1
|
Liu C, Li X, Chen M, Liu Y, Li K, Wang D, Yang Z, Guo Y, Zhao Y, Zhao H, Zhang C. Characterization and neurotherapeutic evaluation of venom polypeptides identified from Vespa magnifica: The role of Mastoparan-M in Parkinson's disease intervention. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119481. [PMID: 39947367 DOI: 10.1016/j.jep.2025.119481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a common neurodegenerative disorder in the elderly, characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy bodies. Hufeng Jiu from Vespa magnifica Smith, a traditional remedy used by the Chinese Jingpo minority, is documented in the Pharmacopoeia of China (2020) for treating rheumatic arthritis. Notably, recent research suggests that components of wasp venom (WV) from Vespa magnifica Smith, particularly polypeptides such as Mastoparan-M (Mast-M) and Vespakinin-M, may have potential therapeutic effects for neurological disorders. However, the specific polypeptide components of WV and their therapeutic effects on PD models remain insufficiently understood. AIM OF THE STUDY This study aims to characterize the neuroactive polypeptides in Vespa magnifica Smith venom and investigate the therapeutic potential of Mast-M for PD. MATERIALS AND METHODS Neuroactive polypeptides in WV were identified using LC/MS, and Mast-M derived from venom of Vespa magnifica Smith was verified with HPLC. The neuroprotective effects of WV and its peptides were assessed using the CCK-8 assay in 1-methyl-4- phenylpyridinium (MPP+)-induced SH-SY5Y human neuroblastoma cells. Mast-M was identified as a potent antagonist against MPP+-induced neurotoxicity. The toxicity, hemolytic activity, and blood-brain-barrier (BBB) permeability of Mast-M were evaluated in mice, and its therapeutic effects were assessed in an MPTP-induced PD mouse model, focusing on motor function and tyrosine hydroxylase (TH) levels. Additionally, Mast-M's impact on mitochondrial membrane potential (MMP), autophagy, and the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signling pathway was investigated. RESULTS A total of 1007 peptides were identified in the WV, including 187 UniProtKB unreviewed, with 185 predicted to be BBB-permeability. Our results show that Mast-M exhibits a time-dependent distribution in mice, initially localizing in the peritoneal region and subsequently accumulating in the brain, liver, and kidney. Cellular uptake studies reveal that Mast-M penetrates cell membranes and accumulates intracellularly over time. In the MPP+-induced neurotoxicity model using SH-SY5Y cells, Mast-M significantly enhances cell viability and MMP. In vivo safety assessments indicate that Mast-M is well-tolerated at doses up to 100 μg/kg, with no significant toxicological effects observed. However, higher doses induce hepatic distress, necessitating dose optimization. Hemolysis was absent at concentrations ≤37 μg/mL, with an EC50 for hemolytic activity of 197 μg/mL. In MPTP-induced PD models, Mast-M partially ameliorates motor deficits and preserves TH expression in dopaminergic neurons, supporting its neuroprotective role. Mechanistically, Mast-M activates autophagic pathways, as evidenced by the upregulation of autophagy-related protein LC3 in MPP+-challenged SH-SY5Y cells. Furthermore, Mast-M promotes mitophagy and mitochondrial biogenesis, modulating the AMPK/mTOR signaling axis to facilitate mitochondrial turnover. CONCLUSION Mast-M emerges as a promising therapeutic candidate for PD, capable of crossing the BBB, enhancing autophagy, and providing neuroprotection in PD models. Further studies are warranted to optimize dosing and elucidate its full therapeutic potential.
Collapse
Affiliation(s)
- Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Xiaoyu Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Mingran Chen
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Yunyun Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Kunkun Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Zhibin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | | | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
2
|
Zahedi Amiri A, Ahmed C, Dahal S, Grosso F, Leng H, Stoilov P, Mangos M, Toutant J, Shkreta L, Attisano L, Chabot B, Brown M, Huesca M, Cochrane A. Exploiting the Achilles' Heel of Viral RNA Processing to Develop Novel Antivirals. Viruses 2024; 17:54. [PMID: 39861843 PMCID: PMC11768839 DOI: 10.3390/v17010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Treatment options for viral infections are limited and viruses have proven adept at evolving resistance to many existing therapies, highlighting a significant vulnerability in our defenses. In response to this challenge, we explored the modulation of cellular RNA metabolic processes as an alternative paradigm to antiviral development. Previously, the small molecule 5342191 was identified as a potent inhibitor of HIV-1 replication by altering viral RNA accumulation at doses that minimally affect host gene expression. In this report, we document 5342191 as a potent inhibitor of adenovirus, coronavirus, and influenza replication. In each case, 5342191-mediated reduction in virus replication was associated with altered viral RNA accumulation and loss of viral structural protein expression. Interestingly, while resistant viruses were rapidly isolated for compounds targeting either virus-encoded proteases or polymerases, we have not yet isolated 5342191-resistant variants of coronavirus or influenza. As with HIV-1, 5342191's inhibition of coronaviruses and influenza is mediated through the activation of specific cell signaling networks, including GPCR and/or MAPK signaling pathways that ultimately affect SR kinase expression. Together, these studies highlight the therapeutic potential of compounds that target cellular processes essential for the replication of multiple viruses. Not only do these compounds hold promise as broad-spectrum antivirals, but they also offer the potential of greater resilience in combating viral infections.
Collapse
Affiliation(s)
- Ali Zahedi Amiri
- Virocarb Inc., Toronto, ON M8V 3Y3, Canada; (A.Z.A.); (C.A.); (M.H.)
| | - Choudhary Ahmed
- Virocarb Inc., Toronto, ON M8V 3Y3, Canada; (A.Z.A.); (C.A.); (M.H.)
| | - Subha Dahal
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.D.); (F.G.); (H.L.); (M.B.)
| | - Filomena Grosso
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.D.); (F.G.); (H.L.); (M.B.)
| | - Haomin Leng
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.D.); (F.G.); (H.L.); (M.B.)
| | - Peter Stoilov
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Maria Mangos
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.M.); (L.A.)
| | - Johanne Toutant
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (J.T.); (L.S.); (B.C.)
| | - Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (J.T.); (L.S.); (B.C.)
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.M.); (L.A.)
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (J.T.); (L.S.); (B.C.)
| | - Martha Brown
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.D.); (F.G.); (H.L.); (M.B.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Mario Huesca
- Virocarb Inc., Toronto, ON M8V 3Y3, Canada; (A.Z.A.); (C.A.); (M.H.)
