1
|
Marchesi N, Allegri M, Bruno GM, Pascale A, Govoni S. Exploring the Potential of Dietary Supplements to Alleviate Pain Due to Long COVID. Nutrients 2025; 17:1287. [PMID: 40219044 PMCID: PMC11990457 DOI: 10.3390/nu17071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Long COVID, characterized by persistent symptoms following COVID-19 infection, significantly impacts individuals' health and daily functioning due to fatigue and pain. Focusing on pain, this review addresses nociplastic and chronic pain conditions. Interventions designed to reduce inflammation, oxidative stress, and enhance vagal activity may offer a promising approach to managing post-pandemic pain. This review presents individual components of food supplements with demonstrated efficacy in one or more pain conditions, focusing on their proposed mechanisms and clinical activity in pain, including their use in post-COVID-19 pain when available. Many of these substances have a long history of safe use and may offer an alternative to long-term analgesic drug treatment, which is often associated with potential side effects. This review also explores the potential for synergistic effects when combining these substances with each other or with conventional analgesics, considering the advantages for both patients and the healthcare system in using these substances as adjunctive or primary therapies for pain symptoms related to long COVID. While preclinical scientific literature provides a mechanistic basis for the action of several food supplements on pain control mechanisms and signaling pathways, clinical experience, particularly in the field of long COVID-associated pain, is still limited. However, the reviewed literature strongly suggests that the use of food supplements in long COVID-associated pain is an attainable goal, provided that rigorous clinical trials are conducted.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
- RedyNeuheart s.r.l., Start-Up, Via Santa Marta 19, 20123 Milan, Italy
| | - Massimo Allegri
- Centre Lémanique de Neuromodulation et Thérapie de la Douleur, Hôpital de Morges, Ensemble Hospitalier de la Côte (EHC), 1110 Morges, Switzerland;
| | - Giacomo Matteo Bruno
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
- Center of Research, SAVE Studi—Health Economics and Outcomes Research, 20123 Milan, Italy
- CEFAT (Center of Pharmaceuticals Economics and Medical Technologies Evaluation), University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy; (G.M.B.); (A.P.); (S.G.)
- CEFAT (Center of Pharmaceuticals Economics and Medical Technologies Evaluation), University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
2
|
Matangi MF, Hétu MF, Armstrong DWJ, Shellenberger J, Brouillard D, Baker J, Johnson A, Grubic N, Willms H, Johri AM. Carotid plaque score is associated with 10-year major adverse cardiovascular events in low-intermediate risk patients referred to a general cardiology community clinic. Eur Heart J Cardiovasc Imaging 2025; 26:714-724. [PMID: 38961800 PMCID: PMC11950921 DOI: 10.1093/ehjci/jeae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
AIMS Atherosclerotic carotid plaque assessments have not been integrated into routine clinical practice due to the time-consuming nature of both imaging and measurements. Plaque score, Rotterdam method, is simple, quick, and only requires 4-6 B-mode ultrasound images. The aim was to assess the benefit of plaque score in a community cardiology clinic to identify patients at risk for major adverse cardiovascular events (MACE). METHODS AND RESULTS Patients ≥ 40 years presenting for risk assessment were given a carotid ultrasound. Exclusions included a history of vascular disease or MACE and being >75 years. Kaplan-Meier curves and hazard ratios were performed. The left and right common carotid artery (CCA), bulb, and internal carotid artery were given 1 point per segment if plaque was present (plaque scores 0-6). Administrative data holdings at ICES were used for 10-year event follow-up. Of 8472 patients, 60% were females (n = 5121). Plaque was more prevalent in males (64% vs. 53.9%; P < 0.0001). The 10-year MACE cumulative incidence estimate was 6.37% with 276 events (males 6.9% vs. females 6.0%; P = 0.004). Having both maximal CCA intima media thickness < 1.00 mm and plaque score = 0 was associated with less events. A plaque score < 2 was associated with a low 10-year event rate (4.1%) compared with 2-4 (8.7%) and 5-6 (20%). CONCLUSION A plaque score ≥ 2 can re-stratify low-intermediate risk patients to a higher risk for events. Plaque score may be used as a quick assessment in a cardiology office to guide treatment management of patients.
