1
|
Haghi Navand A, Jalilian S, Ahmadi Angali K, Karimi Babaahmadi M, Talaiezadeh A, Makvandi M. A new evaluation of the rearranged non-coding control region of JC virus in patients with colorectal cancer. BMC Cancer 2024; 24:1001. [PMID: 39134946 PMCID: PMC11320957 DOI: 10.1186/s12885-024-12684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Several studies have reported the presence of JC virus (JCV) in human tumors, The association of JCV and CRC remains controversial. This study aimed to evaluate the rearranged NCCR region of the detected JCV DNA in CRC patients' tissue samples. METHODS In this case-control study, tumor tissues (n = 60), adjacent normal tissues (n = 60), and urine samples (n = 60) of the CRC patients were collected. The nested PCR was employed to detect the VP1 and NCCR regions of the JCV genome. The positive JCV PCR products were sequenced and a phylogenetic tree was constructed to determine the JCV genotypes. After extracting RNA and preparing cDNA, the expression of JCV LTAg was examined in 60 tumor tissues and 60 adjacent normal tissues. The analysis of JCV LTAg expression was performed using GraphPad Prism software version 8. RESULTS The analysis reveals that JCV DNA was detected in 35/60 (58.3%) tumor tissues, while 36/60 (60.0%) of adjacent normal tissues (p = 0.85). JCV DNA was detected in 42/60 (70.0%) urine samples when compared to 35/60 (58.3%) tumor tissues of CRC patients and was not found significant (P = 0.25). The phylogenetic tree analysis showed the dominant JCV genotype 3, followed by genotype 2D was distributed in tumor tissue, normal tissue, and urine samples of the CRC patients. Analysis of randomly selected NCCR sequences from JCV regions in tumor tissue samples revealed the presence of rearranged NCCR blocks of different lengths.: 431 bp, 292 bp, 449 bp, and 356 bp. These rearranged NCCR blocks differ from the rearranged NCCR blocks described in PML-type Mad-1, Mad-4, Mad-7, and Mad-8 prototypes. The expression of JCV LTAg was significantly different in tumor tissue compared to normal tissue, with a p-value of less than 0.002. CONCLUSION A significant proportion of 35%> of the tumor tissue and urine samples of the CRC patients was found to be positive for JCV DNA (P = 0.25). The parallel analysis of tumor and urine samples for JCV DNA further supports the potential for non-invasive screening tools. This study provides new insights into Rearranged NCCR variant isolates from patients with CRC. The significant difference in JCV LTAg expression between tumor and normal tissue indicates a latent JCV status potentially leading to cancer development.
Collapse
Grants
- NO. CRC-0113 Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- NO. CRC-0113 Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- NO. CRC-0113 Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- NO. CRC-0113 Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- NO. CRC-0113 Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- NO. CRC-0113 Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
Collapse
Affiliation(s)
- Azadeh Haghi Navand
- Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahram Jalilian
- Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Ahmadi Angali
- Biostatistics and Epidemiology Department, Health School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Karimi Babaahmadi
- Department of Medical Biotechnology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Manoochehr Makvandi
- Cancer, Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Rindi LV, Zaçe D, Braccialarghe N, Massa B, Barchi V, Iannazzo R, Fato I, De Maria F, Kontogiannis D, Malagnino V, Sarmati L, Iannetta M. Drug-Induced Progressive Multifocal Leukoencephalopathy (PML): A Systematic Review and Meta-Analysis. Drug Saf 2024; 47:333-354. [PMID: 38321317 DOI: 10.1007/s40264-023-01383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Progressive multifocal leukoencephalopathy (PML) was first described among patients affected by hematological or solid tumors. Following the human immunodeficiency virus (HIV) epidemic, people living with HIV have represented most cases for more than a decade. With the diffusion of highly active antiretroviral therapy, this group progressively decreased in favor of patients undergoing treatment with targeted therapy/immunomodulators. In this systematic review and meta-analysis, the objective was to assess which drugs are most frequently related to PML development, and report the incidence of drug-induced PML through a meta-analytic approach. METHODS The electronic databases MEDLINE, EMBASE, ClinicalTrials.gov, Web of Science and the Canadian Agency for Drugs and Technologies in Health Database (CADTH) were searched up to May 10, 2022. Articles that reported the risk of PML development after treatment with immunomodulatory drugs, including patients of both sexes under the age of 80 years, affected by any pathology except HIV, primary immunodeficiencies or malignancies, were included in the review. The incidence of drug-induced PML was calculated based on PML cases and total number of patients observed per 100 persons and the observation time. Random-effect metanalyses were conducted for each drug reporting pooled incidence with 95% confidence intervals (CI) and median (interquartile range [IQR]) of the observation time. Heterogeneity was measured by I2 statistics. Publication bias was examined through funnel plots and Egger's test. RESULTS A total of 103 studies were included in the systematic review. In our analysis, we found no includible study reporting cases of PML during the course of treatment with ocrelizumab, vedolizumab, abrilumab, ontamalimab, teriflunomide, daclizumab, inebilizumab, basiliximab, tacrolimus, belimumab, infliximab, firategrast, disulone, azathioprine or danazole. Dalfampridine, glatiramer acetate, dimethyl fumarate and fingolimod show a relatively safe profile, although some cases of PML have been reported. The meta-analysis showed an incidence of PML cases among patients undergoing rituximab treatment for multiple sclerosis (MS) of 0.01 cases/100 persons (95% CI - 0.08 to 0.09; I2 = 20.4%; p = 0.25) for a median observation period of 23.5 months (IQR 22.1-42.1). Treatment of MS with natalizumab carried a PML risk of 0.33 cases/100 persons (95% CI 0.29-0.37; I2 = 50%; p = 0.003) for a median observation period of 44.1 months (IQR 28.4-60) and a mean number of doses of 36.3 (standard deviation [SD] ± 20.7). When comparing data about patients treated with standard interval dosing (SID) and extended interval dosing (EID), the latter appears to carry a smaller risk of PML, that is, 0.08 cases/100 persons (95% CI 0.0-0.15) for EID versus 0.3 cases/100 persons (95% CI 0.25-0.34) for SID. CONCLUSIONS A higher risk of drug-related PML in patients whose immune system is not additionally depressed by means of neoplasms, HIV or concomitant medications is found in the neurological field. This risk is higher in MS treatment, and specifically during long-term natalizumab therapy. While this drug is still routinely prescribed in this field, considering the efficacy in reducing MS relapses, in other areas it could play a smaller role, and be gradually replaced by other safer and more recently approved agents.
Collapse
Affiliation(s)
- Lorenzo Vittorio Rindi
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Drieda Zaçe
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Neva Braccialarghe
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Barbara Massa
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Virginia Barchi
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Roberta Iannazzo
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Ilenia Fato
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Francesco De Maria
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Dimitra Kontogiannis
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
| | - Vincenzo Malagnino
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
- Infectious Disease Clinic, Policlinico Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Loredana Sarmati
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy
- Infectious Disease Clinic, Policlinico Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Marco Iannetta
- Department of Systems Medicine, Tor Vergata University, Via Montpellier, 1, 00133, Rome, Italy.
- Infectious Disease Clinic, Policlinico Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy.
| |
Collapse
|
3
|
Auvinen E, Honkimaa A, Laine P, Passerini S, Moens U, Pietropaolo V, Saarela M, Maunula L, Mannonen L, Tynninen O, Haapasalo H, Rauramaa T, Auvinen P, Liimatainen H. Differentiation of highly pathogenic strains of human JC polyomavirus in neurological patients by next generation sequencing. J Clin Virol 2024; 171:105652. [PMID: 38364704 DOI: 10.1016/j.jcv.2024.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND JC polyomavirus (JCPyV) persists asymptomatic in more than half of the human population. Immunocompromising conditions may cause reactivation and acquisition of neurotropic rearrangements in the viral genome, especially in the non-coding control region (NCCR). Such rearranged JCPyV strains are strongly associated with the development of progressive multifocal leukoencephalopathy (PML). METHODS Using next-generation sequencing (NGS) and bioinformatics tools, the NCCR was characterized in cerebrospinal fluid (CSF; N = 21) and brain tissue (N = 16) samples from PML patients (N = 25), urine specimens from systemic lupus erythematosus patients (N = 2), brain tissue samples from control individuals (N = 2) and waste-water samples (N = 5). Quantitative PCR was run in parallel for diagnostic PML samples. RESULTS Archetype NCCR (i.e. ABCDEF block structure) and archetype-like NCCR harboring minor mutations were detected in two CSF samples and in one CSF sample and in one tissue sample, respectively. Among samples from PML patients, rearranged NCCRs were found in 8 out of 21 CSF samples and in 14 out of 16 brain tissue samples. Complete or partial deletion of the C and D blocks was characteristic of most rearranged JCPyV strains. From ten CSF samples and one tissue sample NCCR could not be amplified. CONCLUSIONS Rearranged NCCRs are predominant in brain tissue and common in CSF from PML patients. Extremely sensitive detection and identification of neurotropic viral populations in CSF or brain tissue by NGS may contribute to early and accurate diagnosis, timely intervention and improved patient care.
Collapse
Affiliation(s)
- Eeva Auvinen
- Department of Virology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Anni Honkimaa
- Department of Virology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Ugo Moens
- Institute of Medical Biology, UiT The Arctic University of Norway, Norway
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Mika Saarela
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Leena Maunula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Laura Mannonen
- Department of Virology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hannu Haapasalo
- Department of Pathology, FIMLAB Laboratories Ltd and Tampere University, Tampere, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland and 12. Unit of Pathology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Hanna Liimatainen
- Department of Virology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Butic AB, Spencer SA, Shaheen SK, Lukacher AE. Polyomavirus Wakes Up and Chooses Neurovirulence. Viruses 2023; 15:2112. [PMID: 37896889 PMCID: PMC10612099 DOI: 10.3390/v15102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
JC polyomavirus (JCPyV) is a human-specific polyomavirus that establishes a silent lifelong infection in multiple peripheral organs, predominantly those of the urinary tract, of immunocompetent individuals. In immunocompromised settings, however, JCPyV can infiltrate the central nervous system (CNS), where it causes several encephalopathies of high morbidity and mortality. JCPyV-induced progressive multifocal leukoencephalopathy (PML), a devastating demyelinating brain disease, was an AIDS-defining illness before antiretroviral therapy that has "reemerged" as a complication of immunomodulating and chemotherapeutic agents. No effective anti-polyomavirus therapeutics are currently available. How depressed immune status sets the stage for JCPyV resurgence in the urinary tract, how the virus evades pre-existing antiviral antibodies to become viremic, and where/how it enters the CNS are incompletely understood. Addressing these questions requires a tractable animal model of JCPyV CNS infection. Although no animal model can replicate all aspects of any human disease, mouse polyomavirus (MuPyV) in mice and JCPyV in humans share key features of peripheral and CNS infection and antiviral immunity. In this review, we discuss the evidence suggesting how JCPyV migrates from the periphery to the CNS, innate and adaptive immune responses to polyomavirus infection, and how the MuPyV-mouse model provides insights into the pathogenesis of JCPyV CNS disease.
Collapse
Affiliation(s)
| | | | | | - Aron E. Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA; (A.B.B.); (S.A.S.); (S.K.S.)
| |
Collapse
|
5
|
Nakamichi K, Miura Y, Shimokawa T, Takahashi K, Suzuki T, Funata N, Harada M, Mori K, Sanjo N, Yukitake M, Takahashi K, Hamaguchi T, Izaki S, Oji S, Nakahara J, Ae R, Kosami K, Nukuzuma S, Nakamura Y, Nomura K, Kishida S, Mizusawa H, Yamada M, Takao M, Ebihara H, Saijo M. Nationwide Laboratory Surveillance of Progressive Multifocal Leukoencephalopathy in Japan: Fiscal Years 2011-2020. Viruses 2023; 15:v15040968. [PMID: 37112948 PMCID: PMC10144269 DOI: 10.3390/v15040968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a devastating demyelinating disease caused by JC virus (JCV), predominantly affecting patients with impaired cellular immunity. PML is a non-reportable disease with a few exceptions, making national surveillance difficult. In Japan, polymerase chain reaction (PCR) testing for JCV in the cerebrospinal fluid (CSF) is performed at the National Institute of Infectious Diseases to support PML diagnosis. To clarify the overall profile of PML in Japan, patient data provided at the time of CSF-JCV testing over 10 years (FY2011-2020) were analyzed. PCR testing for 1537 new suspected PML cases was conducted, and 288 (18.7%) patients tested positive for CSF-JCV. An analysis of the clinical information on all individuals tested revealed characteristics of PML cases, including the geographic distribution, age and sex patterns, and CSF-JCV-positivity rates among the study subjects for each type of underlying condition. During the last five years of the study period, a surveillance system utilizing ultrasensitive PCR testing and widespread clinical attention to PML led to the detection of CSF-JCV in the earlier stages of the disease. The results of this study will provide valuable information not only for PML diagnosis, but also for the treatment of PML-predisposing conditions.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshiharu Miura
- Department of Neurology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Toshio Shimokawa
- Department of Medical Data Science, Graduate School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Nobuaki Funata
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Masafumi Harada
- Department of Radiology, Tokushima University School of Medicine, Tokushima 770-8503, Japan
| | - Koichiro Mori
- Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo 113-8677, Japan
| | - Nobuo Sanjo
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Motohiro Yukitake
- Department of Neurology, Kouhoukai Takagi Hospital, Okawa-shi 831-0016, Fukuoka, Japan
| | - Kazuya Takahashi
- Department of Neurology, Hokuriku Brain and Neuromuscular Disease Center, National Hospital Organization Iou National Hospital, Kanazawa-shi 920-0192, Ishikawa, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology, Kanazawa Medical University, Kahoku-gun 920-0293, Ishikawa, Japan
| | - Shoko Izaki
- Department of Neurology, National Hospital Organization Saitama Hospital, Wako-shi 351-0102, Saitama, Japan
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe-shi 350-8550, Saitama, Japan
| | - Satoru Oji
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe-shi 350-8550, Saitama, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ryusuke Ae
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Shimotsuke-shi 329-0498, Tochigi, Japan
| | - Koki Kosami
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Shimotsuke-shi 329-0498, Tochigi, Japan
| | - Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, Kobe-shi 650-0046, Hyogo, Japan
| | - Yosikazu Nakamura
- Division of Public Health, Center for Community Medicine, Jichi Medical University, Shimotsuke-shi 329-0498, Tochigi, Japan
| | - Kyoichi Nomura
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe-shi 350-8550, Saitama, Japan
- Higashimatsuyama Municipal Hospital, Higashimatsuyama-shi 355-0005, Saitama, Japan
| | - Shuji Kishida
- Department of Neurology, Narita Tomisato Tokushukai Hospital, Tomisato-shi 286-0201, Chiba, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira-shi, Tokyo 187-8551, Japan
| | - Masahito Yamada
- Division of Neurology, Department of Internal Medicine, Kudanzaka Hospital, Chiyoda-ku, Tokyo 102-0074, Japan
| | - Masaki Takao
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira-shi, Tokyo 187-8551, Japan
- Department of General Internal Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira-shi, Tokyo 187-8551, Japan
| | - Hideki Ebihara
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
- Medical Affairs Department, Health and Welfare Bureau, Sapporo-shi 060-0042, Hokkaido, Japan
| |
Collapse
|
6
|
Zingaropoli MA, Pasculli P, Tartaglia M, Dominelli F, Ciccone F, Taglietti A, Perri V, Malimpensa L, Ferrazzano G, Iannetta M, Del Borgo C, Lichtner M, Mastroianni CM, Conte A, Ciardi MR. Evaluation of BAFF, APRIL and CD40L in Ocrelizumab-Treated pwMS and Infectious Risk. BIOLOGY 2023; 12:biology12040587. [PMID: 37106787 PMCID: PMC10135639 DOI: 10.3390/biology12040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND The anti-CD20 monoclonal antibody ocrelizumab has been widely employed in the treatment of people with multiple sclerosis (pwMS). However, its B-cell-depleting effect may induce a higher risk of infectious events and alterations in the secretion of B-cell-activating factors, such as BAFF, APRIL and CD40L. METHODS The aim of this study was to investigate plasma BAFF, APRIL and CD40L levels and their relationship with infectious risk in ocrelizumab-treated pwMS at baseline (T0), at 6 months (T6) and at 12 months (T12) after starting the treatment. As a control group, healthy donors (HD) were enrolled too. RESULTS A total of 38 pwMS and 26 HD were enrolled. At baseline, pwMS showed higher plasma BAFF (p < 0.0001), APRIL (p = 0.0223) and CD40L (p < 0.0001) levels compared to HD. Compared to T0, plasma BAFF levels were significantly increased at both T6 and T12 (p < 0.0001 and p < 0.0001, respectively). Whereas plasma APRIL and CD40L levels were decreased at T12 (p = 0.0003 and p < 0.0001, respectively). When stratifying pwMS according to the development of an infectious event during the 12-month follow-up period in two groups-with (14) and without an infectious event (24)-higher plasma BAFF levels were observed at all time-points; significantly, in the group with an infectious event compared to the group without an infectious event (T0: p < 0.0001, T6: p = 0.0056 and T12: p = 0.0400). Conclusions: BAFF may have a role as a marker of immune dysfunction and of infectious risk.
