sensitivity.
Collapse
|
5
|
Reeves I, Cromarty B, Deayton J, Dhairyawan R, Kidd M, Taylor C, Thornhill J, Tickell-Painter M, van Halsema C. British HIV Association guidelines for the management of HIV-2 2021. HIV Med 2021; 22 Suppl 4:1-29. [PMID: 34927347 DOI: 10.1111/hiv.13204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iain Reeves
- Consultant in HIV Medicine, Homerton University Hospital NHS Trust, London, UK
| | | | - Jane Deayton
- Clinical Senior Lecturer in HIV, Barts and the London, Queen Mary University of London, London, UK
| | - Rageshri Dhairyawan
- Consultant in Sexual Health and HIV Medicine, Barts Health NHS Trust, London, UK
| | - Mike Kidd
- Consultant Virologist, National Infection Service, Public Health England, UK
| | - Chris Taylor
- Consultant Physician Sexual Health and HIV, Kings College Hospital, London, UK
| | - John Thornhill
- Consultant in Sexual Health and HIV Medicine, Barts Health NHS Trust, London, UK
| | - Maya Tickell-Painter
- Specialist Registrar in Infectious Diseases and Microbiology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Clare van Halsema
- Consultant in Infectious Diseases, North Manchester General Hospital, Manchester, UK
| |
Collapse
|
6
|
Berzow D, Descamps D, Obermeier M, Charpentier C, Kaiser R, Guertler L, Eberle J, Wensing A, Sierra S, Ruelle J, Gomes P, Mansinho K, Taylor N, Jensen B, Döring M, Stürmer M, Rockstroh J, Camacho R. Human Immunodeficiency Virus-2 (HIV-2): A Summary of the Present Standard of Care and Treatment Options for Individuals Living with HIV-2 in Western Europe. Clin Infect Dis 2021; 72:503-509. [PMID: 32227124 DOI: 10.1093/cid/ciaa275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/12/2020] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus-2 (HIV-2) is endemic in some countries in West Africa. Due to the lower prevalence in industrialized countries, there is limited experience and knowledge on the management of individuals living with HIV-2 in Europe. Compared to HIV-1, there are differential characteristics of HIV-2 regarding diagnostic procedures, the clinical course, and, most importantly, antiretroviral therapy. We integrated the published literature on HIV-2 (studies and reports on epidemiology, diagnostics, the clinical course, and treatment), as well as expert experience in diagnosing and clinical care, to provide recommendations for a present standard of medical care of those living with HIV-2 in Western European countries, including an overview of strategies for diagnosis, monitoring, and treatment, with suggestions for effective drug combinations for first- and second-line treatments, post-exposure prophylaxis, and the prevention of mother-to-child transmission, as well as listings of mutations related to HIV-2 drug resistance and C-C motif chemokine receptor type 5 and C-X-C motif chemokine receptor type 4 coreceptor tropism.
Collapse
Affiliation(s)
- Dirk Berzow
- Praxis for Infectiology, Hamburg, Germany.,Deutsche Arbeitsgemeinschaft niedergelassener Ärzte in der Versorgung HIV-Infizierter (DAGNAE) Berlin, Germany
| | - Diane Descamps
- Laboratoire de Virologie, Hôpital Bichat-Claude Bernard, Paris, France.,Université de Paris, Institut national de la santé et de la recherche médicale (INSERM), Unité mixte de recherche (UMR),1137, Laboratory Infection, Antimicrobials, Modelling, Evolution (IAME), Paris, France
| | - Martin Obermeier
- Deutsche Arbeitsgemeinschaft niedergelassener Ärzte in der Versorgung HIV-Infizierter (DAGNAE) Berlin, Germany.,Medical Center for Infectious Diseases, Berlin, Germany.,Gesellschaft für Virologie e.V., Freiburg, Germany
| | - Charlotte Charpentier
- Laboratoire de Virologie, Hôpital Bichat-Claude Bernard, Paris, France.,Université de Paris, Institut national de la santé et de la recherche médicale (INSERM), Unité mixte de recherche (UMR),1137, Laboratory Infection, Antimicrobials, Modelling, Evolution (IAME), Paris, France
| | - Rolf Kaiser
- Gesellschaft für Virologie e.V., Freiburg, Germany.,Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,German AIDS Society (Deutsche AIDS-Gesellschaft, DAIG), Hamburg, Germany.,Paul-Ehrlich-Gesellschaft für Chemotherapie, Rheinbach, Germany
| | - Lutz Guertler
- Gesellschaft für Virologie e.V., Freiburg, Germany.,German AIDS Society (Deutsche AIDS-Gesellschaft, DAIG), Hamburg, Germany.,National Reference Center for Retroviruses, Max von Pettenkofer Institute for Hygiene and Medical Microbiology, University of Munich, Munich, Germany
| | - Josef Eberle
- Gesellschaft für Virologie e.V., Freiburg, Germany.,German AIDS Society (Deutsche AIDS-Gesellschaft, DAIG), Hamburg, Germany.,National Reference Center for Retroviruses, Max von Pettenkofer Institute for Hygiene and Medical Microbiology, University of Munich, Munich, Germany
| | - Annemarie Wensing
- European AIDS Clinical Society, Brussels, Belgium.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saleta Sierra
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jean Ruelle
