1
|
Karki S, Aylward FO. Evolution of ubiquitin, cytoskeleton, and vesicular trafficking machinery in giant viruses. J Virol 2025; 99:e0171524. [PMID: 39932282 PMCID: PMC11915834 DOI: 10.1128/jvi.01715-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Members of the phylum Nucleocytoviricota, which include "giant viruses" known for their large physical dimensions and genome lengths, are a diverse group of dsDNA viruses that infect a wide range of eukaryotic hosts. The genomes of nucleocytoviruses frequently encode eukaryotic signature proteins (ESPs) such as RNA- and DNA-processing proteins, vesicular trafficking factors, cytoskeletal components, and proteins involved in ubiquitin signaling. Despite the prevalence of these genes in many nucleocytoviruses, the timing and number of gene acquisitions remains unclear. While the presence of DNA- and RNA-processing proteins in nucleocytoviruses likely reflects ancient gene transfers, the origins and evolutionary history of other proteins are largely unknown. In this study, we examined the distribution and evolutionary history of a subset of viral-encoded ESPs (vESPs) that are widespread in nucleocytoviruses. Our results demonstrate that most vESPs involved in vesicular trafficking were acquired multiple times independently by nucleocytoviruses at different time points after the emergence of the eukaryotic supergroups, while viral proteins associated with cytoskeletal and ubiquitin system proteins exhibited a more complex evolutionary pattern exhibited by both shallow and deep branching viral clades. This pattern reveals a dynamic interplay between the co-evoluton of eukaryotes and their viruses, suggesting that the viral acquisition of many genes involved in cellular processes has occurred both through ancient and more recent horizontal gene transfers. The timing and frequency of these gene acquisitions may provide insight into their role and functional significance during viral infection.IMPORTANCEThis research is pertinent for understanding the evolution of nucleocytoviruses and their interactions with eukaryotic hosts. By investigating the distribution and evolutionary history of viral-encoded eukaryotic signature proteins, the study reveals gene transfer patterns, highlighting how viruses acquire genes that allow them to manipulate host cellular processes. Identifying the timing and frequency of gene acquisitions related to essential cellular functions provides insights into their roles during viral infections. This work expands our understanding of viral diversity and adaptability, contributing valuable knowledge to virology and evolutionary biology, while offering new perspectives on the relationship between viruses and their hosts.
Collapse
Affiliation(s)
- Sangita Karki
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Lamb DC, Goldstone JV, Belhaouari DB, Andréani J, Farooqi A, Allen MJ, Kelly SL, La Scola B, Stegeman JJ. Cytochrome b5 occurrence in giant and other viruses belonging to the phylum Nucleocytoviricota. NPJ VIRUSES 2025; 3:8. [PMID: 40295896 PMCID: PMC11814380 DOI: 10.1038/s44298-025-00091-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/22/2025] [Indexed: 04/30/2025]
Abstract
Cytochrome b5 is an electron transport protein found in eukaryotes and bacteria, and plays roles in energy production, lipid biosynthesis and cytochrome P450 biochemistry. Here we report that genes for cytochrome b5 occur broadly among viruses in the class Megaviricetes isolated from the deep ocean, freshwater and terrestrial sources, and human patients. Transcriptional analysis showed that Mimivirus bradfordmassiliense cytochrome b5 is expressed in the host and has characteristic spectral properties. Viral cytochrome b5s have either a unique N-terminal transmembrane anchor or are predicted to be soluble proteins. Virus cytochrome b5 proteins share 45-95% sequence identity with one another but no more than 25% identity with that in Acanthamoeba castellanii, a host for many giant viruses. Thus, the origin of cytochrome b5 genes in giant viruses remains unknown. Our findings raise questions regarding the evolution and diversity of cytochrome b5, and about the origin of viral haemoproteins in general.