Collapse
Affiliation(s)
| | - Marie-France Hétu
- Department of Medicine, Queen’s University, Cardiovascular Imaging Network at Queen’s (CINQ), 76 Stuart Street, Kingston, Ontario, K7L 2V7, Canada
| | | | | | | | - Josh Baker
- The Kingston Heart Clinic, Kingston, Ontario, Canada
| | - Ana Johnson
- ICES, Kingston, Ontario, Canada
- Department of Public Health Sciences Health Services, Queen’s University, Kingston, Ontario, Canada
| | - Nicholas Grubic
- Department of Medicine, Queen’s University, Cardiovascular Imaging Network at Queen’s (CINQ), 76 Stuart Street, Kingston, Ontario, K7L 2V7, Canada
| | | | - Amer M Johri
- Department of Medicine, Queen’s University, Cardiovascular Imaging Network at Queen’s (CINQ), 76 Stuart Street, Kingston, Ontario, K7L 2V7, Canada
| |
Collapse
|
3
|
Goldman DM, Warbeck CB, Barbaro R, Khambatta C, Nagra M. Assessing the Roles of Retinol, Vitamin K2, Carnitine, and Creatine in Plant-Based Diets: A Narrative Review of Nutritional Adequacy and Health Implications. Nutrients 2025; 17:525. [PMID: 39940383 PMCID: PMC11820685 DOI: 10.3390/nu17030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Plant-based diets are associated with numerous health benefits, including reduced risks of chronic diseases. However, questions persist regarding the implications of lower dietary intakes of certain non-essential nutrients, such as retinol, vitamin K2, carnitine, and creatine, which are primarily found in animal-derived foods. This narrative review evaluates the roles of these nutrients in human physiology and examines whether their absence in plant-based diets is likely to impact health outcomes. Retinol requirements can be met through the consumption of provitamin A carotenoids in plant foods, even in individuals with reduced conversion efficiency. Endogenous synthesis adequately supports physiological needs for vitamin K2, and currently available evidence does not consistently demonstrate that dietary vitamin K2 provides additional benefits for bone or cardiovascular health. Carnitine and creatine levels may differ between individuals following omnivorous and plant-based diets, but these differences do not result in compromised muscle function, cognitive health, or metabolic outcomes. Current evidence does not indicate that the absence of these non-essential nutrients in plant-based diets adversely affects health or confers disadvantages compared to omnivorous diets.
Collapse
Affiliation(s)
- David M. Goldman
- Department of Public Health, University of Helsinki, 00014 Helsinki, Finland
- Department of Research and Development, Metabite Inc., New York, NY 10036, USA
| | - Cassandra B. Warbeck
- Department of Family Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Robby Barbaro
- Mastering Diabetes, Santa Monica, CA 90405, USA;
- Amla Green, St. Petersburg, FL 33705, USA;
| | | | - Matthew Nagra
- Department of Family Practice, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| |
Collapse
|
4
|
Ronen D, Rokach Y, Abedat S, Qadan A, Daana S, Amir O, Asleh R. Human Gut Microbiota in Cardiovascular Disease. Compr Physiol 2024; 14:5449-5490. [PMID: 39109979 DOI: 10.1002/cphy.c230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut ecosystem, termed microbiota, is composed of bacteria, archaea, viruses, protozoa, and fungi and is estimated to outnumber human cells. Microbiota can affect the host by multiple mechanisms, including the synthesis of metabolites and toxins, modulating inflammation and interaction with other organisms. Advances in understanding commensal organisms' effect on human conditions have also elucidated the importance of this community for cardiovascular disease (CVD). This effect is driven by both direct CV effects and conditions known to increase CV risk, such as obesity, diabetes mellitus (DM), hypertension, and renal and liver diseases. Cardioactive metabolites, such as trimethylamine N -oxide (TMAO), short-chain fatty acids (SCFA), lipopolysaccharides, bile acids, and uremic toxins, can affect atherosclerosis, platelet activation, and inflammation, resulting in increased CV incidence. Interestingly, this interaction is bidirectional with microbiota affected by multiple host conditions including diet, bile acid secretion, and multiple diseases affecting the gut barrier. This interdependence makes manipulating microbiota an attractive option to reduce CV risk. Indeed, evolving data suggest that the benefits observed from low red meat and Mediterranean diet consumption can be explained, at least partially, by the changes that these diets may have on the gut microbiota. In this article, we depict the current epidemiological and mechanistic understanding of the role of microbiota and CVD. Finally, we discuss the potential therapeutic approaches aimed at manipulating gut microbiota to improve CV outcomes. © 2024 American Physiological Society. Compr Physiol 14:5449-5490, 2024.