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.D.); (F.G.); (H.L.); (M.B.)
| |
Collapse
|
3
|
Izquierdo-Pujol J, Puertas MC, Martinez-Picado J, Morón-López S. Targeting Viral Transcription for HIV Cure Strategies. Microorganisms 2024; 12:752. [PMID: 38674696 PMCID: PMC11052381 DOI: 10.3390/microorganisms12040752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Combination antiretroviral therapy (ART) suppresses viral replication to undetectable levels, reduces mortality and morbidity, and improves the quality of life of people living with HIV (PWH). However, ART cannot cure HIV infection because it is unable to eliminate latently infected cells. HIV latency may be regulated by different HIV transcription mechanisms, such as blocks to initiation, elongation, and post-transcriptional processes. Several latency-reversing (LRA) and -promoting agents (LPA) have been investigated in clinical trials aiming to eliminate or reduce the HIV reservoir. However, none of these trials has shown a conclusive impact on the HIV reservoir. Here, we review the cellular and viral factors that regulate HIV-1 transcription, the potential pharmacological targets and genetic and epigenetic editing techniques that have been or might be evaluated to disrupt HIV-1 latency, the role of miRNA in post-transcriptional regulation of HIV-1, and the differences between the mechanisms regulating HIV-1 and HIV-2 expression.
Collapse
Affiliation(s)
- Jon Izquierdo-Pujol
- IrsiCaixa, 08916 Badalona, Spain; (J.I.-P.); (M.C.P.); (J.M.-P.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Maria C. Puertas
- IrsiCaixa, 08916 Badalona, Spain; (J.I.-P.); (M.C.P.); (J.M.-P.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- CIBERINFEC, 28029 Madrid, Spain
| | - Javier Martinez-Picado
- IrsiCaixa, 08916 Badalona, Spain; (J.I.-P.); (M.C.P.); (J.M.-P.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- CIBERINFEC, 28029 Madrid, Spain
- Department of Infectious Diseases and Immunity, School of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Sara Morón-López
- IrsiCaixa, 08916 Badalona, Spain; (J.I.-P.); (M.C.P.); (J.M.-P.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- CIBERINFEC, 28029 Madrid, Spain
| |
Collapse
|
4
|
Wong RW, Balachandran A, Cheung PK, Cheng R, Pan Q, Stoilov P, Harrigan PR, Blencowe BJ, Branch DR, Cochrane A. Correction: An activator of G protein-coupled receptor and MEK1/2-ERK1/2 signaling inhibits HIV-1 replication by altering viral RNA processing. PLoS Pathog 2024; 20:e1012155. [PMID: 38593115 PMCID: PMC11003610 DOI: 10.1371/journal.ppat.1012155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.ppat.1008307.].
Collapse
|
5
|
Dahal S, Clayton K, Cabral T, Cheng R, Jahanshahi S, Ahmed C, Koirala A, Villasmil Ocando A, Malty R, Been T, Hernandez J, Mangos M, Shen D, Babu M, Calarco J, Chabot B, Attisano L, Houry WA, Cochrane A. On a path toward a broad-spectrum anti-viral: inhibition of HIV-1 and coronavirus replication by SR kinase inhibitor harmine. J Virol 2023; 97:e0039623. [PMID: 37706687 PMCID: PMC10617549 DOI: 10.1128/jvi.00396-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/14/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE This study highlights the crucial role RNA processing plays in regulating viral gene expression and replication. By targeting SR kinases, we identified harmine as a potent inhibitor of HIV-1 as well as coronavirus (HCoV-229E and multiple SARS-CoV-2 variants) replication. Harmine inhibits HIV-1 protein expression and reduces accumulation of HIV-1 RNAs in both cell lines and primary CD4+ T cells. Harmine also suppresses coronavirus replication post-viral entry by preferentially reducing coronavirus sub-genomic RNA accumulation. By focusing on host factors rather than viral targets, our study offers a novel approach to combating viral infections that is effective against a range of unrelated viruses. Moreover, at doses required to inhibit virus replication, harmine had limited toxicity and minimal effect on the host transcriptome. These findings support the viability of targeting host cellular processes as a means of developing broad-spectrum anti-virals.
Collapse
Affiliation(s)
- Subha Dahal
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kiera Clayton
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Tyler Cabral
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ran Cheng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shahrzad Jahanshahi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Choudhary Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Amrit Koirala
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Ramy Malty
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Terek Been
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Javier Hernandez
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Maria Mangos
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David Shen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mohan Babu
- Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - John Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Su CF, Das D, Muhammad Aslam M, Xie JQ, Li XY, Chen MX. Eukaryotic splicing machinery in the plant-virus battleground. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1793. [PMID: 37198737 DOI: 10.1002/wrna.1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Plant virual infections are mainly caused by plant-virus parasitism which affects ecological communities. Some viruses are highly pathogen specific that can infect only specific plants, while some can cause widespread harm, such as tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). After a virus infects the host, undergoes a series of harmful effects, including the destruction of host cell membrane receptors, changes in cell membrane components, cell fusion, and the production of neoantigens on the cell surface. Therefore, competition between the host and the virus arises. The virus starts gaining control of critical cellular functions of the host cells and ultimately affects the fate of the targeted host plants. Among these critical cellular processes, alternative splicing (AS) is an essential posttranscriptional regulation process in RNA maturation, which amplify host protein diversity and manipulates transcript abundance in response to plant pathogens. AS is widespread in nearly all human genes and critical in regulating animal-virus interactions. In particular, an animal virus can hijack the host splicing machinery to re-organize its compartments for propagation. Changes in AS are known to cause human disease, and various AS events have been reported to regulate tissue specificity, development, tumour proliferation, and multi-functionality. However, the mechanisms underlying plant-virus interactions are poorly understood. Here, we summarize the current understanding of how viruses interact with their plant hosts compared with humans, analyze currently used and putative candidate agrochemicals to treat plant-viral infections, and finally discussed the potential research hotspots in the future. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Chang-Feng Su
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Debatosh Das
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ji-Qin Xie
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Xiang-Yang Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Mo-Xian Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Cellular Targets of HIV-1 Protease: Just the Tip of the Iceberg? Viruses 2023; 15:v15030712. [PMID: 36992421 PMCID: PMC10053624 DOI: 10.3390/v15030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) viral protease (PR) is one of the most studied viral enzymes and a crucial antiviral target. Despite its well-characterized role in virion maturation, an increasing body of research is starting to focus on its ability to cleave host cell proteins. Such findings are apparently in contrast with the dogma of HIV-1 PR activity being restricted to the interior of nascent virions and suggest catalytic activity within the host cell environment. Given the limited amount of PR present in the virion at the time of infection, such events mainly occur during late viral gene expression, mediated by newly synthesized Gag-Pol polyprotein precursors, rather than before proviral integration. HIV-1 PR mainly targets proteins involved in three different processes: those involved in translation, those controlling cell survival, and restriction factors responsible for innate/intrinsic antiviral responses. Indeed, by cleaving host cell translation initiation factors, HIV-1 PR can impair cap-dependent translation, thus promoting IRES-mediated translation of late viral transcripts and viral production. By targeting several apoptotic factors, it modulates cell survival, thus promoting immune evasion and viral dissemination. Additionally, HIV-1 PR counteracts restriction factors incorporated in the virion that would otherwise interfere with nascent virus vitality. Thus, HIV-1 PR appears to modulate host cell function at different times and locations during its life cycle, thereby ensuring efficient viral persistency and propagation. However, we are far from having a complete picture of PR-mediated host cell modulation, which is emerging as a field that needs further investigation.