Collapse
Affiliation(s)
- David C Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA
| | - Djamal Brahim Belhaouari
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Julien Andréani
- Microbes Evolution Phylogeny and Infection (MEPHI), UR D-258, Aix-Marseille University, Marseille, France
- IHU Méditerranée Infection, Timone Hospital, 19-21 Bd Jean Moulin, Marseille, 13005, France
| | - Ayesha Farooqi
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Michael J Allen
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Bernard La Scola
- Microbes Evolution Phylogeny and Infection (MEPHI), UR D-258, Aix-Marseille University, Marseille, France
- IHU Méditerranée Infection, Timone Hospital, 19-21 Bd Jean Moulin, Marseille, 13005, France
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA.
| |
Collapse
|
3
|
Willemsen A, Manzano-Marín A, Horn M. Novel High-Quality Amoeba Genomes Reveal Widespread Codon Usage Mismatch Between Giant Viruses and Their Hosts. Genome Biol Evol 2025; 17:evae271. [PMID: 39760805 PMCID: PMC11702301 DOI: 10.1093/gbe/evae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
The need for high-quality protist genomes has prevented in-depth computational and experimental studies of giant virus-host interactions. In addition, our current knowledge of host range is highly biased due to the few hosts used to isolate novel giant viruses. This study presents 6 high-quality amoeba genomes from known and potential giant virus hosts belonging to 2 distinct eukaryotic clades: Amoebozoa and Discoba. We employ their genomic data to investigate the predictability of giant virus host range. Using a combination of long- and short-read sequencing, we obtained highly contiguous and complete genomes of Acanthamoeba castellanii, Acanthamoeba griffini, Acanthamoeba terricola, Naegleria clarki, Vermamoeba vermiformis, and Willaertia magna, contributing to the collection of sequences for the eukaryotic tree of life. We found that the 6 amoebae have distinct codon usage patterns and that, contrary to other virus groups, giant viruses often have different and even opposite codon usage with their known hosts. Conversely, giant viruses with matching codon usage are frequently not known to infect or replicate in these hosts. Interestingly, analyses of integrated viral sequences in the amoeba host genomes reveal potential novel virus-host associations. Matching of codon usage preferences is often used to predict virus-host pairs. However, with the broad-scale analyses performed in this study, we demonstrate that codon usage alone appears to be a poor predictor of host range for giant viruses infecting amoeba. We discuss the potential strategies that giant viruses employ to ensure high viral fitness in nonmatching hosts. Moreover, this study emphasizes the need for more high-quality protist genomes. Finally, the amoeba genomes presented in this study set the stage for future experimental studies to better understand how giant viruses interact with different host species.
Collapse
Affiliation(s)
- Anouk Willemsen
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria
| |
Collapse
|
4
|
Lamb DC, Goldstone JV, Belhaouari DB, Andréani J, Farooqi A, Allen MJ, Kelly SL, La Scola B, Stegeman JJ. Cytochromes b5 Occurrence in Viruses Belonging to the Order Megavirales. RESEARCH SQUARE 2024:rs.3.rs-5246363. [PMID: 39502774 PMCID: PMC11537341 DOI: 10.21203/rs.3.rs-5246363/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Abstract
Cytochrome b5 is a small electron transport protein that is found in animals, plants, fungi and photosynthetic proteobacteria where it plays key metabolic roles in energy production, lipid and sterol biosynthesis and cytochrome P450 biochemistry. Previously it was shown that a gene encoding a soluble and functional cytochrome b5 protein was encoded in the large double stranded DNA virus OtV2 that infects the unicellular marine green alga Ostreococcus tauri, the smallest free-living eukaryote described to-date. This single gene represented a unique finding in the virosphere. We now report that genes for soluble and membrane-bound cytochromes b5 also occur in giant viruses in the proposed order Megavirales, particularly the AT-rich Mimiviridae and Tupanviruses. Conversely, other members of the Megavirales taxa such as the GC-rich Pandoraviridae have not been found to encode cytochrome b5 as yet. Megaviruses encoding cytochrome b5 have been isolated from the deep ocean, from freshwater and terrestrial sources, as well as from human patients. Giant virus cytochrome b5 proteins share high sequence identity with one another (45-95% depending on group) but no more than 25% identity with the cytochrome b5 gene product we identified in Acanthamoeba castellanii, an amoeba host for many giant viruses. Thus, the origin of the unique cytochrome b5 genes in giant viruses remains unknown. Examination of viral cytochrome b5 primary amino acid sequences revealed that some have either a N- or C-terminal transmembrane anchor, whilst others lack a membrane anchor and are thus predicted to be soluble proteins. This cytochrome b5 topography suggests adapted biochemical functions in those viruses. Our findings raise questions regarding the evolution and diversity of cytochrome b5 proteins in nature, adding to questions about the origin of viral haemoproteins in general.