Collapse
Affiliation(s)
- Daniel Ronen
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Rokach
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Qadan
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samar Daana
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Belenkov YN, Ageev AA, Kozhevnikova MV, Khabarova NV, Krivova AV, Korobkova EO, Popova LV, Emelyanov AV, Appolonova SA, Moskaleva NE, Shestakova KM, Privalova EV. Relationship of Acylcarnitines to Myocardial Ischemic Remodeling and Clinical Manifestations in Chronic Heart Failure. J Cardiovasc Dev Dis 2023; 10:438. [PMID: 37887885 PMCID: PMC10607617 DOI: 10.3390/jcdd10100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Progressive myocardial remodeling (MR) in chronic heart failure (CHF) leads to aggravation of systolic dysfunction (SD) and clinical manifestations. Identification of metabolomic markers of these processes may help in the search for new therapeutic approaches aimed at achieving reversibility of MR and improving prognosis in patients with CHF. METHODS To determine the relationship between plasma acylcarnitine (ACs) levels, MR parameters and clinical characteristics, in patients with CHF of ischemic etiology (n = 79) and patients with coronary heart disease CHD (n = 19) targeted analysis of 30 ACs was performed by flow injection analysis mass spectrometry. RESULTS Significant differences between cohorts were found for the levels of 11 ACs. Significant positive correlations (r > 0.3) between the medium- and long-chain ACs (MCACs and LCACs) and symptoms (CHF NYHA functional class (FC); r = 0.31-0.39; p < 0.05); negative correlation (r = -0.31-0.34; p < 0.05) between C5-OH and FC was revealed. Positive correlations of MCACs and LCACs (r = 0.31-0.48; p < 0.05) with the left atrium size and volume, the right atrium volume, right ventricle, and the inferior vena cava sizes, as well as the pulmonary artery systolic pressure level were shown. A negative correlation between C18:1 and left ventricular ejection fraction (r = -0.31; p < 0.05) was found. However, a decrease in levels compared to referent values of ACs with medium and long chain lengths was 50% of the CHF-CHD cohort. Carnitine deficiency was found in 6% and acylcarnitine deficiency in 3% of all patients with chronic heart disease. CONCLUSIONS ACs may be used in assessing the severity of the clinical manifestations and MR. ACs are an important locus to study in terms of altered metabolic pathways in patients with CHF of ischemic etiology and SD. Further larger prospective trials are warranted and needed to determine the potential benefits to treat patients with CV diseases with aberrate AC levels.
Collapse
Affiliation(s)
- Yuri N. Belenkov
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia; (A.A.A.); (N.V.K.); (A.V.K.); (E.O.K.); (L.V.P.); (A.V.E.); (E.V.P.)
| | - Anton A. Ageev
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia; (A.A.A.); (N.V.K.); (A.V.K.); (E.O.K.); (L.V.P.); (A.V.E.); (E.V.P.)
| | - Maria V. Kozhevnikova
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia; (A.A.A.); (N.V.K.); (A.V.K.); (E.O.K.); (L.V.P.); (A.V.E.); (E.V.P.)
| | - Natalia V. Khabarova
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia; (A.A.A.); (N.V.K.); (A.V.K.); (E.O.K.); (L.V.P.); (A.V.E.); (E.V.P.)
| | - Anastasia V. Krivova
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia; (A.A.A.); (N.V.K.); (A.V.K.); (E.O.K.); (L.V.P.); (A.V.E.); (E.V.P.)
| | - Ekaterina O. Korobkova
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia; (A.A.A.); (N.V.K.); (A.V.K.); (E.O.K.); (L.V.P.); (A.V.E.); (E.V.P.)
| | - Ludmila V. Popova
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia; (A.A.A.); (N.V.K.); (A.V.K.); (E.O.K.); (L.V.P.); (A.V.E.); (E.V.P.)
| | - Alexey V. Emelyanov
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia; (A.A.A.); (N.V.K.); (A.V.K.); (E.O.K.); (L.V.P.); (A.V.E.); (E.V.P.)
| | - Svetlana A. Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia; (S.A.A.); (N.E.M.); (K.M.S.)
| | - Natalia E. Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia; (S.A.A.); (N.E.M.); (K.M.S.)
| | - Ksenia M. Shestakova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia; (S.A.A.); (N.E.M.); (K.M.S.)
| | - Elena V. Privalova
- Hospital Therapy No. 1 Department, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435 Moscow, Russia; (A.A.A.); (N.V.K.); (A.V.K.); (E.O.K.); (L.V.P.); (A.V.E.); (E.V.P.)
| |
Collapse
|
6
|
Affiliation(s)
- Lingfeng Luo
- Division of Vascular Surgery, Department of Surgery (L.L., N.J.L.), Stanford University School of Medicine, CA
- Stanford Cardiovascular Institute, CA (L.L., N.J.L.)
| | - Nicholas J Leeper
- Division of Vascular Surgery, Department of Surgery (L.L., N.J.L.), Stanford University School of Medicine, CA
- Division of Cardiovascular Medicine, Department of Medicine (N.J.L.), Stanford University School of Medicine, CA
- Stanford Cardiovascular Institute, CA (L.L., N.J.L.)
| |
Collapse
|
7
|
Seeley EH, Liu Z, Yuan S, Stroope C, Cockerham E, Rashdan NA, Delgadillo L, Finney AC, Kumar D, Das S, Razani B, Liu W, Traylor J, Orr AW, Rom O, Pattillo CB, Yurdagul A. Spatially Resolved Metabolites in Stable and Unstable Human Atherosclerotic Plaques Identified by Mass Spectrometry Imaging. Arterioscler Thromb Vasc Biol 2023; 43:1626-1635. [PMID: 37381983 PMCID: PMC10527524 DOI: 10.1161/atvbaha.122.318684] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Impairments in carbohydrate, lipid, and amino acid metabolism drive features of plaque instability. However, where these impairments occur within the atheroma remains largely unknown. Therefore, we sought to characterize the spatial distribution of metabolites within stable and unstable atherosclerosis in both the fibrous cap and necrotic core. METHODS Atherosclerotic tissue specimens from 9 unmatched individuals were scored based on the Stary classification scale and subdivided into stable and unstable atheromas. After performing mass spectrometry imaging on these samples, we identified over 850 metabolite-related peaks. Using MetaboScape, METASPACE, and Human Metabolome Database, we confidently annotated 170 of these metabolites and found over 60 of these were different between stable and unstable atheromas. We then integrated these results with an RNA-sequencing data set comparing stable and unstable human atherosclerosis. RESULTS Upon integrating our mass spectrometry imaging results with the RNA-sequencing data set, we discovered that pathways related to lipid metabolism and long-chain fatty acids were enriched in stable plaques, whereas reactive oxygen species, aromatic amino acid, and tryptophan metabolism were increased in unstable plaques. In addition, acylcarnitines and acylglycines were increased in stable plaques whereas tryptophan metabolites were enriched in unstable plaques. Evaluating spatial differences in stable plaques revealed lactic acid in the necrotic core, whereas pyruvic acid was elevated in the fibrous cap. In unstable plaques, 5-hydroxyindoleacetic acid was enriched in the fibrous cap. CONCLUSIONS Our work here represents the first step to defining an atlas of metabolic pathways involved in plaque destabilization in human atherosclerosis. We anticipate this will be a valuable resource and open new avenues of research in cardiovascular disease.
Collapse
Affiliation(s)
- Erin H. Seeley
- Department of Chemistry, University of Texas at Austin, TX, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, IN, USA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA, USA
| | - Chad Stroope
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Elizabeth Cockerham
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Nabil A Rashdan
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Luisa Delgadillo
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- John Cochran VA Medical Center, St. Louis, MO, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, MI, USA
| | - James Traylor
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - A Wayne Orr
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| |
Collapse
|