Collapse
Affiliation(s)
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Matteo Tartaglia
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Dominelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Ciccone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Ambra Taglietti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Valentina Perri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Leonardo Malimpensa
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Iannetta
- Infectious Disease Unit, Department of System Medicine, Tor Vergata University and Hospital, 00133 Rome, Italy
| | - Cosmo Del Borgo
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza University of Rome, 04110 Latina, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza University of Rome, 04110 Latina, Italy
- Department of Neurosciences Mental Health and Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
7
|
Prezioso C, Pietropaolo V, Moens U, Ciotti M. JC polyomavirus: a short review of its biology, its association with progressive multifocal leukoencephalopathy, and the diagnostic value of different methods to manifest its activity or presence. Expert Rev Mol Diagn 2023; 23:143-157. [PMID: 36786077 DOI: 10.1080/14737159.2023.2179394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
INTRODUCTION JC polyomavirus is the causative agent of progressive multifocal leukoencephalopathy (PML), a demyelinating disease resulting from the lytic infection of oligodendrocytes that may develop in immunosuppressed individuals: HIV1 infected or individuals under immunosuppressive therapies. Understanding the biology of JCPyV is necessary for a proper patient management, the development of diagnostic tests, and risk stratification. AREAS COVERED The review covers different areas of expertise including the genomic characterization of JCPyV strains detected in different body compartments (urine, plasma, and cerebrospinal fluid) of PML patients, viral mutations, molecular diagnostics, viral miRNAs, and disease. EXPERT OPINION The implementation of molecular biology techniques improved our understanding of JCPyV biology. Deep sequencing analysis of viral genomes revealed the presence of viral quasispecies in the cerebrospinal fluid of PML patients characterized by noncoding control region rearrangements and VP1 mutations. These neurotropic JCPyV variants present enhanced replication and an altered cell tropism that contribute to PML development. Monitoring these variants may be relevant for the identification of patients at risk of PML. Multiplex realtime PCR targeting both the LTAg and the archetype NCCR could be used to identify them. Failure to amplify NCCR should indicate the presence of a JCPyV prototype speeding up the diagnostic process.
Collapse
Affiliation(s)
- Carla Prezioso
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome Rome, Italy
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway Tromsø, Norway
| | - Marco Ciotti
- Virology Unit, Polyclinic Tor Vergata Rome, Italy
| |
Collapse
|
8
|
Dominelli F, Zingaropoli MA, Tartaglia M, Tortellini E, Guardiani M, Perri V, Pasculli P, Ciccone F, Malimpensa L, Baione V, Napoli A, Gaeta A, Lichtner M, Conte A, Mastroianni CM, Ciardi MR. Multiple sclerosis-disease modifying therapies affect humoral and T-cell response to mRNA COVID-19 vaccine. Front Immunol 2022; 13:1050183. [PMID: 36532061 PMCID: PMC9753571 DOI: 10.3389/fimmu.2022.1050183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
Background The mRNA vaccines help protect from COVID-19 severity, however multiple sclerosis (MS) disease modifying therapies (DMTs) might affect the development of humoral and T-cell specific response to vaccination. Methods The aim of the study was to evaluate humoral and specific T-cell response, as well as B-cell activation and survival factors, in people with MS (pwMS) under DMTs before (T0) and after two months (T1) from the third dose of vaccine, comparing the obtained findings to healthy donors (HD). All possible combinations of intracellular IFNγ, IL2 and TNFα T-cell production were evaluated, and T-cells were labelled "responding T-cells", those cells that produced at least one of the three cytokines of interest, and "triple positive T-cells", those cells that produced simultaneously all the three cytokines. Results The cross-sectional evaluation showed no significant differences in anti-S antibody titers between pwMS and HD at both time-points. In pwMS, lower percentages of responding T-cells at T0 (CD4: p=0.0165; CD8: p=0.0022) and triple positive T-cells at both time-points compared to HD were observed (at T0, CD4: p=0.0007 and CD8: p=0.0703; at T1, CD4: p=0.0422 and CD8: p=0.0535). At T0, pwMS showed higher plasma levels of APRIL, BAFF and CD40L compared to HD (p<0.0001, p<0.0001 and p<0.0001, respectively) and at T1, plasma levels of BAFF were still higher in pwMS compared to HD (p=0.0022).According to DMTs, at both T0 and T1, lower anti-S antibody titers in the depleting/sequestering-out compared to the enriching-in pwMS subgroup were found (p=0.0410 and p=0.0047, respectively) as well as lower percentages of responding CD4+ T-cells (CD4: p=0.0394 and p=0.0004, respectively). Moreover, the depleting/sequestering-out subgroup showed higher percentages of IFNγ-IL2-TNFα+ T-cells at both time-points, compared to the enriching-in subgroup in which a more heterogeneous cytokine profile was observed (at T0 CD4: p=0.0187; at T0 and T1 CD8: p =0.0007 and p =0.0077, respectively). Conclusion In pwMS, humoral and T-cell response to vaccination seems to be influenced by the different DMTs. pwMS under depleting/sequestering-out treatment can mount cellular responses even in the presence of a low positive humoral response, although the cellular response seems qualitatively inferior compared to HD. An understanding of T-cell quality dynamic is needed to determine the best vaccination strategy and in general the capability of immune response in pwMS under different DMT.
Collapse
Affiliation(s)
- Federica Dominelli
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Maria Antonella Zingaropoli
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy,*Correspondence: Maria Antonella Zingaropoli,
| | - Matteo Tartaglia
- Department of Human Neurosciences, Multiple Sclerosis Centre, Sapienza, University of Rome, Rome, Italy
| | - Eeva Tortellini
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Mariasilvia Guardiani
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Valentina Perri
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Federica Ciccone
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Leonardo Malimpensa
- Department of Human Neurosciences, Multiple Sclerosis Centre, Sapienza, University of Rome, Rome, Italy
| | - Viola Baione
- Department of Human Neurosciences, Multiple Sclerosis Centre, Sapienza, University of Rome, Rome, Italy
| | - Anna Napoli
- Department of Molecular medicine, Sapienza, University of Rome, Rome, Italy
| | - Aurelia Gaeta
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza, University of Rome, Latina, Italy,Department of Neurosciences Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Multiple Sclerosis Centre, Sapienza, University of Rome, Rome, Italy,Scientific Hospitalization and Treatment Institute, Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
| | | | - Maria Rosa Ciardi
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
9
|
Passerini S, Prezioso C, Prota A, Babini G, Coppola L, Lodi A, Epifani AC, Sarmati L, Andreoni M, Moens U, Pietropaolo V, Ciotti M. Detection Analysis and Study of Genomic Region Variability of JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and QPyV in the Urine and Plasma of HIV-1-Infected Patients. Viruses 2022; 14:2544. [PMID: 36423152 PMCID: PMC9698965 DOI: 10.3390/v14112544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Since it was clearly established that HIV/AIDS predisposes to the infection, persistence or reactivation of latent viruses, the prevalence of human polyomaviruses (HPyVs) among HIV-1-infected patients and a possible correlation between HPyVs and HIV sero-status were investigated. PCR was performed to detect and quantify JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and QPyV DNA in the urine and plasma samples of 103 HIV-1-infected patients. Subsequently, NCCR, VP1 and MCPyV LT sequences were examined. In addition, for MCPyV, the expression of transcripts for the LT gene was investigated. JCPyV, BKPyV and MCPyV's presence was reported, whereas HPyV6, HPyV7 and QPyV were not detected in any sample. Co-infection patterns of JCPyV, BKPyV and MCPyV were found. Archetype-like NCCRs were observed with some point mutations in plasma samples positive for JCPyV and BKPyV. The VP1 region was found to be highly conserved among these subjects. LT did not show mutations causing stop codons, and LT transcripts were expressed in MCPyV positive samples. A significant correlation between HPyVs' detection and a low level of CD4+ was reported. In conclusion, HPyV6, HPyV7 and QPyV seem to not have a clinical relevance in HIV-1 patients, whereas further studies are warranted to define the clinical importance of JCPyV, BKPyV and MCPyV DNA detection in these subjects.
Collapse
Affiliation(s)
- Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00163 Rome, Italy
| | - Annalisa Prota
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Giulia Babini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Luigi Coppola
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Alessandra Lodi
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Anna Chiara Epifani
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Loredana Sarmati
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Massimo Andreoni
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Marco Ciotti
- Virology Unit, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| |
Collapse
|
10
|
Bitossi C, Viscido A, Prezioso C, Brazzini G, Trancassini M, Borrazzo C, Passerini S, Frasca F, Scordio M, Sorrentino L, Oliveto G, Fracella M, D'Auria A, Selvaggi C, Cimino G, Midulla F, Pierangeli A, Antonelli G, Moens U, Pietropaolo V, Scagnolari C. High prevalence of Merkel cell polyomavirus is associated with dysregulation in transcript levels of TLR9 and type I IFNs in a large cohort of CF patients from the Italian (Lazio) reference center for cystic fibrosis. Microb Pathog 2022; 169:105644. [PMID: 35752381 DOI: 10.1016/j.micpath.2022.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022]
Abstract
Merkel cell polyomavirus (MCPyV) has been detected in respiratory specimens including those from Cystic Fibrosis (CF) patients, raising questions about its immunological and clinical relevance in the respiratory tract. MCPyV might promote an inappropriate antiviral response contributing to a chronic inflammatory response and resulting in detrimental effects in CF. Respiratory samples (n = 1138) were randomly collected from respiratory tract of CF patients (n = 539) during July 2018-October 2019. MCPyV-DNA detection was performed by real time PCR and positive samples were characterized by sequencing of the NCCR genomic region. The transcript levels of Toll-like receptor 9 (TLR9) and type I interferon (IFN-I) genes (IFNα, IFNβ and IFNε) were examined by real-time RT-PCR assays. MCPyV-DNA was detected in 268 out of 1138 respiratory specimens (23.5%) without any difference in the prevalence of MCPyV-DNA according to age, gender or bacteriological status of CF individuals. Thirteen out of 137 CF patients remained positive for MCPyV-DNA over the time (a median follow-up period of 8.8 months). Detection of MCPyV-DNA in respiratory specimens was not associated with the occurrence of exacerbation events. Both MCPyV positive adolescents (11-24 years) and adults (≥25 years) had lower mRNA levels of TLR9, IFNβ, IFNε and IFNα than the negative patients of the same age group, while MCPyV positive children produced increased levels of TLR9 and IFN-I genes (p < 0.05 for TLR9, IFNβ, IFNε) with respect to the negative ones. There were significant differences in TLR9 levels (p < 0.01), but not in those of IFNs, between MCPyV-DNA positive and negative patients with S. aureus, P. aeruginosa or both. Overall, these results indicate that MCPyV-DNA is frequently detected in the respiratory samples of CF patients and might influence the expression levels of IFN-related genes in an age dependent manner. The concomitant detection of MCPyV together with S. aureus and/or P. aeruginosa correlated with alterations in TLR9 levels suggesting that virus-bacteria coinfections might contribute to affect antiviral immunity in CF patients.