Collapse
Affiliation(s)
- David C. Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales SA2 8PP, UK
| | - Jared V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Djamal Brahim Belhaouari
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Julien Andréani
- Aix Marseille Univ, MEPHI, Marseille, France
- IHU-Méditerranée infection, Marseille, France
| | - Ayesha Farooqi
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales SA2 8PP, UK
| | - Michael J. Allen
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road EX4 4QD, UK
| | - Steven L. Kelly
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, Wales SA2 8PP, UK
| | - Bernard La Scola
- Aix Marseille Univ, MEPHI, Marseille, France
- IHU-Méditerranée infection, Marseille, France
| | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
5
|
Queiroz VF, Tatara JM, Botelho BB, Rodrigues RAL, Almeida GMDF, Abrahao JS. The consequences of viral infection on protists. Commun Biol 2024; 7:306. [PMID: 38462656 PMCID: PMC10925606 DOI: 10.1038/s42003-024-06001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Protists encompass a vast widely distributed group of organisms, surpassing the diversity observed in metazoans. Their diverse ecological niches and life forms are intriguing characteristics that render them valuable subjects for in-depth cell biology studies. Throughout history, viruses have played a pivotal role in elucidating complex cellular processes, particularly in the context of cellular responses to viral infections. In this comprehensive review, we provide an overview of the cellular alterations that are triggered in specific hosts following different viral infections and explore intricate biological interactions observed in experimental conditions using different host-pathogen groups.
Collapse
Affiliation(s)
- Victoria Fulgencio Queiroz
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Miranda Tatara
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Bruna Barbosa Botelho
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Magno de Freitas Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jonatas Santos Abrahao
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Rappaport HB, Oliverio AM. Extreme environments offer an unprecedented opportunity to understand microbial eukaryotic ecology, evolution, and genome biology. Nat Commun 2023; 14:4959. [PMID: 37587119 PMCID: PMC10432404 DOI: 10.1038/s41467-023-40657-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Research in extreme environments has substantially expanded our understanding of the ecology and evolution of life on Earth, but a major group of organisms has been largely overlooked: microbial eukaryotes (i.e., protists). In this Perspective, we summarize data from over 80 studies of protists in extreme environments and identify focal lineages that are of significant interest for further study, including clades within Echinamoebida, Heterolobosea, Radiolaria, Haptophyta, Oomycota, and Cryptophyta. We argue that extreme environments are prime sampling targets to fill gaps in the eukaryotic tree of life and to increase our understanding of the ecology, metabolism, genome architecture, and evolution of eukaryotic life.
Collapse
Affiliation(s)
| | - Angela M Oliverio
- Department of Biology, Syracuse University, Syracuse, NY, 13210, USA.
| |
Collapse
|
7
|
Antika TR, Chrestella DJ, Tseng YK, Yeh YH, Hsiao CD, Wang CC. A naturally occurring mini-alanyl-tRNA synthetase. Commun Biol 2023; 6:314. [PMID: 36959394 PMCID: PMC10036535 DOI: 10.1038/s42003-023-04699-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
Alanyl-tRNA synthetase (AlaRS) retains a conserved prototype structure throughout its biology, consisting of catalytic, tRNA-recognition, editing, and C-Ala domains. The catalytic and tRNA-recognition domains catalyze aminoacylation, the editing domain hydrolyzes mischarged tRNAAla, and C-Ala-the major tRNA-binding module-targets the elbow of the L-shaped tRNAAla. Interestingly, a mini-AlaRS lacking the editing and C-Ala domains is recovered from the Tupanvirus of the amoeba Acanthamoeba castellanii. Here we show that Tupanvirus AlaRS (TuAlaRS) is phylogenetically related to its host's AlaRS. Despite lacking the conserved amino acid residues responsible for recognition of the identity element of tRNAAla (G3:U70), TuAlaRS still specifically recognized G3:U70-containing tRNAAla. In addition, despite lacking C-Ala, TuAlaRS robustly binds and charges microAla (an RNA substrate corresponding to the acceptor stem of tRNAAla) as well as tRNAAla, indicating that TuAlaRS exclusively targets the acceptor stem. Moreover, this mini-AlaRS could functionally substitute for yeast AlaRS in vivo. This study suggests that TuAlaRS has developed a new tRNA-binding mode to compensate for the loss of C-Ala.
Collapse
Affiliation(s)
- Titi Rindi Antika
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan, 320317, Taiwan
| | - Dea Jolie Chrestella
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan, 320317, Taiwan
| | - Yi-Kuan Tseng
- Graduate Institute of Statistics, National Central University, Zhongli District, Taoyuan, 320317, Taiwan
| | - Yi-Hung Yeh
- Institute of Molecular Biology, Academia Sinica, Nankang District, Taipei, 11529, Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Nankang District, Taipei, 11529, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan, 320317, Taiwan.
| |
Collapse
|
8
|
Gabrielli M, Dai Z, Delafont V, Timmers PHA, van der Wielen PWJJ, Antonelli M, Pinto AJ. Identifying Eukaryotes and Factors Influencing Their Biogeography in Drinking Water Metagenomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3645-3660. [PMID: 36827617 PMCID: PMC9996835 DOI: 10.1021/acs.est.2c09010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The biogeography of eukaryotes in drinking water systems is poorly understood relative to that of prokaryotes or viruses, limiting the understanding of their role and management. A challenge with studying complex eukaryotic communities is that metagenomic analysis workflows are currently not as mature as those that focus on prokaryotes or viruses. In this study, we benchmarked different strategies to recover eukaryotic sequences and genomes from metagenomic data and applied the best-performing workflow to explore the factors affecting the relative abundance and diversity of eukaryotic communities in drinking water distribution systems (DWDSs). We developed an ensemble approach exploiting k-mer- and reference-based strategies to improve eukaryotic sequence identification and identified MetaBAT2 as the best-performing binning approach for their clustering. Applying this workflow to the DWDS metagenomes showed that eukaryotic sequences typically constituted small proportions (i.e., <1%) of the overall metagenomic data with higher relative abundances in surface water-fed or chlorinated systems with high residuals. The α and β diversities of eukaryotes were correlated with those of prokaryotic and viral communities, highlighting the common role of environmental/management factors. Finally, a co-occurrence analysis highlighted clusters of eukaryotes whose members' presence and abundance in DWDSs were affected by disinfection strategies, climate conditions, and source water types.
Collapse
Affiliation(s)
- Marco Gabrielli
- Dipartimento
di Ingegneria Civile e Ambientale—Sezione Ambientale, Politecnico di Milano, Milan 20133, Italy
| | - Zihan Dai
- Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Vincent Delafont
- Laboratoire
Ecologie et Biologie des Interactions (EBI), Equipe Microorganismes,
Hôtes, Environnements, Université
de Poitiers, Poitiers 86073, France
| | - Peer H. A. Timmers
- KWR
Watercycle Research Institute, 3433 PE Nieuwegein, The Netherlands
- Department
of Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Paul W. J. J. van der Wielen
- KWR
Watercycle Research Institute, 3433 PE Nieuwegein, The Netherlands
- Laboratory
of Microbiology, Wageningen University, 6700 HB Wageningen, The Netherlands
| | - Manuela Antonelli
- Dipartimento
di Ingegneria Civile e Ambientale—Sezione Ambientale, Politecnico di Milano, Milan 20133, Italy
| | - Ameet J. Pinto
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Arthofer P, Delafont V, Willemsen A, Panhölzl F, Horn M. Defensive symbiosis against giant viruses in amoebae. Proc Natl Acad Sci U S A 2022; 119:e2205856119. [PMID: 36037367 PMCID: PMC9457554 DOI: 10.1073/pnas.2205856119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/19/2022] [Indexed: 12/01/2022] Open
Abstract