- Laboratories Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Perpetua Gomes
- Instituto Universitário Egas Moniz, Lisboa, Portugal.,Molecular Biology Laboratory, Laboratório de Biologia Molecular, Centro Hospitalar de Lisboa Ocidental, Egas Moniz Hospital, Lisboa, Portugal
| | - Kamal Mansinho
- Centro Hospitalar de Lisboa Occidental, Hospital de Egas Moniz, Lisboa, Portugal
| | - Ninon Taylor
- Third Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Björn Jensen
- Paul-Ehrlich-Gesellschaft für Chemotherapie, Rheinbach, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine University Hospital, Düsseldorf, Germany
| | - Matthias Döring
- Department for Computational Biology and Applied Algorithmics, Max-Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
| | - Martin Stürmer
- Medizinisches Versorgungszentrum, Frankfurt am Main, Germany
| | - Jürgen Rockstroh
- European AIDS Clinical Society, Brussels, Belgium.,Department of Medicine I, Bonn University Hospital, Bonn, Germany
| | - Ricardo Camacho
- Katholieke Universiteit, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
| |
Collapse
|
7
|
Serra PA, Taveira N, Guedes RC. Computational Modulation of the V3 Region of Glycoprotein gp125 of HIV-2. Int J Mol Sci 2021; 22:1948. [PMID: 33669351 PMCID: PMC7920276 DOI: 10.3390/ijms22041948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 12/03/2022] Open
Abstract
HIV-2 infection is frequently neglected in HIV/AIDS campaigns. However, a special emphasis must be given to HIV-2 as an untreated infection that also leads to AIDS and death, and for which the efficacy of most available drugs is limited against HIV-2. HIV envelope glycoproteins mediate binding to the receptor CD4 and co-receptors at the surface of the target cell, enabling fusion with the cell membrane and viral entry. Here, we developed and optimized a computer-assisted drug design approach of an important HIV-2 glycoprotein that allows us to explore and gain further insights at the molecular level into protein structures and interactions crucial for the inhibition of HIV-2 cell entry. The 3D structure of a key HIV-2ROD gp125 region was generated by a homology modeling campaign. To disclose the importance of the main structural features and compare them with experimental results, 3D-models of six mutants were also generated. These mutations revealed the selective impact on the behavior of the protein. Furthermore, molecular dynamics simulations were performed to optimize the models, and the dynamic behavior was tackled to account for structure flexibility and interactions network formation. Structurally, the mutations studied lead to a loss of aromatic features, which is very important for the establishment of π-π interactions and could induce a structural preference by a specific coreceptor. These new insights into the structure-function relationship of HIV-2 gp125 V3 and surrounding regions will help in the design of better models and the design of new small molecules capable to inhibit the attachment and binding of HIV with host cells.
Collapse
Affiliation(s)
- Patrícia A. Serra
- Department of Pharmaceutical Sciences and Medicines and Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Nuno Taveira
- Department of Pharmaceutical Sciences and Medicines and Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal;
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Rita C. Guedes
- Department of Pharmaceutical Sciences and Medicines and Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
8
|
Hayn M, Blötz A, Rodríguez A, Vidal S, Preising N, Ständker L, Wiese S, Stürzel CM, Harms M, Gross R, Jung C, Kiene M, Jacob T, Pöhlmann S, Forssmann WG, Münch J, Sparrer KMJ, Seuwen K, Hahn BH, Kirchhoff F. Natural cystatin C fragments inhibit GPR15-mediated HIV and SIV infection without interfering with GPR15L signaling. Proc Natl Acad Sci U S A 2021; 118:e2023776118. [PMID: 33431697 PMCID: PMC7826402 DOI: 10.1073/pnas.2023776118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
GPR15 is a G protein-coupled receptor (GPCR) proposed to play a role in mucosal immunity that also serves as a major entry cofactor for HIV-2 and simian immunodeficiency virus (SIV). To discover novel endogenous GPR15 ligands, we screened a hemofiltrate (HF)-derived peptide library for inhibitors of GPR15-mediated SIV infection. Our approach identified a C-terminal fragment of cystatin C (CysC95-146) that specifically inhibits GPR15-dependent HIV-1, HIV-2, and SIV infection. In contrast, GPR15L, the chemokine ligand of GPR15, failed to inhibit virus infection. We found that cystatin C fragments preventing GPR15-mediated viral entry do not interfere with GPR15L signaling and are generated by proteases activated at sites of inflammation. The antiretroviral activity of CysC95-146 was confirmed in primary CD4+ T cells and is conserved in simian hosts of SIV infection. Thus, we identified a potent endogenous inhibitor of GPR15-mediated HIV and SIV infection that does not interfere with the physiological function of this GPCR.
Collapse
Affiliation(s)
- Manuel Hayn
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Andrea Blötz
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Armando Rodríguez
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
- PHARIS Biotec GmbH, 30625 Hannover, Germany
| | - Solange Vidal
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Nico Preising
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Rüdiger Gross
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany
| | - Miriam Kiene
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | | | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Klaus Seuwen
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076;
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany;
| |
Collapse
|
9
|
Application of Support Vector Machines in Viral Biology. GLOBAL VIROLOGY III: VIROLOGY IN THE 21ST CENTURY 2019. [PMCID: PMC7114997 DOI: 10.1007/978-3-030-29022-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Novel experimental and sequencing techniques have led to an exponential explosion and spiraling of data in viral genomics. To analyse such data, rapidly gain information, and transform this information to knowledge, interdisciplinary approaches involving several different types of expertise are necessary. Machine learning has been in the forefront of providing models with increasing accuracy due to development of newer paradigms with strong fundamental bases. Support Vector Machines (SVM) is one such robust tool, based rigorously on statistical learning theory. SVM provides very high quality and robust solutions to classification and regression problems. Several studies in virology employ high performance tools including SVM for identification of potentially important gene and protein functions. This is mainly due to the highly beneficial aspects of SVM. In this chapter we briefly provide lucid and easy to understand details of SVM algorithms along with applications in virology.
Collapse
|
10
|
Bártolo I, Borrego P, Gomes P, Gonçalves F, Caixas U, Pinto IV, Taveira N. In vitro evaluation of novel reverse transcriptase inhibitors TAF (tenofovir alafenamide) and OBP-601 (2,3-didehydro-3-deoxy-4-ethynylthymidine) against multi-drug resistant primary isolates of HIV-2. Antiviral Res 2018; 161:85-89. [PMID: 30391482 DOI: 10.1016/j.antiviral.2018.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 11/28/2022]
Abstract
New antiretroviral drugs are needed to treat HIV-2 infected patients failing therapy. Herein, we evaluate the activity of novel reverse transcriptase inhibitors tenofovir alafenamide (TAF) and OBP-601(2,3-didehydro-3-deoxy-4-ethynylthymidine) against primary isolates from HIV-2 infected patients experiencing virologic failure. TAF and OBP-601 were tested against twelve primary isolates obtained from nine drug-experienced patients failing therapy and three drug naïve patients using a single-round infectivity assay in TZM-bl cells. The RT-coding region of pol was sequenced and the GRADE algorithm was used to identify resistance profiles and mutations. TAF and OBP-601 inhibited the replication of almost all isolates at a median EC50 of 0.27 nM and 6.83 nM, respectively. Two isolates showed moderate-level resistance to OBP-601 or TAF and two other isolates showed high-level resistance to OBP-601 or to both drugs. With one exception, all resistant viruses had canonical nucleoside reverse transcriptase inhibitors (NRTIs)-associated resistance mutations (K65R, N69S, V111I, Y115F, Q151M and M184V). Our results show that TAF has potent activity against most multi-drug resistant HIV-2 isolates and should be considered for the treatment of HIV-2 infected patients failing therapy.