Collapse
Affiliation(s)
- Camilla Bitossi
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Affiliated to Istituto Pasteur Italia, 00185, Rome, Italy
| | - Agnese Viscido
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Affiliated to Istituto Pasteur Italia, 00185, Rome, Italy
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy; IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-degenerative Pathologies, 00163, Rome, Italy
| | - Gabriele Brazzini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Maria Trancassini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Cristian Borrazzo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Affiliated to Istituto Pasteur Italia, 00185, Rome, Italy
| | - Mirko Scordio
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Affiliated to Istituto Pasteur Italia, 00185, Rome, Italy
| | - Leonardo Sorrentino
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Affiliated to Istituto Pasteur Italia, 00185, Rome, Italy
| | - Giuseppe Oliveto
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Affiliated to Istituto Pasteur Italia, 00185, Rome, Italy
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Affiliated to Istituto Pasteur Italia, 00185, Rome, Italy
| | - Alessandra D'Auria
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Affiliated to Istituto Pasteur Italia, 00185, Rome, Italy
| | - Carla Selvaggi
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Affiliated to Istituto Pasteur Italia, 00185, Rome, Italy
| | - Giuseppe Cimino
- Lazio Reference Center for Cystic Fibrosis, Policlinico Umberto I University Hospital, 00185, Rome, Italy
| | - Fabio Midulla
- Department of Pediatric Emergency, University La Sapienza of Rome, 00185, Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Affiliated to Istituto Pasteur Italia, 00185, Rome, Italy
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Affiliated to Istituto Pasteur Italia, 00185, Rome, Italy; Microbiology and Virology Unit, Hospital "Policlinico Umberto I", Sapienza University, 00185, Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Affiliated to Istituto Pasteur Italia, 00185, Rome, Italy.
| |
Collapse
|
11
|
Rearrangement in the Hypervariable Region of JC Polyomavirus Genomes Isolated from Patient Samples and Impact on Transcription Factor-Binding Sites and Disease Outcomes. Int J Mol Sci 2022; 23:ijms23105699. [PMID: 35628509 PMCID: PMC9144386 DOI: 10.3390/ijms23105699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
JC polyomavirus (JCPyV) is the causative agent of the fatal, incurable, neurological disease, progressive multifocal leukoencephalopathy (PML). The virus is present in most of the adult population as a persistent, asymptotic infection in the kidneys. During immunosuppression, JCPyV reactivates and invades the central nervous system. A main predictor of disease outcome is determined by mutations within the hypervariable region of the viral genome. In patients with PML, JCPyV undergoes genetic rearrangements in the noncoding control region (NCCR). The outcome of these rearrangements influences transcription factor binding to the NCCR, orchestrating viral gene transcription. This study examines 989 NCCR sequences from patient isolates deposited in GenBank to determine the frequency of mutations based on patient isolation site and disease status. The transcription factor binding sites (TFBS) were also analyzed to understand how these rearrangements could influence viral transcription. It was determined that the number of TFBS was significantly higher in PML samples compared to non-PML samples. Additionally, TFBS that could promote JCPyV infection were more prevalent in samples isolated from the cerebrospinal fluid compared to other locations. Collectively, this research describes the extent of mutations in the NCCR that alter TFBS and how they correlate with disease outcome.
Collapse
|
12
|
Zingaropoli MA, Pasculli P, Iannetta M, Perri V, Tartaglia M, Crisafulli SG, Merluzzo C, Baione V, Mazzochi L, Taglietti A, Pauri F, Frontoni M, Altieri M, Gaeta A, Antonelli G, Conte A, Mastroianni CM, Ciardi MR. Infectious risk in multiple sclerosis patients treated with disease-modifying therapies: A three-year observational cohort study. Mult Scler J Exp Transl Clin 2022; 8:20552173211065731. [PMID: 35003758 PMCID: PMC8733376 DOI: 10.1177/20552173211065731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background The disease-modifying therapies (DMTs) largely used in multiple sclerosis (MS) may result in higher infectious risk. Objective We aimed to investigate the infectious risk in DMT-treated MS patients. Methods MS patients were evaluated for infectious risk before starting, switching or during DMT. Results In this three-year observational cohort study 174 MS patients were enrolled. Among them, 18 patients were anti-HBc + and 19 patients were QuantiFERON®-TB Gold In-Tube (QFT) + . No patients with anti-HBc + showed a detectable HBV-DNA and all started DMT. Among QTB + patients, 17 latent TB infections (LTBIs) and 2 active TB infections (TBIs) were identified. After one month of LTBI prophylaxis or TB treatment, respectively, all patients started DMTs.Overall, 149 started DMTs. During DMTs, one ocrelizumab-treated patient with anti-HBc + developed HBV reactivation and six patients (3 on natalizumab, 2 on ocrelizumab and 1 on IFN-β) showed reactivation of HSV-1, with detectable plasma DNA. Finally, 1 cladribine-treated patient experienced VZV reactivation. All the reactivations of latent infections have been successfully treated. Conclusion Screening of infectious diseases in DMT candidate MS patients helps to mitigate the infectious risk. During DMTs, a regular assessment of infectious risk allows to avoid discontinuing MS therapy and guarantees a higher degree of safety.
Collapse
Affiliation(s)
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Marco Iannetta
- Department of System Medicine, Tor Vergata University of Rome, Italy
| | - Valentina Perri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | | | | | | | - Viola Baione
- Department of Human Neurosciences, Sapienza University of Rome, Italy
| | | | - Ambra Taglietti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | | | | | - Marta Altieri
- Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Aurelia Gaeta
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Italy
| | | | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| |
Collapse
|
13
|
Prezioso C, Ciotti M, Brazzini G, Piacentini F, Passerini S, Grimaldi A, Landi D, Nicoletti CG, Zingaropoli MA, Iannetta M, Altieri M, Conte A, Limongi D, Marfia GA, Ciardi MR, Mastroianni CM, Palamara AT, Moens U, Pietropaolo V. Diagnostic Value of JC Polyomavirus Viruria, Viremia, Serostatus and microRNA Expression in Multiple Sclerosis Patients Undergoing Immunosuppressive Treatment. J Clin Med 2022; 11:347. [PMID: 35054041 PMCID: PMC8781243 DOI: 10.3390/jcm11020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/04/2022] Open
Abstract
Markers of JC polyomavirus (JCPyV) activity can be used to evaluate the risk of progressive multifocal leukoencephalopathy (PML) in treated multiple sclerosis (MS) patients. The presence of JCPyV DNA and microRNA (miR-J1-5p), the anti-JCV index and the sequence of the non-coding control region (NCCR) in urine and plasma were determined in 42 MS subjects before treatment (T0), 6 months (T6) and 12 months (T12) after natalizumab, ocrelizumab, fingolimod or dimethyl-fumarate administration and in 25 healthy controls (HC). The number of MS patients with viruria increased from 43% at T0 to 100% at T12, whereas it remained similar for the HC group (35-40%). Viremia first occurred 6 months after treatment in MS patients and increased after 12 months, whereas it was absent in HC. The viral load in urine and plasma from the MS cohort increased over time, mostly pronounced in natalizumab-treated patients, whereas it persisted in HC. The archetypal NCCR was detected in all positive urine, whereas mutations were observed in plasma-derived NCCRs resulting in a more neurotropic variant. The prevalence and miR-J1-5p copy number in MS urine and plasma dropped after treatment, whereas they remained similar in HC specimens. Viruria and miR-J1-5p expression did not correlate with anti-JCV index. In conclusion, analyzing JCPyV DNA and miR-J1-5p levels may allow monitoring JCPyV activity and predicting MS patients at risk of developing PML.
Collapse
Affiliation(s)
- Carla Prezioso
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00163 Rome, Italy
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.); (M.A.Z.); (M.R.C.); (C.M.M.)
| | - Marco Ciotti
- Laboratory of Virology, Polyclinic Tor Vergata Foundation, 00133 Rome, Italy;
| | - Gabriele Brazzini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.); (M.A.Z.); (M.R.C.); (C.M.M.)
| | - Francesca Piacentini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.); (M.A.Z.); (M.R.C.); (C.M.M.)
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.); (M.A.Z.); (M.R.C.); (C.M.M.)
| | - Alfonso Grimaldi
- Multiple Sclerosis Clinical and Research Unit, Fondazione Policlinico di Tor Vergata, 00133 Rome, Italy; (A.G.); (D.L.); (C.G.N.); (G.A.M.)
| | - Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, Fondazione Policlinico di Tor Vergata, 00133 Rome, Italy; (A.G.); (D.L.); (C.G.N.); (G.A.M.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy;
| | - Carolina Gabri Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Fondazione Policlinico di Tor Vergata, 00133 Rome, Italy; (A.G.); (D.L.); (C.G.N.); (G.A.M.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy;
| | - Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.); (M.A.Z.); (M.R.C.); (C.M.M.)
| | - Marco Iannetta
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy;
| | - Marta Altieri
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (A.C.)
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (A.C.)
- IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Dolores Limongi
- IRCCS San Raffaele Roma, Telematic University, 00163 Rome, Italy;
| | - Girolama Alessandra Marfia
- Multiple Sclerosis Clinical and Research Unit, Fondazione Policlinico di Tor Vergata, 00133 Rome, Italy; (A.G.); (D.L.); (C.G.N.); (G.A.M.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy;
- Unit of Neurology, IRCCS Istituto Neurologico Mediterraneo NEUROMED, 86077 Pozzilli, IS, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.); (M.A.Z.); (M.R.C.); (C.M.M.)
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.); (M.A.Z.); (M.R.C.); (C.M.M.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway;
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.); (M.A.Z.); (M.R.C.); (C.M.M.)
| |
Collapse
|
14
|
Nakamichi K, Shimokawa T. Database and Statistical Analyses of Transcription Factor Binding Sites in the Non-Coding Control Region of JC Virus. Viruses 2021; 13:v13112314. [PMID: 34835120 PMCID: PMC8620444 DOI: 10.3390/v13112314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
JC virus (JCV), as an archetype, establishes a lifelong latent or persistent infection in many healthy individuals. In immunocompromised patients, prototype JCV with variable mutations in the non-coding control region (NCCR) causes progressive multifocal leukoencephalopathy (PML), a severe demyelinating disease. This study was conducted to create a database of NCCR sequences annotated with transcription factor binding sites (TFBSs) and statistically analyze the mutational pattern of the JCV NCCR. JCV NCCRs were extracted from >1000 sequences registered in GenBank, and TFBSs within each NCCR were identified by computer simulation, followed by examination of their prevalence, multiplicity, and location by statistical analyses. In the NCCRs of the prototype JCV, the limited types of TFBSs, which are mainly present in regions D through F of archetype JCV, were significantly reduced. By contrast, modeling count data revealed that several TFBSs located in regions C and E tended to overlap in the prototype NCCRs. Based on data from the BioGPS database, genes encoding transcription factors that bind to these TFBSs were expressed not only in the brain but also in the peripheral sites. The database and NCCR patterns obtained in this study could be a suitable platform for analyzing JCV mutations and pathogenicity.
