1
|
Szlak L, Shen J, Zohar E, Karavani E, Rotroff D, Vegh D, Punia V, Rosen-Zvi M, Shimoni Y, Jehi L. Peri-operative anti-inflammatory drug use and seizure recurrence after resective epilepsy surgery: Target trials emulation. iScience 2025; 28:112124. [PMID: 40241751 PMCID: PMC12003005 DOI: 10.1016/j.isci.2025.112124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/23/2025] [Accepted: 02/25/2025] [Indexed: 04/18/2025] Open
Abstract
We conducted a retrospective observational study to examine whether anti-inflammatory medications prescribed peri-operatively of resective brain surgery can reduce long-term seizure recurrence for individuals with drug-resistant focal epilepsy. We used insurance-claims data from across the United States to screen medications prescribed to 1,993 individuals undergoing epilepsy. We then validated the results in a well-characterized cohort of 671 epilepsy patients from a major surgical center. Twelve medications met the screening criteria and were evaluated, identifying dexamethasone and zonisamide as potentially beneficial. Dexamethasone reduced seizure recurrence by 42% over 9 years of follow-up (hazard-ratio = 0.742; 95% CI = 0.662, 0.831), and zonisamide reduced recurrence by 33% (HR = 0.782; 95% CI = 0.667, 0.917). While dexamethasone could not be validated, analysis of zonisamide in the clinical cohort corroborated the beneficial effect (HR = 0.828; 95% CI = 0.706, 0.971). If prospectively validated, this study suggests surgeons could improve long-term outcomes of epilepsy surgery by medically reducing neuro-inflammation in the surgical bed.
Collapse
Affiliation(s)
| | - Jingdi Shen
- Center for Computational Life Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Daniel Rotroff
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Deborah Vegh
- Center for Computational Life Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vineet Punia
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Michal Rosen-Zvi
- IBM Research, Haifa, Israel
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | | - Lara Jehi
- Center for Computational Life Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
2
|
Mészáros M, Phan THM, Vigh JP, Porkoláb G, Kocsis A, Szecskó A, Páli EK, Cser NM, Polgár TF, Kecskeméti G, Walter FR, Schwamborn JC, Janáky T, Jan JS, Veszelka S, Deli MA. Alanine and glutathione targeting of dopamine- or ibuprofen-coupled polypeptide nanocarriers increases both crossing and protective effects on a blood-brain barrier model. Fluids Barriers CNS 2025; 22:18. [PMID: 39972353 PMCID: PMC11837687 DOI: 10.1186/s12987-025-00623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Targeting the blood-brain barrier (BBB) is a key step for effective brain delivery of nanocarriers. We have previously discovered that combinations of BBB nutrient transporter ligands alanine and glutathione (A-GSH), increase the permeability of vesicular and polypeptide nanocarriers containing model cargo across the BBB. Our aim was to investigate dopamine- and ibuprofen-coupled 3-armed poly(L-glutamic acid) nanocarriers targeted by A-GSH for transfer across a novel human co-culture model with induced BBB properties. In addition, the protective effect of ibuprofen containing nanoparticles on cytokine-induced barrier damage was also measured. METHOD Drug-coupled nanocarriers were synthetized and characterized by dynamic light scattering and transmission electron microscopy. Cellular effects, uptake, and permeability of the nanoparticles were investigated on a human stem cell-based co-culture BBB model with improved barrier properties induced by a small molecular cocktail. The model was characterized by immunocytochemistry and permeability for marker molecules. Nanocarrier uptake in human brain endothelial cells and midbrain organoids was quantified by spectrofluorometry and visualized by confocal microscopy. The mechanisms of cellular uptake were explored by addition of free targeting ligands, endocytic and metabolic inhibitors, co-localization of nanocarriers with intracellular organs, and surface charge modification of cells. The protective effect of ibuprofen-coupled nanocarriers was investigated against cytokine-induced barrier damage by impedance and permeability measurements. RESULTS Targeted nanoformulations of both drugs showed elevated cellular uptake in a time-dependent, active manner via endocytic mechanisms. Addition of free ligands inhibited the cellular internalization of targeted nanocarriers suggesting the crucial role of ligands in the uptake process. A higher permeability across the BBB model was measured for targeted nanocarriers. After crossing the BBB, targeted dopamine nanocarriers subsequently entered midbrain-like organoids derived from healthy and Parkinson's disease patient-specific stem cells. The ibuprofen-coupled targeted nanocarriers showed protective effects against cytokine-induced barrier damage. CONCLUSION BBB-targeted polypeptide nanoparticles coupled to therapeutic molecules were effectively taken up by brain organoids or showing a BBB protective effect indicating potential applications in nervous system pathologies.
Collapse
Grants
- PD 138930 National Research, Development and Innovation Office, Budapest, Hungary
- ÚNKP-23-3-SZTE-535 New National Excellence Program of the Ministry for Innovation and Technology
- ÚNKP-23-3-SZTE-315 New National Excellence Program
- EKÖP-393 Egyetemi Kutatói Ösztöndíj Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund
- SA-111/2021 Hungarian Research Network
- NSTC107-2923-M-006-002-MY3 (M-ERA.NET2 nanoPD) National Science Technology Council, Taiwan
- 143233 Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the FK_22 funding scheme
- NNE-29617 (M-ERA.NET2 nanoPD) National Research, Development and Innovation Office of Hungary
- Gedeon Richter Plc. Centenarial Foundation (H-1103 Budapest, Gyömrői str. 19–21. Hungary)
- National Academy of Scientist Education Program of the National Biomedical Foundation under the sponsorship of the Hungarian Ministry of Culture and Innovation
- HUN-REN Biological Research Centre, Szeged
Collapse
Affiliation(s)
- Mária Mészáros
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Faculty of Health Sciences, One Health Institute, University of Debrecen, Nagyerdei Krt. 98, 4032, Debrecen, Hungary
| | - Thi Ha My Phan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Judit P Vigh
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Dugonics Tér 13, 6720, Szeged, Hungary
| | - Gergő Porkoláb
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Anna Kocsis
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Anikó Szecskó
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Dugonics Tér 13, 6720, Szeged, Hungary
| | - Emese K Páli
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Nárcisz M Cser
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Tamás F Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Tisza Lajos Krt. 97, 6722, Szeged, Hungary
| | - Gábor Kecskeméti
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 8, 6720, Szeged, Hungary
| | - Fruzsina R Walter
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 4365, Belvaux, Luxembourg
| | - Tamás Janáky
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm Tér 8, 6720, Szeged, Hungary
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Szilvia Veszelka
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary.
| | - Mária A Deli
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary.
| |
Collapse
|
3
|
Jia CJ, Chen MN, Huang DD, Wu SF, Zeng CM, Liu ZQ, Wang MX, Huang YF, Yuan QJ, Zhang X. Edaravone promotes motoneuron survival and functional recovery after brachial plexus root avulsion and reimplantation in rats: Involvement of SIRT1/TFEB pathway. Int Immunopharmacol 2025; 145:113686. [PMID: 39642559 DOI: 10.1016/j.intimp.2024.113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Brachial plexu root avulsion (BPRA) commonly causes extensive motoneuron death, motor axon degeneration and denervation of biceps, leading to devastating motor dysfunction in the upper limb. Edaravone (Eda) has been proven to exert anti-oxidative and neuroprotective effects on various neurological disorders. Herein, we aimed to investigate the efficacy profile and potential mechanisms of Eda on BPRA in vitro and in vivo models. METHODS Rats following BPRA and reimplantation surgery were intraperitoneally injected with Eda once daily. The motor function recovery of the affected forelimb was assessed by Terzis grooming test. Histological staining and transmission electron microscopy were performed to evaluate the morphological appearance of the spinal cord, musculocutaneous nerve, and biceps. Further in-depth studies to explore the underlying mechanisms of Eda were conducted using Western blotting, biochemical assays, and immunofluorescence in H2O2-induced NSC-34 cells. RESULTS Eda significantly accelerated motor function recovery, enhanced motoneuron survival, prevented motor axon descent, preserved myelin sheath integrity and attenuated muscle atrophy. Additionally, Eda treatment markedly suppressed oxidative stress-related indicators, downregulated apoptosis-related proteins, mitigated glial reactivity, and activated SIRT1 and TFEB. Notably, the neuroprotective effect of Eda was diminished by the SIRT1 inhibitor EX527 in H2O2-treated NSC-34 cells, suggesting that Eda regulated oxidative stress and apoptosis through SIRT1/TFEB-induced autophagy flux. CONCLUSIONS Eda enhanced motoneuron survival and axonal regeneration that promotes motor functional restoration by inhibiting oxidative stress and apoptosis via the SIRT1/TFEB-autophagy pathway. Thus, it may serve as a promising strategy in reimplantation surgery for the treatment of BPRA.
Collapse
Affiliation(s)
- Cai-Ju Jia
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Man-Ni Chen
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Dou-Dou Huang
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Shao-Feng Wu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Chun-Ming Zeng
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Zhe-Qi Liu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Meng-Xia Wang
- ShunDe Polytechnic College, School of Medicine & Health Care, FoShan, Guangdong, 528000, China.
| | - Yan-Feng Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | - Qiu-Ju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China.
| | - Xie Zhang
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
| |
Collapse
|
4
|
Wang X, Fan F, Hou Y, Meng X. Tile: Construction of a specific nanoprobe for scavenging ROS in hypobaric hypoxia induced brain injury of mice. Heliyon 2024; 10:e38958. [PMID: 39640698 PMCID: PMC11620081 DOI: 10.1016/j.heliyon.2024.e38958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
The prevention and treatment of hypobaric hypoxia brain injury (HHBI) remains an unprecedented challenge due to the complex oxidative stress response at the damage site. In this study, RuCO phthalocyanine compound (RuPc) and bovine serum albumin (BSA) were self-assembled to obtain RuPc-BSA nanoparticles for HHBI therapy. As a nanoprobe carrying and storing carbon monoxide (CO), RuPc-BSA delivers CO to pathologically damaged areas of the brain. CO specifically attaches itself to the heme functional groups on mitochondria and restricts the source of reactive oxygen species (ROS) generation. RuPc-BSA nanoparticles have been demonstrated in vitro to exhibit amazing stability as well as remarkable scavenging activity on hydroxyl radical, superoxide anion, and hydrogen peroxide. In vivo experiments showed that ROS levels in the brain of HHBI rats pretreated with RuPc-BSA decreased significantly, and neuronal function and oxidative stress levels were alleviated. Western blot and qRT-RCR results indicated that RuPc-BSA restricted the protein levels of Keap1, whereas enhanced the gene and protein levels of Nrf2. This study demonstrated that RuPc-BSA can ameliorate HHBI of mice by scavenging ROS partly via activating Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fuhan Fan
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ya Hou
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| |
Collapse
|
5
|
Feng Y, Zhang M, Jia SY, Guo YX, Jia X. Dexamethasone alleviates etomidate-induced myoclonus by reversing the inhibition of excitatory amino acid transporters. Front Neurosci 2024; 18:1399653. [PMID: 38979126 PMCID: PMC11228700 DOI: 10.3389/fnins.2024.1399653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
Background Etomidate can induce myoclonus with an incidence of 50 ~ 85% during anesthesia induction. Dexamethasone, as a long-acting synthetic glucocorticoid, has neuroprotective effects. However, the effects of dexamethasone on the etomidate-induced myoclonus remain uncertain. Methods Adult male Sprague-Dawley rats were randomly assigned to receive etomidate (1.5 mg/kg) plus dexamethasone (4 mg/kg) (etomidate plus dexamethasone group) or etomidate (1.5 mg/kg) plus the same volume of normal saline (NS) (etomidate plus NS group). The mean behavioral scores, local field potentials and muscular tension were recorded to explore the effects of dexamethasone on etomidate-induced myoclonus. Liquid chromatography coupled with tandem mass spectrometric system (LC-MS/MS), quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting were applied to analyze the levels of glutamate and γ-aminobutyric acid (GABA), the mRNA and protein expression of excitatory amino acid transporters (EAATs), and plasma corticosterone levels at different time points after anesthesia. Results Compared with the etomidate plus NS treatment, the etomidate plus dexamethasone treatment significantly decreased the mean behavioral score at 1, 3, 4, and 5 min after administration; the peak power spectral density (PSD) (p = 0.0197) in the analysis of ripple waves; and the glutamate level (p = 0.0139) in the neocortex. However, compared with etomidate plus NS, etomidate plus dexamethasone increased the expression of the neocortical proteins of EAAT1 (p = 0.0207) and EAAT2 (p = 0.0022) and aggravated the inhibition of corticosterone at 4 h (p = 0.0019), 5 h (p = 0.0041), and 6 h (p = 0.0009) after administration. Conclusion Dexamethasone can attenuate the myoclonus, inhibit the glutamate accumulation, and reverse the suppression of EAATs in the neocortex induced by etomidate following myoclonus, while conversely aggravating etomidate-induced adrenal suppression.
Collapse
Affiliation(s)
- Yan Feng
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Anesthesiology, Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Min Zhang
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shuai-Ying Jia
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yan-Xia Guo
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Jia
- Department of Anesthesiology, Sichuan Integrative Medicine Hospital, Chengdu, China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Zheng ZJ, Zhu LZ, Qiu H, Zheng WYX, You PT, Chen SH, Hu CL, Huang JR, Zhou YJ. Neferine inhibits BMECs pyroptosis and maintains blood-brain barrier integrity in ischemic stroke by triggering a cascade reaction of PGC-1α. Sci Rep 2024; 14:14438. [PMID: 38910141 PMCID: PMC11194274 DOI: 10.1038/s41598-024-64815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024] Open
Abstract
Blood-brain barrier disruption is a critical pathological event in the progression of ischemic stroke (IS). Most studies regarding the therapeutic potential of neferine (Nef) on IS have focused on neuroprotective effect. However, whether Nef attenuates BBB disruption during IS is unclear. We here used mice underwent transient middle cerebral artery occlusion (tMCAO) in vivo and bEnd.3 cells exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro to simulate cerebral ischemia. We showed that Nef reduced neurobehavioral dysfunction and protected brain microvascular endothelial cells and BBB integrity. Molecular docking, short interfering (Si) RNA and plasmid transfection results showed us that PGC-1α was the most binding affinity of biological activity protein for Nef. And verification experiments were showed that Nef upregulated PGC-1α expression to reduce mitochondrial oxidative stress and promote TJ proteins expression, further improves the integrity of BBB in mice. Intriguingly, our study showed that neferine is a natural PGC-1α activator and illustrated the mechanism of specific binding site. Furthermore, we have demonstrated Nef reduced mitochondria oxidative damage and ameliorates endothelial inflammation by inhibiting pyroptosis to improve BBB permeability through triggering a cascade reaction of PGC-1α via regulation of PGC-1α/NLRP3/GSDMD signaling pathway to maintain the integrity of BBB in ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zi-Jian Zheng
- Department of Pharmacy, Gongan Hospital of Traditional Chinese Medicine, Jingzhou, 434300, China
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Li-Zhi Zhu
- Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Han Qiu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 3002 West Sungang Rd, Shenzhen, 518020, China
| | - Wu-Yin-Xiao Zheng
- Department of Pharmacy, Gongan Hospital of Traditional Chinese Medicine, Jingzhou, 434300, China
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Peng-Tao You
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Shu-He Chen
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Shizhen Laboratory, Wuhan, 430061, China
| | - Chun-Ling Hu
- Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Jun-Rong Huang
- Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, 518055, China
| | - Ya-Jun Zhou
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 3002 West Sungang Rd, Shenzhen, 518020, China.
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
- Hubei Shizhen Laboratory, Wuhan, 430061, China.
| |
Collapse
|
7
|
Celentano C, Carotenuto L, Miceli F, Carleo G, Corrado B, Baroli G, Iervolino S, Vecchione R, Taglialatela M, Barrese V. Kv7 channel activation reduces brain endothelial cell permeability and prevents kainic acid-induced blood-brain barrier damage. Am J Physiol Cell Physiol 2024; 326:C893-C904. [PMID: 38284124 PMCID: PMC11193483 DOI: 10.1152/ajpcell.00709.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Ion channels in the blood-brain barrier (BBB) play a main role in controlling the interstitial fluid composition and cerebral blood flow, and their dysfunction contributes to the disruption of the BBB occurring in many neurological diseases such as epilepsy. In this study, using morphological and functional approaches, we evaluated the expression and role in the BBB of Kv7 channels, a family of voltage-gated potassium channels including five members (Kv7.1-5) that play a major role in the regulation of cell excitability and transmembrane flux of potassium ions. Immunofluorescence experiments showed that Kv7.1, Kv7.4, and Kv7.5 were expressed in rat brain microvessels (BMVs), as well as brain primary- and clonal (BEND-3) endothelial cells (ECs). Kv7.5 localized at the cell-to-cell junction sites, whereas Kv7.4 was also found in pericytes. The Kv7 activator retigabine increased transendothelial electrical resistance (TEER) in both primary ECs and BEND-3 cells; moreover, retigabine reduced paracellular dextran flux in BEND-3 cells. These effects were prevented by the selective Kv7 blocker XE-991. Exposure to retigabine also hyperpolarized cell membrane and increased tight junctions (TJs) integrity in BEND-3 cells. BMVs from rats treated with kainic acid (KA) showed a disruption of TJs and a selective reduction of Kv7.5 expression. In BEND-3 cells, retigabine prevented the increase of cell permeability and the reduction of TJs integrity induced by KA. Overall, these findings demonstrate that Kv7 channels are expressed in the BBB, where they modulate barrier properties both in physiological and pathological conditions.NEW & NOTEWORTHY This study describes for the first time the expression and the functional role of Kv7 potassium channels in the blood-brain barrier. We show that the opening of Kv7 channels reduces endothelial cell permeability both in physiological and pathological conditions via the hyperpolarization of cell membrane and the sealing of tight junctions. Therefore, activation of endothelial Kv7 channels might be a useful strategy to treat epilepsy and other neurological disorders characterized by blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Camilla Celentano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Lidia Carotenuto
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Francesco Miceli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Giusy Carleo
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Brunella Corrado
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, Naples, Italy
| | - Giulia Baroli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Stefania Iervolino
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, Naples, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Gagliano A, Carta A, Tanca MG, Sotgiu S. Pediatric Acute-Onset Neuropsychiatric Syndrome: Current Perspectives. Neuropsychiatr Dis Treat 2023; 19:1221-1250. [PMID: 37251418 PMCID: PMC10225150 DOI: 10.2147/ndt.s362202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Pediatric acute-onset neuropsychiatric syndrome (PANS) features a heterogeneous constellation of acute obsessive-compulsive disorder (OCD), eating restriction, cognitive, behavioral and/or affective symptoms, often followed by a chronic course with cognitive deterioration. An immune-mediated etiology is advocated in which the CNS is hit by different pathogen-driven (auto)immune responses. This narrative review focused on recent clinical (ie, diagnostic criteria, pre-existing neurodevelopmental disorders, neuroimaging) and pathophysiological (ie, CSF, serum, genetic and autoimmune findings) aspects of PANS. We also summarized recent points to facilitate practitioners with the disease management. Relevant literature was obtained from PubMed database which included only English-written, full-text clinical studies, case reports, and reviews. Among a total of 1005 articles, 205 were pertinent to study inclusion. Expert opinions are converging on PANS as the effect of post-infectious events or stressors leading to "brain inflammation", as it is well-established for anti-neuronal psychosis. Interestingly, differentiating PANS from either autoimmune encephalitides and Sydenham's chorea or from alleged "pure" psychiatric disorders (OCD, tics, Tourette's syndrome), reveals several overlaps and more analogies than differences. Our review highlights the need for a comprehensive algorithm to help both patients during their acute distressing phase and physicians during their treatment decision. A full agreement on the hierarchy of each therapeutical intervention is missing owing to the limited number of randomized controlled trials. The current approach to PANS treatment emphasizes immunomodulation/anti-inflammatory treatments in association with both psychotropic and cognitive-behavioral therapies, while antibiotics are suggested when an active bacterial infection is established. A dimensional view, taking into account the multifactorial origin of psychiatric disorders, should suggest neuro-inflammation as a possible shared substrate of different psychiatric phenotypes. Hence, PANS and PANS-related disorders should be considered as a conceptual framework describing the etiological and phenotypical complexity of many psychiatric disorders.
Collapse
Affiliation(s)
- Antonella Gagliano
- Department of Health Science, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Department of Biomedical Sciences, University of Cagliari & "A. Cao" Paediatric Hospital, Child & Adolescent Neuropsychiatry Unit, Cagliari, Italy
| | - Alessandra Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Unit of Child Neuropsychiatry, Sassari, Italy
| | - Marcello G Tanca
- Department of Biomedical Sciences, University of Cagliari & "A. Cao" Paediatric Hospital, Child & Adolescent Neuropsychiatry Unit, Cagliari, Italy
| | - Stefano Sotgiu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Unit of Child Neuropsychiatry, Sassari, Italy
| |
Collapse
|
9
|
Hou Y, Zhang Y, Jiang S, Xie N, Zhang Y, Meng X, Wang X. