1
|
Naseri A, Anvari E, Mirnurollahi S, Fateh A. Molecular prevalence and genotypic distribution of human pegivirus-1 among Iranian hemodialysis patients. Virus Res 2025; 356:199582. [PMID: 40345623 DOI: 10.1016/j.virusres.2025.199582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
This study investigates the molecular prevalence and genotypic distribution of Human Pegivirus-1 (HPgV-1) in Iranian hemodialysis (HD) patients. A case-control study was conducted from May 2017 to December 2024, including 1576 HD patients and 1000 age- and gender-matched healthy individuals. Serum samples were analyzed using nested PCR and sequencing of the 5'-UTR region to detect HPgV-1 RNA and determine genotypes. The prevalence of HPgV-1 was significantly higher in HD patients (13.6 %) compared to healthy controls (0.6 %). Among HPgV-1-positive HD patients, only genotype 2a was identified. Co-infections were notable, with 11.8 % of HPgV-1-positive patients also infected with HCV (predominantly genotype 3a), 3.0 % with HBV, and 11.7 % with HIV. Interestingly, HCV co-infected patients exhibited lower liver enzyme levels, while those co-infected with HIV had significantly higher CD4+ T cell counts (605.2 ± 198.7 vs. 412.3 ± 156.8 cells/mm³, P < 0.001), suggesting potential immunomodulatory effects of HPgV-1. Additionally, factors such as prolonged dialysis duration, elevated urea levels, and older age were significantly associated with HPgV-1 positivity. These findings underscore HD as a major risk factor for HPgV-1 transmission, likely exacerbated by hospital-acquired practices in dialysis units. The observed associations between HPgV-1 and improved clinical parameters in co-infected individuals highlight its complex role in viral pathogenesis, warranting further investigation into its underlying mechanisms. This study emphasizes the urgent need for stringent infection control measures in dialysis settings to mitigate viral transmission.
Collapse
Affiliation(s)
- Amin Naseri
- Department of Biology, CTC, Islamic Azad University, Tehran, , Iran
| | - Enayat Anvari
- Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | | | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
da Silva FG, Moura DR, de Oliveira PM, de Souza Cardoso Quintão T, Cassemiro ÉM, de Campos GM, da Silva AS, Bezerra RDS, de Noronha LAG, Ramalho WM, de Araújo WN, Pereira AL, Slavov SN, Haddad R. Molecular characterization and frequency of human pegivirus type 1 (HPgV-1) in kidney transplant recipients from Central-West Brazil. Braz J Microbiol 2024; 55:3279-3286. [PMID: 39164460 PMCID: PMC11711997 DOI: 10.1007/s42770-024-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Human Pegivirus Type 1 (HPgV-1), a ubiquitous commensal virus, has been recently suggested as a marker of immunologic function. There is scarce data for the presence, genotypes, and molecular characteristics of HPgV-1 among kidney transplant recipients. Therefore, the objective of this study was to examine the prevalence and the molecular characteristics (cycle threshold, genotypes) of this viral infection among kidney transplant recipients from the Brasília, Federal District of Brazil. HPgV-1 RNA detection in the plasma was assessed by RT-qPCR. Positive samples were submitted to sequencing and phylogenetic analysis of the 5´-UTR portion of the viral genome. The estimated HPgV-1 prevalence among renal-transplant recipients was 20%. The performed phylogenetic inference revealed that the most frequent genotype among these patients was HPgV-1 genotype 2 (78.9%) presented by its two subgenotypes (2 A and 2B), followed by genotypes 1 and 3 (10.5% each). This study presents new data about the HPgV-1 circulation and molecular characteristics among kidney transplant recipients from the Federal District of Brazil. Further work is fundamental to examine the effect of HPgV-1 among patients with immunological suppression, including kidney transplant recipients.
Collapse
Affiliation(s)
| | | | - Pâmela Maria de Oliveira
- Center for Tropical Medicine, University of Brasília, Federal District, Brasília, Brazil
- Molecular Diagnostics Laboratory, University Hospital of Brasília/EBSERH, Federal District, Brasília, Brazil
| | - Tatyane de Souza Cardoso Quintão
- Center for Tropical Medicine, University of Brasília, Federal District, Brasília, Brazil
- Molecular Diagnostics Laboratory, University Hospital of Brasília/EBSERH, Federal District, Brasília, Brazil
| | - Évelin Mota Cassemiro
- Center for Tropical Medicine, University of Brasília, Federal District, Brasília, Brazil
- Molecular Diagnostics Laboratory, University Hospital of Brasília/EBSERH, Federal District, Brasília, Brazil
| | - Gabriel Montenegro de Campos
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Anielly Sarana da Silva
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Dos Santos Bezerra
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Walter Massa Ramalho
- Center for Tropical Medicine, University of Brasília, Federal District, Brasília, Brazil
- Campus of Ceilândia, University of Brasília, Federal District, Brasília, Brazil
| | - Wildo Navegantes de Araújo
- Center for Tropical Medicine, University of Brasília, Federal District, Brasília, Brazil
- Campus of Ceilândia, University of Brasília, Federal District, Brasília, Brazil
- National Institute for Science and Technology for Health Technology Assessment, Porto Alegre, RS, Brazil
| | - Alex Leite Pereira
- Center for Tropical Medicine, University of Brasília, Federal District, Brasília, Brazil
- Campus of Ceilândia, University of Brasília, Federal District, Brasília, Brazil
| | - Svetoslav Nanev Slavov
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Butantan Institute, São Paulo, Brazil
| | - Rodrigo Haddad
- Center for Tropical Medicine, University of Brasília, Federal District, Brasília, Brazil.
- Molecular Diagnostics Laboratory, University Hospital of Brasília/EBSERH, Federal District, Brasília, Brazil.
- Campus of Ceilândia, University of Brasília, Federal District, Brasília, Brazil.
- Campus Universitário - Centro Metropolitano- DF, Ceilândia Sul, Brasília, DF, CEP: 72220-275, Brazil.
| |
Collapse
|
3
|
Fahnøe U, Madsen LW, Christensen PB, Sølund CS, Mollerup S, Pinholt M, Weis N, Øvrehus A, Bukh J. Effect of direct-acting antivirals on the titers of human pegivirus 1 during treatment of chronic hepatitis C patients. Microbiol Spectr 2024; 12:e0064124. [PMID: 39051781 PMCID: PMC11370240 DOI: 10.1128/spectrum.00641-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Coinfections with human pegivirus 1 (HPgV-1) are common in chronic hepatitis C virus (HCV) patients. However, little is known about whether HPgV-1 is affected by direct-acting antivirals during HCV treatment. Metagenomic analysis and reverse transcriptase-quantitative PCR (RT-qPCR) were performed on RNA from the plasma of 88 selected chronic HCV patients undergoing medical treatment. Twenty (23%) of these HCV patients had HPgV-1 coinfections and were followed by RT-qPCR during treatment and follow-up to investigate HPgV-1 RNA titers. Recovered sequences could be assembled to complete HPgV-1 genomes, and most formed a genotype 2 subclade. All HPgV-1 viral genomic regions were under negative purifying selection. Glecaprevir/pibrentasvir treatment in five patients did not consistently lower the genome titers of HPgV-1. In contrast, a one log10 drop of HPgV-1 titers at week 2 was observed in 10 patients during treatment with sofosbuvir-containing regimens, sustained to the end of treatment (EOT) and in two cases decreasing to below the detection limit of the assay. For the five patients treated with ledipasvir/sofosbuvir with the inclusion of pegylated interferon, titers decreased to below the detection limit at week 2 and remained undetectable to EOT. Subsequently, the HPgV-1 titer rebounded to pretreatment levels for all patients. In conclusion, we found that HCV treatment regimens that included the polymerase inhibitor sofosbuvir resulted in decreases in HPgV-1 titers, and the addition of pegylated interferon increased the effect on patients with coinfections. This points to the high specificity of protease and NS5A inhibitors toward HCV and the more broad-spectrum activity of sofosbuvir and especially pegylated interferon. IMPORTANCE Human pegivirus 1 coinfections are common in hepatitis C virus (HCV) patients, persisting for years. However, little is known about how pegivirus coinfections are affected by treatment with pangenotypic direct-acting antivirals (DAAs) against HCV. We identified human pegivirus by metagenomic analysis of chronic HCV patients undergoing protease, NS5A, and polymerase inhibitor treatment, in some patients with the addition of pegylated interferon, and followed viral kinetics of both viruses to investigate treatment effects. Only during HCV DAA treatment regimens that included the more broad-spectrum drug sofosbuvir could we detect a consistent decline in pegivirus titers that, however, rebounded to pretreatment levels after treatment cessation. The addition of pegylated interferon gave the highest effect with pegivirus titers decreasing to below the assay detection limit, but without clearance. These results reveal the limited effect of frontline HCV drugs on the closest related human virus, but sofosbuvir appeared to have the potential to be repurposed for other viral diseases.