Collapse
Affiliation(s)
- Inês Bártolo
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal.
| | - Pedro Borrego
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal; Centro de Administração e Políticas Públicas (CAPP), Instituto Superior de Ciências Sociais e Políticas (ISCSP) da Universidade de Lisboa, Rua Almerindo Lessa, 1300-663, Lisboa, Portugal
| | - Perpétua Gomes
- Laboratório de Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental - Hospital de Egas Moniz, Rua da Junqueira, nº 126 1349-019, Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Campus Universitário, Quinta da Granja Monte de Caparica, 2829 - 511, Caparica, Portugal
| | - Fátima Gonçalves
- Laboratório de Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental - Hospital de Egas Moniz, Rua da Junqueira, nº 126 1349-019, Lisboa, Portugal
| | - Umbelina Caixas
- Serviço de Medicina 1.4, Hospital de S. José, Centro Hospitalar Lisboa Central,- EPE, and Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Centro de Estudos de Doenças Crónicas - CEDOC, Rua Câmara Pestana nº6, 6-A, 1150-082, Lisboa, Portugal
| | - Inês V Pinto
- Medicina Interna, Hospital de Cascais Dr. José de Almeida, Av. Brigadeiro Victor Novais Gonçalves, 2755-009, Alcabideche, Portugal
| | - Nuno Taveira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Campus Universitário, Quinta da Granja Monte de Caparica, 2829 - 511, Caparica, Portugal.
| |
Collapse
|
11
|
Döring M, Büch J, Friedrich G, Pironti A, Kalaghatgi P, Knops E, Heger E, Obermeier M, Däumer M, Thielen A, Kaiser R, Lengauer T, Pfeifer N. geno2pheno[ngs-freq]: a genotypic interpretation system for identifying viral drug resistance using next-generation sequencing data. Nucleic Acids Res 2018; 46:W271-W277. [PMID: 29718426 PMCID: PMC6031006 DOI: 10.1093/nar/gky349] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/13/2018] [Accepted: 04/24/2018] [Indexed: 01/29/2023] Open
Abstract
Identifying resistance to antiretroviral drugs is crucial for ensuring the successful treatment of patients infected with viruses such as human immunodeficiency virus (HIV) or hepatitis C virus (HCV). In contrast to Sanger sequencing, next-generation sequencing (NGS) can detect resistance mutations in minority populations. Thus, genotypic resistance testing based on NGS data can offer novel, treatment-relevant insights. Since existing web services for analyzing resistance in NGS samples are subject to long processing times and follow strictly rules-based approaches, we developed geno2pheno[ngs-freq], a web service for rapidly identifying drug resistance in HIV-1 and HCV samples. By relying on frequency files that provide the read counts of nucleotides or codons along a viral genome, the time-intensive step of processing raw NGS data is eliminated. Once a frequency file has been uploaded, consensus sequences are generated for a set of user-defined prevalence cutoffs, such that the constructed sequences contain only those nucleotides whose codon prevalence exceeds a given cutoff. After locally aligning the sequences to a set of references, resistance is predicted using the well-established approaches of geno2pheno[resistance] and geno2pheno[hcv]. geno2pheno[ngs-freq] can assist clinical decision making by enabling users to explore resistance in viral populations with different abundances and is freely available at http://ngs.geno2pheno.org.
Collapse
Affiliation(s)
- Matthias Döring
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Joachim Büch
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Georg Friedrich
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Alejandro Pironti
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Prabhav Kalaghatgi
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Elena Knops
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
| | - Eva Heger
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
| | - Martin Obermeier
- MVZ Medizinisches Infektiologiezentrum Berlin (MIB), Oudenarder Str. 16, 13353 Berlin, Germany
| | | | | | - Rolf Kaiser
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
| | - Thomas Lengauer
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Nico Pfeifer
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
- Medical Faculty, University of Tübingen, Geissweg 5, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Cerejo P, Santos-Costa Q, Calado M, Espírito-Santo M, Parreira R, Azevedo-Pereira JM. Characterization of Envelope Surface Glycoprotein from HIV-2 Primary Isolates with Different Coreceptor Usage Profile. AIDS Res Hum Retroviruses 2018; 34:218-221. [PMID: 29258330 DOI: 10.1089/aid.2017.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The main goal of this work was to identify molecular signatures in envelope surface glycoprotein that may be correlated with coreceptor usage by different human immunodeficiency virus (HIV)-2 strains. From inspection of aligned HIV-2 sequences, we verified that V1/V2 region showed the highest degree of amino acid sequence heterogeneity, including polymorphisms in N-linked glycosylation sites, sequence, and length. Furthermore, we did not find any correlation between the net charge and specific amino acid positions in V3 region with any particular coreceptor usage pattern. In conclusion, we showed that for HIV-2, the genetic determinants for coreceptor usage are distinct from those of HIV-1. More specifically, we did not identify any molecular signature, based on discrete amino acid positions either in V1/V2 or in V3 regions, which could be assigned to the preferential usage of a specific coreceptor.
Collapse
Affiliation(s)
- Paula Cerejo
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Espírito-Santo
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo Parreira
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Global Health and Tropical Medicine (GHTM), IHMT/UNL, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|