Collapse
Affiliation(s)
- Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Correspondence:
| | - Toshio Shimokawa
- Department of Medical Data Science, Graduate School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan;
| |
Collapse
|
15
|
Prezioso C, Grimaldi A, Landi D, Nicoletti CG, Brazzini G, Piacentini F, Passerini S, Limongi D, Ciotti M, Palamara AT, Marfia GA, Pietropaolo V. Risk Assessment of Progressive Multifocal Leukoencephalopathy in Multiple Sclerosis Patients during 1 Year of Ocrelizumab Treatment. Viruses 2021; 13:1684. [PMID: 34578264 PMCID: PMC8473394 DOI: 10.3390/v13091684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy (PML) caused by the JC virus is the main limitation to the use of disease modifying therapies for treatment of multiple sclerosis (MS). METHODS To assess the PML risk in course of ocrelizumab, urine and blood samples were collected from 42 MS patients at baseline (T0), at 6 (T2) and 12 months (T4) from the beginning of therapy. After JCPyV-DNA extraction, a quantitative-PCR (Q-PCR) was performed. Moreover, assessment of JCV-serostatus was obtained and arrangements' analysis of non-coding control region (NCCR) and of viral capsid protein 1 (VP1) was carried out. RESULTS Q-PCR revealed JCPyV-DNA in urine at all selected time points, while JCPyV-DNA was detected in plasma at T4. From T0 to T4, JC viral load in urine was detected, increased in two logarithms and, significantly higher, compared to viremia. NCCR from urine was archetypal. Plasmatic NCCR displayed deletion, duplication, and point mutations. VP1 showed the S269F substitution involving the receptor-binding region. Anti-JCV index and IgM titer were found to statistically decrease during ocrelizumab treatment. CONCLUSIONS Ocrelizumab in JCPyV-DNA positive patients is safe and did not determine PML cases. Combined monitoring of ocrelizumab's effects on JCPyV pathogenicity and on host immunity might offer a complete insight towards predicting PML risk.
Collapse
Affiliation(s)
- Carla Prezioso
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00163 Rome, Italy
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.)
| | - Alfonso Grimaldi
- Multiple Sclerosis Clinical and Research Unit, Fondazione Policlinico di Tor Vergata, 00133 Rome, Italy; (A.G.); (D.L.); (C.G.N.); (G.A.M.)
| | - Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, Fondazione Policlinico di Tor Vergata, 00133 Rome, Italy; (A.G.); (D.L.); (C.G.N.); (G.A.M.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Carolina Gabri Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Fondazione Policlinico di Tor Vergata, 00133 Rome, Italy; (A.G.); (D.L.); (C.G.N.); (G.A.M.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Gabriele Brazzini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.)
| | - Francesca Piacentini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.)
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.)
| | - Dolores Limongi
- IRCCS San Raffaele Roma, Telematic University, 00163 Rome, Italy;
| | - Marco Ciotti
- Laboratory of Virology, Polyclinic Tor Vergata Foundation, 00133 Rome, Italy;
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Girolama Alessandra Marfia
- Multiple Sclerosis Clinical and Research Unit, Fondazione Policlinico di Tor Vergata, 00133 Rome, Italy; (A.G.); (D.L.); (C.G.N.); (G.A.M.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
- Unit of Neurology, IRCCS Istituto Neurologico Mediterraneo NEUROMED, 86077 Pozzilli, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.)
| |
Collapse
|
16
|
Progressive multifocal leukoencephalopathy in the era of new disease-modifying treatments for multiple sclerosis. Med Clin (Barc) 2021; 156:509-514. [PMID: 33431183 DOI: 10.1016/j.medcli.2020.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 11/22/2022]
|
17
|
Genetic Diversity of the Noncoding Control Region of the Novel Human Polyomaviruses. Viruses 2020; 12:v12121406. [PMID: 33297530 PMCID: PMC7762344 DOI: 10.3390/v12121406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
The genomes of polyomaviruses are characterized by their tripartite organization with an early region, a late region and a noncoding control region (NCCR). The early region encodes proteins involved in replication and transcription of the viral genome, while expression of the late region generates the capsid proteins. Transcription regulatory sequences for expression of the early and late genes, as well as the origin of replication are encompassed in the NCCR. Cell tropism of polyomaviruses not only depends on the appropriate receptors on the host cell, but cell-specific expression of the viral genes is also governed by the NCCR. Thus far, 15 polyomaviruses have been isolated from humans, though it remains to be established whether all of them are genuine human polyomaviruses (HPyVs). The sequences of the NCCR of these HPyVs show high genetic variability and have been best studied in the human polyomaviruses BK and JC. Rearranged NCCRs in BKPyV and JCPyV, the first HPyVs to be discovered approximately 30 years ago, have been associated with the pathogenic properties of these viruses in nephropathy and progressive multifocal leukoencephalopathy, respectively. Since 2007, thirteen novel PyVs have been isolated from humans: KIPyV, WUPyV, MCPyV, HPyV6, HPyV7, TSPyV, HPyV9, HPyV10, STLPyV, HPyV12, NJPyV, LIPyV and QPyV. This review describes all NCCR variants of the new HPyVs that have been reported in the literature and discusses the possible consequences of NCCR diversity in terms of promoter strength, putative transcription factor binding sites and possible association with diseases.
Collapse
|
18
|
Fifty Years of JC Polyomavirus: A Brief Overview and Remaining Questions. Viruses 2020; 12:v12090969. [PMID: 32882975 PMCID: PMC7552028 DOI: 10.3390/v12090969] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
In the fifty years since the discovery of JC polyomavirus (JCPyV), the body of research representing our collective knowledge on this virus has grown substantially. As the causative agent of progressive multifocal leukoencephalopathy (PML), an often fatal central nervous system disease, JCPyV remains enigmatic in its ability to live a dual lifestyle. In most individuals, JCPyV reproduces benignly in renal tissues, but in a subset of immunocompromised individuals, JCPyV undergoes rearrangement and begins lytic infection of the central nervous system, subsequently becoming highly debilitating-and in many cases, deadly. Understanding the mechanisms allowing this process to occur is vital to the development of new and more effective diagnosis and treatment options for those at risk of developing PML. Here, we discuss the current state of affairs with regards to JCPyV and PML; first summarizing the history of PML as a disease and then discussing current treatment options and the viral biology of JCPyV as we understand it. We highlight the foundational research published in recent years on PML and JCPyV and attempt to outline which next steps are most necessary to reduce the disease burden of PML in populations at risk.
Collapse
|