Collapse
Affiliation(s)
- Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Wulff Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Institute for Regional Health Research, University of Southern Denmark, Research Unit for Internal Medicine Kolding Hospital, Kolding, Denmark
| | - Peer Brehm Christensen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Christina Søhoel Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Sarah Mollerup
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Hvidovre, Denmark
| | - Anne Øvrehus
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
5
|
Carmona RDCC, Cilli A, da Costa AC, Reis FC, Leal É, dos Santos FCP, Machado BC, Lopes CS, Afonso AMS, Timenetsky MDCST. Pegivirus Detection in Cerebrospinal Fluid from Patients with Central Nervous System Infections of Unknown Etiology in Brazil by Viral Metagenomics. Microorganisms 2023; 12:19. [PMID: 38257846 PMCID: PMC10818654 DOI: 10.3390/microorganisms12010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Metagenomic next-generation sequencing (mNGS) methodology serves as an excellent supplement in cases where diagnosis is challenging to establish through conventional laboratory tests, and its usage is increasingly prevalent. Examining the causes of infectious diseases in the central nervous system (CNS) is vital for understanding their spread, managing outbreaks, and effective patient care. In a study conducted in the state of São Paulo, Brazil, cerebrospinal fluid (CSF) samples from 500 patients with CNS diseases of indeterminate etiology, collected between 2017 and 2021, were analyzed. Employing a mNGS approach, we obtained the complete coding sequence of Pegivirus hominis (HPgV) genotype 2 in a sample from a patient with encephalitis (named IAL-425/BRA/SP/2019); no other pathogen was detected. Subsequently, to determine the extent of this virus's presence, both polymerase chain reaction (PCR) and/or real-time PCR assays were utilized on the entire collection. The presence of the virus was identified in 4.0% of the samples analyzed. This research constitutes the first report of HPgV detection in CSF samples in South America. Analysis of the IAL-425 genome (9107 nt) revealed a 90% nucleotide identity with HPgV strains from various countries. Evolutionary analyses suggest that HPgV is both endemic and extensively distributed. The direct involvement of HPgV in CNS infections in these patients remains uncertain.
Collapse
Affiliation(s)
| | - Audrey Cilli
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-900, Brazil; (A.C.); (F.C.R.); (B.C.M.)
| | | | - Fabricio Caldeira Reis
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-900, Brazil; (A.C.); (F.C.R.); (B.C.M.)
| | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, Belem 66075-000, Brazil;
| | | | - Bráulio Caetano Machado
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-900, Brazil; (A.C.); (F.C.R.); (B.C.M.)
| | - Cristina Santiago Lopes
- Respiratory Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-900, Brazil; (F.C.P.d.S.); (C.S.L.); (A.M.S.A.)
| | - Ana Maria Sardinha Afonso
- Respiratory Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-900, Brazil; (F.C.P.d.S.); (C.S.L.); (A.M.S.A.)
| | | |
Collapse
|
6
|
da Silva AS, de Campos GM, Villanova MG, Bezerra RDS, Santiago LMM, Haddad R, Covas DT, Giovanetti M, Alcantara LCJ, Elias MC, Sampaio SC, Kashima S, Slavov SN. Human Pegivirus-1 Detection and Genotyping in Brazilian Patients with Fulminant Hepatitis. Pathogens 2023; 12:1122. [PMID: 37764930 PMCID: PMC10536510 DOI: 10.3390/pathogens12091122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Fulminant hepatitis is a severe clinical disease characterized by a marked decline in liver function and encephalopathy. In a previous survey, using metagenomics in a group of 27 patients with this clinical condition, we observed an expressive quantity of reads of the Human pegivirus-1 (HPgV-1). Therefore, the objective of this study was to evaluate the frequency, molecular features, and HPgV-1 circulating genotypes in patients with fulminant hepatitis. After testing the collected plasma samples, we discovered twelve samples (44.4%) that were positive for HPgV-1 RNA (using both real-time and nested PCR). The positive samples presented a mean cycle threshold (Ct) of 28.5 (±7.3). Genotyping assignments revealed that all HPgV-1 positive samples belonged to the HPgV-1 genotype 2 (both subgenotypes 2A and 2B were identified). Although HPgV-1 is considered a commensal virus, little is known regarding its prevalence and genotypes in cases of fulminant hepatitis. More research is needed to understand whether HPgV-1 can be implicated in clinical disorders and infectious diseases.