Protists are important regulators of microbial communities and key components in food webs with impact on nutrient cycling and ecosystem functioning. In turn, their activity is shaped by diverse intracellular parasites, including bacterial symbionts and viruses. Yet, bacteria-virus interactions within protists are poorly understood. Here, we studied the role of bacterial symbionts of free-living amoebae in the establishment of infections with nucleocytoplasmic large DNA viruses (Nucleocytoviricota). To investigate these interactions in a system that would also be relevant in nature, we first isolated and characterized a giant virus (Viennavirus, family Marseilleviridae) and a sympatric potential Acanthamoeba host infected with bacterial symbionts. Subsequently, coinfection experiments were carried out, using the fresh environmental isolates as well as additional amoeba laboratory strains. Employing fluorescence in situ hybridization and qPCR, we show that the bacterial symbiont, identified as Parachlamydia acanthamoebae, represses the replication of the sympatric Viennavirus in both recent environmental isolates as well as Acanthamoeba laboratory strains. In the presence of the symbiont, virions are still taken up, but viral factory maturation is inhibited, leading to survival of the amoeba host. The symbiont also suppressed the replication of the more complex Acanthamoeba polyphaga mimivirus and Tupanvirus deep ocean (Mimiviridae). Our work provides an example of an intracellular bacterial symbiont protecting a protist host against virus infections. The impact of virus-symbiont interactions on microbial population dynamics and eventually ecosystem processes requires further attention.
Collapse
Affiliation(s)
- Patrick Arthofer
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
| | - Vincent Delafont
- Ecologie et Biologie des Interactions Laboratory, UMR CNRS, Université de Poitiers, 7267 Poitiers, France
| | - Anouk Willemsen
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Florian Panhölzl
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
10
|
Abstract
Although traditionally viewed as streamlined and simple, discoveries over the last century have revealed that viruses can exhibit surprisingly complex physical structures, genomic organization, ecological interactions, and evolutionary histories. Viruses can have physical dimensions and genome lengths that exceed many cellular lineages, and their infection strategies can involve a remarkable level of physiological remodeling of their host cells. Virus-virus communication and widespread forms of hyperparasitism have been shown to be common in the virosphere, demonstrating that dynamic ecological interactions often shape their success. And the evolutionary histories of viruses are often fraught with complexities, with chimeric genomes including genes derived from numerous distinct sources or evolved de novo. Here we will discuss many aspects of this viral complexity, with particular emphasis on large DNA viruses, and provide an outlook for future research.
Collapse
Affiliation(s)
- Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mohammad Moniruzzaman
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL 33149, USA;
| |
Collapse
|
11
|
Role of an FNIP Repeat Domain-Containing Protein Encoded by Megavirus Baoshan during Viral Infection. J Virol 2022; 96:e0081322. [PMID: 35762756 PMCID: PMC9327691 DOI: 10.1128/jvi.00813-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
FNIP repeat domain-containing protein (FNIP protein) is a little-studied atypical leucine-rich repeat domain-containing protein found in social amoebae and mimiviruses. Here, a recently reported mimivirus of lineage C, Megavirus baoshan, was analyzed for FNIP protein genes. A total of 82 FNIP protein genes were identified, each containing up to 26 copies of the FNIP repeat, and mostly having an F-box domain at the N terminus. Both nucleotide and amino acid sequences of FNIP repeat were highly conserved. Most of the FNIP protein genes clustered together tandemly in groups of two to 14 genes. Nearly all FNIP protein genes shared similar expression patterns and were expressed 4 to 9 h postinfection. A typical viral FNIP protein, Mb0983, was selected for functional analysis. Protein interactome analysis identified two small GTPases, Rap1B and Rab7A, that interacted with Mb0983 in cytoplasm. The overexpression of Mb0983 in Acanthamoeba castellanii accelerated the degradation of Rap1B and Rab7A during viral infection. Mb0983 also interacted with host SKP1 and cullin-1, which were conserved components of the SKP1-cullin-1-F-box protein (SCF)-type ubiquitin E3 ligase complex. Deletion of the F-box domain of Mb0983 not only abolished its interaction with SKP1 and cullin-1 but also returned the speed of Rap1B and Rab7A degradation to normal in infected A. castellanii. These results suggested that Mb0983 is a part of the SCF-type ubiquitin E3 ligase complex and plays a role in the degradation of Rap1B and Rab7A. They also implied that other viral F-box-containing FNIP proteins might have similar effects on various host proteins. IMPORTANCE Megavirus baoshan encodes 82 FNIP proteins, more than any other reported mimiviruses. Their genetic and transcriptional features suggest that they are important for virus infection and adaption. Since most mimiviral FNIP proteins have the F-box domain, they were predicted to be involved in protein ubiquitylation. FNIP protein Mb0983 interacted with host SKP1 and cullin-1 through the F-box domain, supporting the idea that it is a part of the SCF-type ubiquitin E3 ligase complex. The substrates of Mb0983 for degradation were identified as the host small GTPases Rap1B and Rab7A. Combining the facts of the presence of a large number of FNIP genes in megavirus genomes, the extremely high expression level of the viral ubiquitin gene, and the reported observation that 35% of megavirus-infected amoeba cells died without productive infection, it is likely that megavirus actively explores the host ubiquitin-proteasome pathway in infection and that viral FNIP proteins play roles in the process.
Collapse
|
12
|
Bellini NK, Thiemann OH, Reyes-Batlle M, Lorenzo-Morales J, Costa AO. A history of over 40 years of potentially pathogenic free-living amoeba studies in Brazil - a systematic review. Mem Inst Oswaldo Cruz 2022; 117:e210373. [PMID: 35792751 PMCID: PMC9252135 DOI: 10.1590/0074-02760210373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Free-living amoeba (FLA) group includes the potentially pathogenic genera Acanthamoeba, Naegleria, Balamuthia, Sappinia, and Vermamoeba, causative agents of human infections (encephalitis, keratitis, and disseminated diseases). In Brazil, the first report on pathogenic FLA was published in the 70s and showed meningoencephalitis caused by Naegleria spp. FLA studies are emerging, but no literature review is available to investigate this trend in Brazil critically. Thus, the present work aims to integrate and discuss these data. Scopus, PubMed, and Web of Science were searched, retrieving studies from 1974 to 2020. The screening process resulted in 178 papers, which were clustered into core and auxiliary classes and sorted into five categories: wet-bench studies, dry-bench studies, clinical reports, environmental identifications, and literature reviews. The papers dating from the last ten years account for 75% (134/178) of the total publications, indicating the FLA topic has gained Brazilian interest. Moreover, 81% (144/178) address Acanthamoeba-related matter, revealing this genus as the most prevalent in all categories. Brazil’s Southeast, South, and Midwest geographic regions accounted for 96% (171/178) of the publications studied in the present work. To the best of our knowledge, this review is the pioneer in summarising the FLA research history in Brazil.
Collapse
Affiliation(s)
- Natália Karla Bellini
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brasil
| | - Otavio Henrique Thiemann
- Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brasil.,Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP, Brasil
| | - María Reyes-Batlle
- Universidad de La Laguna, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Red de Investigación Cooperativa en Enfermedades Tropicales, Tenerife, Islas Canarias, Spain
| | - Jacob Lorenzo-Morales
- Universidad de La Laguna, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Red de Investigación Cooperativa en Enfermedades Tropicales, Tenerife, Islas Canarias, Spain.,Instituto de Salud Carlos III, Consorcio Centro de Investigación Biomédica en Red MP de Enfermedades Infecciosas, Madrid, Spain
| | - Adriana Oliveira Costa
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brasil
| |
Collapse
|
13
|
Boratto PVM, Serafim MSM, Witt ASA, Crispim APC, de Azevedo BL, de Souza GAP, de Aquino ILM, Machado TB, Queiroz VF, Rodrigues RAL, Bergier I, Cortines JR, de Farias ST, dos Santos RN, Campos FS, Franco AC, Abrahão JS. A Brief History of Giant Viruses’ Studies in Brazilian Biomes. Viruses 2022; 14:v14020191. [PMID: 35215784 PMCID: PMC8875882 DOI: 10.3390/v14020191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023] Open
Abstract
Almost two decades after the isolation of the first amoebal giant viruses, indubitably the discovery of these entities has deeply affected the current scientific knowledge on the virosphere. Much has been uncovered since then: viruses can now acknowledge complex genomes and huge particle sizes, integrating remarkable evolutionary relationships that date as early as the emergence of life on the planet. This year, a decade has passed since the first studies on giant viruses in the Brazilian territory, and since then biomes of rare beauty and biodiversity (Amazon, Atlantic forest, Pantanal wetlands, Cerrado savannas) have been explored in the search for giant viruses. From those unique biomes, novel viral entities were found, revealing never before seen genomes and virion structures. To celebrate this, here we bring together the context, inspirations, and the major contributions of independent Brazilian research groups to summarize the accumulated knowledge about the diversity and the exceptionality of some of the giant viruses found in Brazil.
Collapse
Affiliation(s)
- Paulo Victor M. Boratto
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Mateus Sá M. Serafim
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Amanda Stéphanie A. Witt
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Ana Paula C. Crispim
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Bruna Luiza de Azevedo
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Gabriel Augusto P. de Souza
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Isabella Luiza M. de Aquino
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Talita B. Machado
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Victória F. Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Rodrigo A. L. Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
| | - Ivan Bergier
- Embrapa Pantanal, Corumbá 79320-900, Mato Grosso do Sul, Brazil;
| | - Juliana Reis Cortines
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Rio de Janeiro, Brazil;
| | - Savio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa 58050-085, Paraíba, Brazil;
| | - Raíssa Nunes dos Santos
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.050-170, Rio Grande do Sul, Brazil; (R.N.d.S.); (F.S.C.); (A.C.F.)
| | - Fabrício Souza Campos
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.050-170, Rio Grande do Sul, Brazil; (R.N.d.S.); (F.S.C.); (A.C.F.)
| | - Ana Cláudia Franco
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90.050-170, Rio Grande do Sul, Brazil; (R.N.d.S.); (F.S.C.); (A.C.F.)
| | - Jônatas S. Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; (P.V.M.B.); (M.S.M.S.); (A.S.A.W.); (A.P.C.C.); (B.L.d.A.); (G.A.P.d.S.); (I.L.M.d.A.); (T.B.M.); (V.F.Q.); (R.A.L.R.)
- Correspondence:
| |
Collapse
|
14
|
Chaúque BJM, Rott MB. The role of free-living amoebae in the persistence of viruses in the era of severe acute respiratory syndrome 2, should we be concerned? Rev Soc Bras Med Trop 2022; 55:e0045. [PMID: 35674555 PMCID: PMC9176723 DOI: 10.1590/0037-8682-0045-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
|
15
|
Dos Santos Oliveira J, Lavell AA, Essus VA, Souza G, Nunes GHP, Benício E, Guimarães AJ, Parent KN, Cortines JR. Structure and physiology of giant DNA viruses. Curr Opin Virol 2021; 49:58-67. [PMID: 34051592 DOI: 10.1016/j.coviro.2021.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/02/2023]
Abstract
Although giant viruses have existed for millennia and possibly exerted great evolutionary influence in their environment. Their presence has only been noticed by virologists recently with the discovery of Acanthamoeba polyphaga mimivirus in 2003. Its virion with a diameter of 500 nm and its genome larger than 1 Mpb shattered preconceived standards of what a virus is and triggered world-wide prospection studies. Thanks to these investigations many giant virus families were discovered, each with its own morphological peculiarities and genomes ranging from 0.4 to 2.5 Mpb that possibly encode more than 400 viral proteins. This review aims to present the morphological diversity, the different aspects observed in host-virus interactions during replication, as well as the techniques utilized during their investigation.