Collapse
|
8
|
Han L, Cheng L, Hu D, Chen Q, Han L, Xu T, Liu X, Wu N. Design, Synthesis and Biological Activities of 1,2,
4‐Triazolo
[1,5‐
a
]pyrimidine‐7‐amine Derivatives Bearing 1,2,
4‐Oxadiazole
Motif. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lin‐Ru Han
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
- Zhejiang Base of National Southern Pesticide Research Centre Zhejiang Research Institute of Chemical Industry Hangzhou China
| | - Long Cheng
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
- Zhejiang Base of National Southern Pesticide Research Centre Zhejiang Research Institute of Chemical Industry Hangzhou China
| | - Dong‐Song Hu
- Zhejiang Base of National Southern Pesticide Research Centre Zhejiang Research Institute of Chemical Industry Hangzhou China
| | - Qing‐Wu Chen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| | - Liang Han
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| | - Tian‐Ming Xu
- Zhejiang Base of National Southern Pesticide Research Centre Zhejiang Research Institute of Chemical Industry Hangzhou China
| | - Xing‐Hai Liu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| | - Ning‐Jie Wu
- Zhejiang Base of National Southern Pesticide Research Centre Zhejiang Research Institute of Chemical Industry Hangzhou China
| |
Collapse
|
9
|
Murtaza S, Kausar N, Arshad U, Ahmed S, Tatheer A, Najeeb J, Tawab A. Novel 2-aminobenzohydrazide derivatives, design, synthesis, anti-Alzheimer evaluation, SAR studies and molecular docking analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Kausar N, Murtaza S, Khalid M, Shoukat U, Asad M, Arshad MN, Asiri AM, Braga AA. Experimental and Quantum Chemical Approaches for Hydrazide-based Crystalline Organic Chromophores: Synthesis, SC-XRD, Spectroscopic and Nonlinear Optical Properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Dahal S, Clayton K, Been T, Fernet-Brochu R, Ocando AV, Balachandran A, Poirier M, Maldonado RK, Shkreta L, Boligan KF, Guvenc F, Rahman F, Branch D, Bell B, Chabot B, Gray-Owen SD, Parent LJ, Cochrane A. Opposing roles of CLK SR kinases in controlling HIV-1 gene expression and latency. Retrovirology 2022; 19:18. [PMID: 35986377 PMCID: PMC9389714 DOI: 10.1186/s12977-022-00605-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The generation of over 69 spliced HIV-1 mRNAs from one primary transcript by alternative RNA splicing emphasizes the central role that RNA processing plays in HIV-1 replication. Control is mediated in part through the action of host SR proteins whose activity is regulated by multiple SR kinases (CLK1-4, SRPKs). METHODS Both shRNA depletion and small molecule inhibitors of host SR kinases were used in T cell lines and primary cells to evaluate the role of these factors in the regulation of HIV-1 gene expression. Effects on virus expression were assessed using western blotting, RT-qPCR, and immunofluorescence. RESULTS The studies demonstrate that SR kinases play distinct roles; depletion of CLK1 enhanced HIV-1 gene expression, reduction of CLK2 or SRPK1 suppressed it, whereas CLK3 depletion had a modest impact. The opposing effects of CLK1 vs. CLK2 depletion were due to action at distinct steps; reduction of CLK1 increased HIV-1 promoter activity while depletion of CLK2 affected steps after transcript initiation. Reduced CLK1 expression also enhanced the response to several latency reversing agents, in part, by increasing the frequency of responding cells, consistent with a role in regulating provirus latency. To determine whether small molecule modulation of SR kinase function could be used to control HIV-1 replication, we screened a GSK library of protein kinase inhibitors (PKIS) and identified several pyrazolo[1,5-b] pyridazine derivatives that suppress HIV-1 gene expression/replication with an EC50 ~ 50 nM. The compounds suppressed HIV-1 protein and viral RNA accumulation with minimal impact on cell viability, inhibiting CLK1 and CLK2 but not CLK3 function, thereby selectively altering the abundance of individual CLK and SR proteins in cells. CONCLUSIONS These findings demonstrate the unique roles played by individual SR kinases in regulating HIV-1 gene expression, validating the targeting of these functions to either enhance latency reversal, essential for "Kick-and-Kill" strategies, or to silence HIV protein expression for "Block-and-Lock" strategies.
Collapse
Affiliation(s)
- Subha Dahal
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Kiera Clayton
- grid.168645.80000 0001 0742 0364Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Terek Been
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Raphaële Fernet-Brochu
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Alonso Villasmil Ocando
- grid.461656.60000 0004 0489 3491Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139 USA
| | - Ahalya Balachandran
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Mikaël Poirier
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Rebecca Kaddis Maldonado
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA 17033 USA ,grid.240473.60000 0004 0543 9901Microbiology & Immunology, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Lulzim Shkreta
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Kayluz Frias Boligan
- grid.423370.10000 0001 0285 1288Center for Innovation, Canadian Blood Services, Toronto, ON Canada
| | - Furkan Guvenc
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Fariha Rahman
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Donald Branch
- grid.423370.10000 0001 0285 1288Center for Innovation, Canadian Blood Services, Toronto, ON Canada
| | - Brendan Bell
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Benoit Chabot
- grid.86715.3d0000 0000 9064 6198Dept. of Microbiology & Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Scott D. Gray-Owen
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| | - Leslie J. Parent
- grid.240473.60000 0004 0543 9901Department of Medicine, Penn State College of Medicine, Hershey, PA 17033 USA ,grid.240473.60000 0004 0543 9901Microbiology & Immunology, Penn State College of Medicine, Hershey, PA 17033 USA
| | - Alan Cochrane
- grid.17063.330000 0001 2157 2938Dept. of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S1A8 Canada
| |
Collapse
|
12
|
Sfera A, Thomas KG, Andronescu CV, Jafri N, Sfera DO, Sasannia S, Zapata-Martín del Campo CM, Maldonado JC. Bromodomains in Human-Immunodeficiency Virus-Associated Neurocognitive Disorders: A Model of Ferroptosis-Induced Neurodegeneration. Front Neurosci 2022; 16:904816. [PMID: 35645713 PMCID: PMC9134113 DOI: 10.3389/fnins.2022.904816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) comprise a group of illnesses marked by memory and behavioral dysfunction that can occur in up to 50% of HIV patients despite adequate treatment with combination antiretroviral drugs. Iron dyshomeostasis exacerbates HIV-1 infection and plays a major role in Alzheimer's disease pathogenesis. In addition, persons living with HIV demonstrate a high prevalence of neurodegenerative disorders, indicating that HAND provides a unique opportunity to study ferroptosis in these conditions. Both HIV and combination antiretroviral drugs increase the risk of ferroptosis by augmenting ferritin autophagy at the lysosomal level. As many viruses and their proteins exit host cells through lysosomal exocytosis, ferroptosis-driving molecules, iron, cathepsin B and calcium may be released from these organelles. Neurons and glial cells are highly susceptible to ferroptosis and neurodegeneration that engenders white and gray matter damage. Moreover, iron-activated microglia can engage in the aberrant elimination of viable neurons and synapses, further contributing to ferroptosis-induced neurodegeneration. In this mini review, we take a closer look at the role of iron in the pathogenesis of HAND and neurodegenerative disorders. In addition, we describe an epigenetic compensatory system, comprised of bromodomain-containing protein 4 (BRD4) and microRNA-29, that may counteract ferroptosis by activating cystine/glutamate antiporter, while lowering ferritin autophagy and iron regulatory protein-2. We also discuss potential interventions for lysosomal fitness, including ferroptosis blockers, lysosomal acidification, and cathepsin B inhibitors to achieve desirable therapeutic effects of ferroptosis-induced neurodegeneration.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | | | | | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | - Dan O. Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | - Jose C. Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
13
|
Chai H, Gu Q, Hughes J, Robertson DL. In silico prediction of HIV-1-host molecular interactions and their directionality. PLoS Comput Biol 2022; 18:e1009720. [PMID: 35134057 PMCID: PMC8856524 DOI: 10.1371/journal.pcbi.1009720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/18/2022] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) continues to be a major cause of disease and premature death. As with all viruses, HIV-1 exploits a host cell to replicate. Improving our understanding of the molecular interactions between virus and human host proteins is crucial for a mechanistic understanding of virus biology, infection and host antiviral activities. This knowledge will potentially permit the identification of host molecules for targeting by drugs with antiviral properties. Here, we propose a data-driven approach for the analysis and prediction of the HIV-1 interacting proteins (VIPs) with a focus on the directionality of the interaction: host-dependency versus antiviral factors. Using support vector machine learning models and features encompassing genetic, proteomic and network properties, our results reveal some significant differences between the VIPs and non-HIV-1 interacting human proteins (non-VIPs). As assessed by comparison with the HIV-1 infection pathway data in the Reactome database (sensitivity > 90%, threshold = 0.5), we demonstrate these models have good generalization properties. We find that the ‘direction’ of the HIV-1-host molecular interactions is also predictable due to different characteristics of ‘forward’/pro-viral versus ‘backward’/pro-host proteins. Additionally, we infer the previously unknown direction of the interactions between HIV-1 and 1351 human host proteins. A web server for performing predictions is available at http://hivpre.cvr.gla.ac.uk/.
Collapse
Affiliation(s)
- Haiting Chai
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
The Thiazole-5-Carboxamide GPS491 Inhibits HIV-1, Adenovirus, and Coronavirus Replication by Altering RNA Processing/Accumulation. Viruses 2021; 14:v14010060. [PMID: 35062264 PMCID: PMC8779516 DOI: 10.3390/v14010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.
Collapse
|
15
|
Kausar N, Murtaza S, Arshad MN, Zaib Saleem RS, Asiri AM, Kausar S, Altaf AA, Tatheer A, Elnaggar AY, El-Bahy SM. Design, synthesis, crystal structure, in vitro cytotoxicity evaluation, density functional theory calculations and docking studies of 2-(benzamido) benzohydrazide derivatives as potent AChE and BChE inhibitors. RSC Adv 2021; 12:154-167. [PMID: 35424495 PMCID: PMC8978638 DOI: 10.1039/d1ra07221h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/21/2021] [Indexed: 12/22/2022] Open
Abstract
A series of hydrazone derivatives of 2-(benzamido) benzohydrazide was designed, synthesized, and characterized utilizing FTIR, NMR and UV spectroscopic techniques along with mass spectrometry. Compound 10 was also characterized through X-ray crystallography. These synthesized compounds were assessed for their potential as anti-Alzheimer's agents by checking their AChE and BChE inhibition properties by in vitro analysis. The synthesized derivatives were also evaluated for their antioxidant potential along with cytotoxicity studies. The results clearly indicated that dual inhibition of both the enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) was achieved by most of the compounds (03-13), showing varying IC50values. Remarkably, compound 06 (IC50 = 0.09 ± 0.05 for AChE and 0.14 ± 0.05 for BChE) and compound 13 (IC50 = 0.11 ± 0.03 for AChE and 0.10 ± 0.06 for BChE) from the series showed IC50 values comparable to the standard donepezil (IC50 = 0.10 ± 0.02 for AChE and 0.14 ± 0.03 for BChE). Moreover, the derivative 11 also exhibited selective inhibition against BChE with IC50 = 0.12 ± 0.09. Meanwhile, compounds 04 and 10 exhibited good anti-oxidant activities, showing % scavenging of 95.06% and 82.55%, respectively. Cytotoxicity studies showed that the synthesized compounds showed cell viability greater than 80%; thus, these compounds can be safely used as drugs. DFT and molecular docking studies also supported the experimental findings.
Collapse
Affiliation(s)
- Naghmana Kausar
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Shahzad Murtaza
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | | | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Samia Kausar
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
- Catalysis Research Center, Department of Chemistry, Technical University of Munich Lichtenbergstrasse 4 85747 Garching Germany
| | - Ataf Ali Altaf
- Department of Chemistry, University of Okara Okara 56300 Pakistan
| | - Adina Tatheer
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Ashraf Y Elnaggar
- Department of Food Nutrition Science, College of Science, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| |
Collapse
|
16
|
Kausar N, Murtaza S, Arshad MN, Munir R, Saleem RSZ, Rafique H, Tawab A. Design, synthesis, structure activity relationship and molecular docking studies of thiophene-2-carboxamide Schiff base derivatives of benzohydrazide as novel acetylcholinesterase and butyrylcholinesterase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Biological evaluation and molecular docking studies of 4-aminobenzohydrazide derivatives as cholinesterase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Lentiviral Vectors for T Cell Engineering: Clinical Applications, Bioprocessing and Future Perspectives. Viruses 2021; 13:v13081528. [PMID: 34452392 PMCID: PMC8402758 DOI: 10.3390/v13081528] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lentiviral vectors have played a critical role in the emergence of gene-modified cell therapies, specifically T cell therapies. Tisagenlecleucel (Kymriah), axicabtagene ciloleucel (Yescarta) and most recently brexucabtagene autoleucel (Tecartus) are examples of T cell therapies which are now commercially available for distribution after successfully obtaining EMA and FDA approval for the treatment of blood cancers. All three therapies rely on retroviral vectors to transduce the therapeutic chimeric antigen receptor (CAR) into T lymphocytes. Although these innovations represent promising new therapeutic avenues, major obstacles remain in making them readily available tools for medical care. This article reviews the biological principles as well as the bioprocessing of lentiviral (LV) vectors and adoptive T cell therapy. Clinical and engineering successes, shortcomings and future opportunities are also discussed. The development of Good Manufacturing Practice (GMP)-compliant instruments, technologies and protocols will play an essential role in the development of LV-engineered T cell therapies.
Collapse
|
19
|
Lu Y, Bohn-Wippert K, Pazerunas PJ, Moy JM, Singh H, Dar RD. Screening for gene expression fluctuations reveals latency-promoting agents of HIV. Proc Natl Acad Sci U S A 2021; 118:e2012191118. [PMID: 33836565 PMCID: PMC7980449 DOI: 10.1073/pnas.2012191118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Upon treatment removal, spontaneous reactivation of latently infected T cells remains a major barrier toward curing HIV. Therapies that reactivate and clear the latent reservoir are only partially effective, while latency-promoting agents (LPAs) used to suppress reactivation and stabilize latency are understudied and lack diversity in their mechanisms of action. Here, we identify additional LPAs using a screen for gene-expression fluctuations (or "noise") that drive cell-fate specification and control HIV reactivation from latency. Single-cell protein dynamics of a minimal HIV gene circuit were monitored with time-lapse fluorescence microscopy. We screened 1,806 drugs, out of which 279 modulate noise magnitude or half autocorrelation time. Next, we tested the strongest noise modulators in a Jurkat T cell latency model and discovered three LPAs that would be overlooked by quantifying their mean expression levels alone. The LPAs reduced reactivation of latency in both Jurkat and primary cell models when challenged by synergistic and potent combinations of HIV activators. The two strongest LPAs, NSC 401005 and NSC 400938, are structurally and functionally related to inhibitors of thioredoxin reductase, a protein involved in maintaining redox balance in host cells. Experiments with multiple functional analogs revealed two additional LPAs, PX12 and tiopronin, and suggest a potential LPA family, within which some are commercially available and Food and Drug Administration-approved. The LPAs presented here may provide new strategies to complement antiretroviral treatments. Screening for gene expression noise holds the potential for drug discovery in other diseases.
Collapse
Affiliation(s)
- Yiyang Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kathrin Bohn-Wippert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Patrick J Pazerunas
- Department of Chemical Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jennifer M Moy
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Harpal Singh
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Roy D Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
20
|
Yadavar-Nikravesh MS, Milani A, Vahabpour R, Khoobi M, Bakhshandeh H, Bolhassani A. In vitro Anti-HIV-1 Activity of the Recombinant HIV-1 TAT Protein Along With Tenofovir Drug. Curr HIV Res 2021; 19:138-146. [PMID: 33045968 DOI: 10.2174/1570162x18666201012152600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND HIV-1 TAT protein is essential for the regulation of viral genome transcription. The first exon of TAT protein has a fundamental role in the stimulation of the extrinsic and intrinsic apoptosis pathways, but its anti-HIV activity is not clear yet. METHODS In the current study, we firstly cloned the first exon of the TAT coding sequence in the pET-24a expression vector and then protein expression was done in the Rosetta expression host. Next, the expressed TAT protein was purified by Ni-NTA column under native conditions. After that, the protein yield was determined by Bradford kit and NanoDrop spectrophotometry. Finally, the cytotoxicity effect and anti-Scr-HIV-1 activity of the recombinant TAT protein alone and along with Tenofovir drug were assessed by MTT and ELISA, respectively. RESULTS The recombinant TAT protein was successfully generated in E. coli, as confirmed by 13.5% SDS-PAGE and western blotting. The protein yield was ~150-200 μg/ml. In addition, the recombinant TAT protein at a certain dose with low toxicity could suppress Scr-HIV replication in the infected HeLa cells (~30%) that was comparable with a low toxic dose of Tenofovir drug (~40%). It was interesting that the recombinant TAT protein could enhance anti-HIV potency of Tenofovir drug up to 66%. CONCLUSION Generally, a combination of TAT protein and Tenofovir drug could significantly inhibit HIV-1 replication. It will be required to determine their mechanism of action in the next studies.
Collapse
Affiliation(s)
| | - Alireza Milani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Rouhollah Vahabpour
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences; Tehran, Iran
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Bakhshandeh
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
21
|
Ait-Ammar A, Bellefroid M, Daouad F, Martinelli V, Van Assche J, Wallet C, Rodari A, De Rovere M, Fahrenkrog B, Schwartz C, Van Lint C, Gautier V, Rohr O. Inhibition of HIV-1 gene transcription by KAP1 in myeloid lineage. Sci Rep 2021; 11:2692. [PMID: 33514850 PMCID: PMC7846785 DOI: 10.1038/s41598-021-82164-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/13/2021] [Indexed: 02/08/2023] Open
Abstract
HIV-1 latency generates reservoirs that prevent viral eradication by the current therapies. To find strategies toward an HIV cure, detailed understandings of the molecular mechanisms underlying establishment and persistence of the reservoirs are needed. The cellular transcription factor KAP1 is known as a potent repressor of gene transcription. Here we report that KAP1 represses HIV-1 gene expression in myeloid cells including microglial cells, the major reservoir of the central nervous system. Mechanistically, KAP1 interacts and colocalizes with the viral transactivator Tat to promote its degradation via the proteasome pathway and repress HIV-1 gene expression. In myeloid models of latent HIV-1 infection, the depletion of KAP1 increased viral gene elongation and reactivated HIV-1 expression. Bound to the latent HIV-1 promoter, KAP1 associates and cooperates with CTIP2, a key epigenetic silencer of HIV-1 expression in microglial cells. In addition, Tat and CTIP2 compete for KAP1 binding suggesting a dynamic modulation of the KAP1 cellular partners upon HIV-1 infection. Altogether, our results suggest that KAP1 contributes to the establishment and the persistence of HIV-1 latency in myeloid cells.
Collapse
Affiliation(s)
- Amina Ait-Ammar
- grid.11843.3f0000 0001 2157 9291Université de Strasbourg, UR 7292 DHPI, FMTS, IUT Louis Pasteur, 1 Allée d’Athènes, 67300 Schiltigheim, France ,grid.7886.10000 0001 0768 2743Center for Research in Infectious Diseases (CRID), School of Medicine and Medical Science (SMMS), University College Dublin (UCD), Dublin, Ireland ,grid.4989.c0000 0001 2348 0746Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Maxime Bellefroid
- grid.4989.c0000 0001 2348 0746Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Fadoua Daouad
- grid.11843.3f0000 0001 2157 9291Université de Strasbourg, UR 7292 DHPI, FMTS, IUT Louis Pasteur, 1 Allée d’Athènes, 67300 Schiltigheim, France
| | - Valérie Martinelli
- grid.4989.c0000 0001 2348 0746Laboratory Biology of the Nucleus, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| | - Jeanne Van Assche
- grid.11843.3f0000 0001 2157 9291Université de Strasbourg, UR 7292 DHPI, FMTS, IUT Louis Pasteur, 1 Allée d’Athènes, 67300 Schiltigheim, France
| | - Clémentine Wallet
- grid.11843.3f0000 0001 2157 9291Université de Strasbourg, UR 7292 DHPI, FMTS, IUT Louis Pasteur, 1 Allée d’Athènes, 67300 Schiltigheim, France
| | - Anthony Rodari
- grid.4989.c0000 0001 2348 0746Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Marco De Rovere
- grid.11843.3f0000 0001 2157 9291Université de Strasbourg, UR 7292 DHPI, FMTS, IUT Louis Pasteur, 1 Allée d’Athènes, 67300 Schiltigheim, France
| | - Birthe Fahrenkrog
- grid.4989.c0000 0001 2348 0746Laboratory Biology of the Nucleus, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| | - Christian Schwartz
- grid.11843.3f0000 0001 2157 9291Université de Strasbourg, UR 7292 DHPI, FMTS, IUT Louis Pasteur, 1 Allée d’Athènes, 67300 Schiltigheim, France
| | - Carine Van Lint
- grid.4989.c0000 0001 2348 0746Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Virginie Gautier
- grid.7886.10000 0001 0768 2743Center for Research in Infectious Diseases (CRID), School of Medicine and Medical Science (SMMS), University College Dublin (UCD), Dublin, Ireland
| | - Olivier Rohr
- grid.11843.3f0000 0001 2157 9291Université de Strasbourg, UR 7292 DHPI, FMTS, IUT Louis Pasteur, 1 Allée d’Athènes, 67300 Schiltigheim, France
| |
Collapse
|
22
|
Maina EK, Adan AA, Mureithi H, Muriuki J, Lwembe RM. A Review of Current Strategies Towards the Elimination of Latent HIV-1 and Subsequent HIV-1 Cure. Curr HIV Res 2021; 19:14-26. [PMID: 32819259 PMCID: PMC8573729 DOI: 10.2174/1570162x18999200819172009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022]
Abstract
Background During the past 35 years, highly effective ART has saved the lives of millions of people worldwide by suppressing viruses to undetectable levels. However, this does not translate to the absence of viruses in the body as HIV persists in latent reservoirs. Indeed, rebounded HIV has been recently observed in the Mississippi and California infants previously thought to have been cured. Hence, much remains to be learned about HIV latency, and the search for the best strategy to eliminate the reservoir is the direction current research is taking. A systems-level approach that fully recapitulates the dynamics and complexity of HIV-1 latency In vivo and is applicable in human therapy is prudent for HIV eradication to be more feasible. Objectives The main barriers preventing the cure of HIV with antiretroviral therapy have been identified, progress has been made in the understanding of the therapeutic targets to which potentially eradicating drugs could be directed, integrative strategies have been proposed, and clinical trials with various alternatives are underway. The aim of this review is to provide an update on the main advances in HIV eradication, with particular emphasis on the obstacles and the different strategies proposed. The core challenges of each strategy are highlighted and the most promising strategy and new research avenues in HIV eradication strategies are proposed. Methods A systematic literature search of all English-language articles published between 2015 and 2019, was conducted using MEDLINE (PubMed) and Google scholar. Where available, medical subject headings (MeSH) were used as search terms and included: HIV, HIV latency, HIV reservoir, latency reactivation, and HIV cure. Additional search terms consisted of suppression, persistence, establishment, generation, and formation. A total of 250 articles were found using the above search terms. Out of these, 89 relevant articles related to HIV-1 latency establishment and eradication strategies were collected and reviewed, with no limitation of study design. Additional studies (commonly referenced and/or older and more recent articles of significance) were selected from bibliographies and references listed in the primary resources. Results In general, when exploring the literature, there are four main strategies heavily researched that provide promising strategies to the elimination of latent HIV: Haematopoietic Stem-Cell Transplantation, Shock and Kill Strategy, Gene-specific transcriptional activation using RNA-guided CRISPR-Cas9 system, and Block and Lock strategy. Most of the studies of these strategies are applicable in vitro, leaving many questions about the extent to which, or if any, these strategies are applicable to complex picture In vivo. However, the success of these strategies at least shows, in part, that HIV-1 can be cured, though some strategies are too invasive and expensive to become a standard of care for all HIV-infected patients. Conclusion Recent advances hold promise for the ultimate cure of HIV infection. A systems-level approach that fully recapitulates the dynamics and complexity of HIV-1 latency In vivo and applicable in human therapy is prudent for HIV eradication to be more feasible. Future studies aimed at achieving a prolonged HIV remission state are more likely to be successful if they focus on a combination strategy, including the block and kill, and stem cell approaches. These strategies propose a functional cure with minimal toxicity for patients. It is believed that the cure of HIV infection will be attained in the short term if a strategy based on purging the reservoirs is complemented with an aggressive HAART strategy.
Collapse
Affiliation(s)
- Edward K Maina
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Asma A Adan
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Haddison Mureithi
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Joseph Muriuki
- Centre for Virology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Raphael M Lwembe
- Centre for Virology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
23
|
Hajano JUD, Raza A, Zhang L, Liu W, Wang X. Ribavirin targets sugar transporter 6 to suppress acquisition and transmission of rice stripe tenuivirus by its vector Laodelphax striatellus. PEST MANAGEMENT SCIENCE 2020; 76:4086-4092. [PMID: 32542993 DOI: 10.1002/ps.5963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Rice stripe tenuivirus (RSV) is one of the most destructive pathogens of rice and other cereal crops. The virus is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a circulative-propagative manner. Thus, blocking transmission by the insect vector would provide an effective strategy to prevent epidemic outbreaks of the disease. RESULTS In this study, we explored the effect of ribavirin on acquisition and transmission of the virus by specifically inhibiting the expression of sugar transporter 6 (LsSt-6), which was recently reported as a key vector component for RSV transmission. Ribavirin at the highest concentration tested (250 μmol L-1 ) significantly reduced RSV acquisition and transmission efficiency by SBPHs through inhibiting LsSt-6 messenger RNA (mRNA) level. Survival of the model insect Spodoptera frugiperda cell line (Sf9) was 95.0 ± 2.2 and 85.6 ± 2.1% after exposure to 250 μmol L-1 ribavirin or 8-azaguanine, respectively. Further study confirmed that 250 μmol L-1 ribavirin also significantly reduced LsSt-6 mRNA and protein levels in Sf9 cells. However, 8-azaguanine did not significantly inhibit viral infectivity and LsSt-6 mRNA levels in SBPH or the Sf9 cell line. CONCLUSION This result provides evidence that ribavirin has the potential to disrupt LsSt-6 expression but not others like viral RNAs to prevent acquiring RSV, which leads to less viral accumulation in SBPH tissues and thereby lower transmission efficiency. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jamal-U-Ddin Hajano
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, Pakistan
| | - Ahmed Raza
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Kausar N, Murtaza S, Arshad MN, Rashid R, Asiri AM, Javid N, Asim MH, Ashraf Z. Synthesis, characterization, biological evaluation and molecular docking studies of N-functionalized derivatives of 2-aminobenzohydrazide. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Wong RW, Balachandran A, Cheung PK, Cheng R, Pan Q, Stoilov P, Harrigan PR, Blencowe BJ, Branch DR, Cochrane A. An activator of G protein-coupled receptor and MEK1/2-ERK1/2 signaling inhibits HIV-1 replication by altering viral RNA processing. PLoS Pathog 2020; 16:e1008307. [PMID: 32069328 PMCID: PMC7048317 DOI: 10.1371/journal.ppat.1008307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/28/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
The ability of HIV-1 to evolve resistance to combined antiretroviral therapies (cARTs) has stimulated research into alternative means of controlling this infection. We assayed >60 modulators of RNA alternative splicing (AS) to identify new inhibitors of HIV-1 RNA processing-a segment of the viral lifecycle not targeted by current drugs-and discovered compound N-[4-chloro-3-(trifluoromethyl)phenyl]-7-nitro-2,1,3-benzoxadiazol-4-amine (5342191) as a potent inhibitor of both wild-type (Ba-L, NL4-3, LAI, IIIB, and N54) and drug-resistant strains of HIV-1 (IC50: ~700 nM) with no significant effect on cell viability at doses tested. 5342191 blocks expression of four essential HIV-1 structural and regulatory proteins (Gag, Env, Tat, and Rev) without affecting total protein synthesis of the cell. This response is associated with altered unspliced (US) and singly-spliced (SS) HIV-1 RNA accumulation (~60% reduction) and transport to the cytoplasm (loss of Rev) whereas parallel analysis of cellular RNAs revealed less than a 0.7% of host alternative splicing (AS) events (0.25-0.67% by ≥ 10-20%), gene expression (0.01-0.46% by ≥ 2-5 fold), and protein abundance (0.02-0.34% by ≥ 1.5-2 fold) being affected. Decreased expression of Tat, but not Gag/Env, upon 5342191 treatment was reversed by a proteasome inhibitor, suggesting that this compound alters the synthesis/degradation of this key viral factor. Consistent with an affect on HIV-1 RNA processing, 5342191 treatment of cells altered the abundance and phosphorylation of serine/arginine-rich splicing factor (SRSF) 1, 3, and 4. Despite the activation of several intracellular signaling pathways by 5342191 (Ras, MEK1/2-ERK1/2, and JNK1/2/3), inhibition of HIV-1 gene expression by this compound could be reversed by pre-treatment with either a G-protein α-subunit inhibitor or two different MEK1/2 inhibitors. These observations demonstrate enhanced sensitivity of HIV-1 gene expression to small changes in host RNA processing and highlights the potential of modulating host intracellular signaling as an alternative approach for controlling HIV-1 infection.
Collapse
Affiliation(s)
- Raymond W. Wong
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ahalya Balachandran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter K. Cheung
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Ran Cheng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Qun Pan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, United States of America
| | - P. Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin J. Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Donald R. Branch
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Advanced Diagnostics, Infection and Immunity Group, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Abstract
A disease of more than 39.6 million people worldwide, HIV-1 infection has no curative therapy. To date, one man has achieved a sterile cure, with millions more hoping to avoid the potential pitfalls of lifelong antiretroviral therapy and other HIV-related disorders, including neurocognitive decline. Recent developments in immunotherapies and gene therapies provide renewed hope in advancing efforts toward a sterilizing or functional cure. On the horizon is research concentrated in multiple separate but potentially complementary domains: vaccine research, viral transcript editing, T-cell effector response targeting including checkpoint inhibitors, and gene editing. Here, we review the concept of targeting the HIV-1 tissue reservoirs, with an emphasis on the central nervous system, and describe relevant new work in functional cure research and strategies for HIV-1 eradication.
Collapse
|
27
|
Stoszko M, Ne E, Abner E, Mahmoudi T. A broad drug arsenal to attack a strenuous latent HIV reservoir. Curr Opin Virol 2019; 38:37-53. [PMID: 31323521 DOI: 10.1016/j.coviro.2019.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
Abstract
HIV cure is impeded by the persistence of a strenuous reservoir of latent but replication competent infected cells, which remain unsusceptible to c-ART and unrecognized by the immune system for elimination. Ongoing progress in understanding the molecular mechanisms that control HIV transcription and latency has led to the development of strategies to either permanently inactivate the latent HIV infected reservoir of cells or to stimulate the virus to emerge out of latency, coupled to either induction of death in the infected reactivated cell or its clearance by the immune system. This review focuses on the currently explored and non-exclusive pharmacological strategies and their molecular targets that 1. stimulate reversal of HIV latency in infected cells by targeting distinct steps in the HIV-1 gene expression cycle, 2. exploit mechanisms that promote cell death and apoptosis to render the infected cell harboring reactivated virus more susceptible to death and/or elimination by the immune system, and 3. permanently inactivate any remaining latently infected cells such that c-ART can be safely discontinued.
Collapse
Affiliation(s)
- Mateusz Stoszko
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Enrico Ne
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Erik Abner
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
28
|
Zheng W, Wang D, Zou X. Control of multilayer biological networks and applied to target identification of complex diseases. BMC Bioinformatics 2019; 20:271. [PMID: 31138124 PMCID: PMC6540418 DOI: 10.1186/s12859-019-2841-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Networks have been widely used to model the structures of various biological systems. The ultimate aim of research on biological networks is to steer biological system structures to desired states by manipulating signals. Despite great advances in the linear control of single-layer networks, it has been observed that many complex biological systems have a multilayer networked structure and extremely complicated nonlinear processes. RESULT In this study, we propose a general framework for controlling nonlinear dynamical systems with multilayer networked structures by formulating the problem as a minimum union optimization problem. In particular, we offer a novel approach for identifying the minimal driver nodes that can steer a multilayered nonlinear dynamical system toward any desired dynamical attractor. Three disease-related biology multilayer networks are used to demonstrate the effectiveness of our approaches. Moreover, in the set of minimum driver nodes identified by the algorithm we proposed, we confirmed that some nodes can act as drug targets in the biological experiments. Other nodes have not been reported as drug targets; however, they are also involved in important biological processes from existing literature. CONCLUSIONS The proposed method could be a promising tool for determining higher drug target enrichment or more meaningful steering nodes for studying complex diseases.
Collapse
Affiliation(s)
- Wei Zheng
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China
| | - Dingjie Wang
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China
| | - Xiufen Zou
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
29
|
Sertznig H, Hillebrand F, Erkelenz S, Schaal H, Widera M. Behind the scenes of HIV-1 replication: Alternative splicing as the dependency factor on the quiet. Virology 2018; 516:176-188. [PMID: 29407375 DOI: 10.1016/j.virol.2018.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 01/31/2023]
Abstract
Alternative splicing plays a key role in the HIV-1 life cycle and is essential to maintain an equilibrium of mRNAs that encode viral proteins and polyprotein-isoforms. In particular, since all early HIV-1 proteins are expressed from spliced intronless and late enzymatic and structural proteins from intron containing, i.e. splicing repressed viral mRNAs, cellular splicing factors and splicing regulatory proteins are crucial for the replication capacity. In this review, we will describe the complex network of cis-acting splicing regulatory elements (SREs), which are mainly localized in the neighbourhoods of all HIV-1 splice sites and warrant the proper ratio of individual transcript isoforms. Since SREs represent binding sites for trans-acting cellular splicing factors interacting with the cellular spliceosomal apparatus we will review the current knowledge of interactions between viral RNA and cellular proteins as well as their impact on viral replication. Finally, we will discuss potential therapeutic approaches targeting HIV-1 alternative splicing.
Collapse
Affiliation(s)
- Helene Sertznig
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frank Hillebrand
- Institute of Virology, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | - Steffen Erkelenz
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Heiner Schaal
- Institute of Virology, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
30
|
Che Nordin MA, Teow SY. Review of Current Cell-Penetrating Antibody Developments for HIV-1 Therapy. Molecules 2018; 23:molecules23020335. [PMID: 29415435 PMCID: PMC6017373 DOI: 10.3390/molecules23020335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
The discovery of highly active antiretroviral therapy (HAART) in 1996 has significantly reduced the global mortality and morbidity caused by the acquired immunodeficiency syndrome (AIDS). However, the therapeutic strategy of HAART that targets multiple viral proteins may render off-target toxicity and more importantly results in drug-resistant escape mutants. These have been the main challenges for HAART and refinement of this therapeutic strategy is urgently needed. Antibody-mediated treatments are emerging therapeutic modalities for various diseases. Most therapeutic antibodies have been approved by Food and Drug Administration (FDA) mainly for targeting cancers. Previous studies have also demonstrated the promising effect of therapeutic antibodies against HIV-1, but there are several limitations in this therapy, particularly when the viral targets are intracellular proteins. The conventional antibodies do not cross the cell membrane, hence, the pathogenic intracellular proteins cannot be targeted with this classical therapeutic approach. Over the years, the advancement of antibody engineering has permitted the therapeutic antibodies to comprehensively target both extra- and intra-cellular proteins in various infections and diseases. This review aims to update on the current progress in the development of antibody-based treatment against intracellular targets in HIV-1 infection. We also attempt to highlight the challenges and limitations in the development of antibody-based therapeutic modalities against HIV-1.
Collapse
Affiliation(s)
- Muhamad Alif Che Nordin
- Kulliyyah of Medicine and Health Sciences (KMHS), Kolej Universiti INSANIAH, 09300 Kuala Ketil, Kedah, Malaysia.
| | - Sin-Yeang Teow
- Sunway Institute for Healthcare Development (SIHD), School of Healthcare and Medical Sciences (SHMS), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
31
|
Screening for small molecule inhibitors of HIV-1 Gag expression. Methods 2017; 126:201-208. [DOI: 10.1016/j.ymeth.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 01/03/2023] Open
|