Collapse
Affiliation(s)
- Anielly Sarana da Silva
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, SP, Brazil; (A.S.d.S.); (G.M.d.C.); (R.d.S.B.); (L.M.M.S.); (D.T.C.); (S.K.)
| | - Gabriel Montenegro de Campos
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, SP, Brazil; (A.S.d.S.); (G.M.d.C.); (R.d.S.B.); (L.M.M.S.); (D.T.C.); (S.K.)
| | - Marcia Guimarães Villanova
- Department of Gastroenterology, University Hospital, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Rafael dos Santos Bezerra
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, SP, Brazil; (A.S.d.S.); (G.M.d.C.); (R.d.S.B.); (L.M.M.S.); (D.T.C.); (S.K.)
| | - Luciana Maria Mendes Santiago
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, SP, Brazil; (A.S.d.S.); (G.M.d.C.); (R.d.S.B.); (L.M.M.S.); (D.T.C.); (S.K.)
| | - Rodrigo Haddad
- Faculty of Ceilândia, University of Brasília, Brasília 72220-275, DF, Brazil;
| | - Dimas Tadeu Covas
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, SP, Brazil; (A.S.d.S.); (G.M.d.C.); (R.d.S.B.); (L.M.M.S.); (D.T.C.); (S.K.)
| | - Marta Giovanetti
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, MG, Brazil;
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Luiz Carlos Junior Alcantara
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Maria Carolina Elias
- Center for Scientific Development, Butantan Institute, São Paulo 05503-900, SP, Brazil; (M.C.E.); (S.C.S.)
| | - Sandra Coccuzzo Sampaio
- Center for Scientific Development, Butantan Institute, São Paulo 05503-900, SP, Brazil; (M.C.E.); (S.C.S.)
| | - Simone Kashima
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, SP, Brazil; (A.S.d.S.); (G.M.d.C.); (R.d.S.B.); (L.M.M.S.); (D.T.C.); (S.K.)
| | - Svetoslav Nanev Slavov
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14051-140, SP, Brazil; (A.S.d.S.); (G.M.d.C.); (R.d.S.B.); (L.M.M.S.); (D.T.C.); (S.K.)
- Center for Scientific Development, Butantan Institute, São Paulo 05503-900, SP, Brazil; (M.C.E.); (S.C.S.)
| |
Collapse
|
7
|
Thijssen M, Khamisipour G, Maleki M, Devos T, Li G, Van Ranst M, Matthijnssens J, Pourkarim MR. Characterization of the Human Blood Virome in Iranian Multiple Transfused Patients. Viruses 2023; 15:1425. [PMID: 37515113 PMCID: PMC10386462 DOI: 10.3390/v15071425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Blood transfusion safety is an essential element of public health. Current blood screening strategies rely on targeted techniques that could miss unknown or unexpected pathogens. Recent studies have demonstrated the presence of a viral community (virobiota/virome) in the blood of healthy individuals. Here, we characterized the blood virome in patients frequently exposed to blood transfusion by using Illumina metagenomic sequencing. The virome of these patients was compared to viruses present in healthy blood donors. A total number of 155 beta-thalassemia, 149 hemodialysis, and 100 healthy blood donors were pooled with five samples per pool. Members of the Anelloviridae and Flaviviridae family were most frequently observed. Interestingly, samples of healthy blood donors harbored traces of potentially pathogenic viruses, including adeno-, rota-, and Merkel cell polyomavirus. Viruses of the Anelloviridae family were most abundant in the blood of hemodialysis patients and displayed a higher anellovirus richness. Pegiviruses (Flaviviridae) were only observed in patient populations. An overall trend of higher eukaryotic read abundance in both patient groups was observed. This might be associated with increased exposure through blood transfusion. Overall, the findings in this study demonstrated the presence of various viruses in the blood of Iranian multiple-transfused patients and healthy blood donors.
Collapse
Affiliation(s)
- Marijn Thijssen
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Gholamreza Khamisipour
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr 75146-33196, Iran
| | - Mohammad Maleki
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran 14665-1157, Iran
| | - Timothy Devos
- Laboratory of Molecular Immunology (Rega Institute), Department of Hematology, Department of Microbiology and Immunology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410083, China
| | - Marc Van Ranst
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Tehran 14665-1157, Iran
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| |
Collapse
|
8
|
Feng B, Liu B, Cheng M, Dong J, Hu Y, Jin Q, Yang F. An atlas of the blood virome in healthy individuals. Virus Res 2023; 323:199004. [PMID: 36402209 PMCID: PMC10194198 DOI: 10.1016/j.virusres.2022.199004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Emerging evidence indicates that gut virome plays a role in human health and disease, however, much less is known about the viral communities in blood. Here we conducted a direct metatranscriptomic sequencing of virus-like-particles in blood from 1200 healthy individuals, without prior amplification to avoid potential amplification bias and with a strictly bioinformatic and manual check for candidate viral reads to reduce false-positive matches. We identified 55 different viruses from 36 viral families, including 24 human DNA, RNA and retroviruses in 70% of the studied pools. The study showed that anelloviruses are widely distributed and dominate the blood virome in healthy individuals. Human herpesviruses and pegivirus-1 are commonly prevalent in asymptomatic humans. We identified the prevalence of RNA viruses often causing acute infection, like HEV, HPIV, RSV and HCoV-HKU1, revealing of a transmissible risk of asymptomatic infection. Several viruses possible related to transfusion safety were identified, including human Merkel cell polyomavirus, papillomavirus, parvovirus B19 and herpesvirus 8 in addition to HBV. In addition, phages in Caudovirales and Microviridae, were commonly found in pools of samples with a very low abundance; a few sequences for invertebrate, plant and giant viruses were found in some of individuals; however, the remaining 31 viruses mostly reflect extensive contamination from commercial reagents and the work environments. In conclusion, this study is the first comprehensive investigation of blood virome in healthy individuals by metatranscriptomic sequencing of VLP in China. Further investigation of potential false positives representing a major challenge for the identification of novel viruses in mNGS, will offer a systemic idea and means to reveal true viral infections of human.
Collapse
Affiliation(s)
- Bo Feng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS&PUMC, Beijing 100730, PR China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS&PUMC, Beijing 100730, PR China
| | - Min Cheng
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS&PUMC, Beijing 100730, PR China
| | - Yongfeng Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS&PUMC, Beijing 100730, PR China.
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS&PUMC, Beijing 100730, PR China.
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, CAMS&PUMC, Beijing 100730, PR China.
| |
Collapse
|
9
|
Slavov SN. Viral Metagenomics for Identification of Emerging Viruses in Transfusion Medicine. Viruses 2022; 14:v14112448. [PMID: 36366546 PMCID: PMC9699440 DOI: 10.3390/v14112448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Viral metagenomics has revolutionized our understanding for identification of unknown or poorly characterized viruses. For that reason, metagenomic studies gave been largely applied for virus discovery in a wide variety of clinical samples, including blood specimens. The emerging blood-transmitted virus infections represent important problem for public health, and the emergence of HIV in the 1980s is an example for the vulnerability of Blood Donation systems to such infections. When viral metagenomics is applied to blood samples, it can give a complete overview of the viral nucleic acid abundance, also named "blood virome". Detailed characterization of the blood virome of healthy donors could identify unknown (emerging) viral genomes that might be assumed as hypothetic transfusion threats. However, it is impossible only by application of viral metagenomics to assign that one viral agent could impact blood transfusion. That said, this is a complex issue and will depend on the ability of the infectious agent to cause clinically important infection in blood recipients, the viral stability in blood derivatives and the presence of infectious viruses in blood, making possible its transmission by transfusion. This brief review summarizes information regarding the blood donor virome and some important challenges for use of viral metagenomics in hemotherapy for identification of transfusion-transmitted viruses.