Collapse
Affiliation(s)
- Juliana Dos Santos Oliveira
- Departamento de Virologia, Instituto de Mcirobiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21590-902, Rio de Janeiro, Brazil
| | - Anastasiya A Lavell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Victor Alejandro Essus
- Departamento de Virologia, Instituto de Mcirobiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21590-902, Rio de Janeiro, Brazil
| | - Getúlio Souza
- Departamento de Virologia, Instituto de Mcirobiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21590-902, Rio de Janeiro, Brazil
| | - Gabriel Henrique Pereira Nunes
- Departamento de Virologia, Instituto de Mcirobiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21590-902, Rio de Janeiro, Brazil
| | - Eduarda Benício
- Departamento de Virologia, Instituto de Mcirobiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21590-902, Rio de Janeiro, Brazil
| | - Allan Jefferson Guimarães
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Juliana R Cortines
- Departamento de Virologia, Instituto de Mcirobiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21590-902, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Padrós F, Constenla M. Diseases Caused by Amoebae in Fish: An Overview. Animals (Basel) 2021; 11:991. [PMID: 33916144 PMCID: PMC8065943 DOI: 10.3390/ani11040991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Parasitic and amphizoic amoebae are ubiquitous and can affect a huge variety of hosts, from invertebrates to humans, and fish are not an exception. Most of the relationships between amoebae and fish are based on four different types: ectocommensals, ectoparasites, endocommensals and endoparasites, although the lines between them are not always clear. As ectocommensals, they are located specially on the gills and particularly the amphizoic Neoparamoeba perurans is the most relevant species, being a real pathogenic parasite in farmed salmon. It causes amoebic gill disease, which causes a progressive hyperplasia of epithelial cells in the gill filaments and lamellae. Nodular gill disease is its analogue in freshwater fish but the causative agent is still not clear, although several amoebae have been identified associated to the lesions. Other species have been described in different fish species, affecting not only gills but also other organs, even internal ones. In some cases, species of the genera Naegleria or Acanthamoeba, which also contain pathogenic species affecting humans, are usually described affecting freshwater fish species. As endocommensals, Entamoebae species have been described in the digestive tract of freshwater and marine fish species, but Endolimax nana can reach other organs and cause systemic infections in farmed Solea senegalensis. Other systemic infections caused by amoebae are usually described in wild fish, although in most cases these are isolated cases without clinical signs or significance.
Collapse
|
17
|
Ortega MÁ, Guzmán Merino A, Fraile-Martínez O, Recio-Ruiz J, Pekarek L, G. Guijarro L, García-Honduvilla N, Álvarez-Mon M, Buján J, García-Gallego S. Dendrimers and Dendritic Materials: From Laboratory to Medical Practice in Infectious Diseases. Pharmaceutics 2020; 12:pharmaceutics12090874. [PMID: 32937793 PMCID: PMC7560085 DOI: 10.3390/pharmaceutics12090874] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are one of the main global public health risks, predominantly caused by viruses, bacteria, fungi, and parasites. The control of infections is founded on three main pillars: prevention, treatment, and diagnosis. However, the appearance of microbial resistance has challenged traditional strategies and demands new approaches. Dendrimers are a type of polymeric nanoparticles whose nanometric size, multivalency, biocompatibility, and structural perfection offer boundless possibilities in multiple biomedical applications. This review provides the reader a general overview about the uses of dendrimers and dendritic materials in the treatment, prevention, and diagnosis of highly prevalent infectious diseases, and their advantages compared to traditional approaches. Examples of dendrimers as antimicrobial agents per se, as nanocarriers of antimicrobial drugs, as well as their uses in gene transfection, in vaccines or as contrast agents in imaging assays are presented. Despite the need to address some challenges in order to be used in the clinic, dendritic materials appear as an innovative tool with a brilliant future ahead in the clinical management of infectious diseases and many other health issues.
Collapse
Affiliation(s)
- Miguel Ángel Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Alberto Guzmán Merino
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Judith Recio-Ruiz
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Luis G. Guijarro
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Networking Research Centre on Hepatic and Digestive Diseases (CIBER-EHD), 28029 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology and Medicine Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Sandra García-Gallego
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
- Correspondence:
| |
Collapse
|