Collapse
Affiliation(s)
- Svetoslav Nanev Slavov
- Department of Cellular and Molecular Therapy (NuCeL), Butantan Institute, São Paulo 05503-900, SP, Brazil; ; Tel.: +55-(16)-2101-9300 (ext. 9365)
- Laboratory of Bioinformatics, Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto CEP 14051-140, SP, Brazil
| |
Collapse
|
10
|
The Second Human Pegivirus, a Non-Pathogenic RNA Virus with Low Prevalence and Minimal Genetic Diversity. Viruses 2022; 14:v14091844. [PMID: 36146649 PMCID: PMC9503178 DOI: 10.3390/v14091844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 02/02/2023] Open
Abstract
The second human pegivirus (HPgV-2) is a virus discovered in the plasma of a hepatitis C virus (HCV)-infected patient in 2015 belonging to the pegiviruses of the family Flaviviridae. HPgV-2 has been proved to be epidemiologically associated with and structurally similar to HCV but unrelated to HCV disease and non-pathogenic, but its natural history and tissue tropism remain unclear. HPgV-2 is a unique RNA virus sharing the features of HCV and the first human pegivirus (HPgV-1 or GBV-C). Moreover, distinct from most RNA viruses such as HCV, HPgV-1 and human immunodeficiency virus (HIV), HPgV-2 exhibits much lower genomic diversity, with a high global sequence identity ranging from 93.5 to 97.5% and significantly lower intra-host variation than HCV. The mechanisms underlying the conservation of the HPgV-2 genome are not clear but may include efficient innate immune responses, low immune selection pressure and, possibly, the unique features of the viral RNA-dependent RNA polymerase (RdRP). In this review, we summarize the prevalence, pathogenicity and genetic diversity of HPgV-2 and discuss the possible reasons for the uniformity of its genome sequence, which should elucidate the implications of RNA virus fidelity for attenuated viral vaccines.
Collapse
|
11
|
Lankarani KB, Yaghobi R, Pourkarim MR, Moayedi J, Mohammadi ZA, Thijssen M, Geramizadeh B, Malekhosseini SA, Maharlouei N, Shahraki HR. Tissue presentation of human pegivirus infection in liver transplanted recipients. Microb Pathog 2022; 167:105571. [PMID: 35550845 DOI: 10.1016/j.micpath.2022.105571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/16/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023]
Abstract
Human pegivirus-1 (HPgV-1) is known for its protective role in HIV co-infected individuals. This immunomodulatory effect raised questions concerning the possible role of HPgV-1 infection and the risk of rejection in liver transplanted patients. We aimed to evaluate the possible protective effect of HPgV-1 on graft outcome of liver transplanted patients. A total of 283 patients were recruited. Formalin-fixed paraffin-embedded tissue samples were collected from the explanted liver. HBV-DNA, HCV-RNA, and HPgV-1-RNA were determined using PCR and multiplex RT-PCR assays. The clinical course of patients including the occurrence of acute cellular rejection was compared between HPgV-1-infected vs. uninfected patients. HBV-DNA, HCV-RNA and HPgV-1-RNA were detected in 42.6%, 4.9%, and 7.8% of samples, respectively. None of the HPgV-1-infected patients experienced graft rejection. Group LASSO logistic regression revealed that HPgV-1 infection was the only factor which significantly reduced the odds of graft rejection (OR = 0.5, 95% CI = 0.29-0.89). No significant association was found between the presence of HPgV-1 with HBV and HCV infections. The lack of graft rejection in HPgV-1-infected liver transplanted patients might indicate a possible role of this virus for graft surveillance. Since these are still preliminary findings, prospective studies should further elucidate the role of HPgV-1 in liver transplantation outcomes.
Collapse
Affiliation(s)
- Kamran Bagheri Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahmoud Reza Pourkarim
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium, Herestraat 49, BE-3000 Leuven, Belgium; Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Hemmat Exp. Way, 14665-1157, Tehran, Iran
| | - Javad Moayedi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zohreh Ali Mohammadi
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Marijn Thijssen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Laboratory for Clinical and Epidemiological Virology, Leuven, Belgium, Herestraat 49, BE-3000 Leuven, Belgium
| | - Bita Geramizadeh
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Najmeh Maharlouei
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Raeisi Shahraki
- Department of Epidemiology and Biostatistics, Faculty of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|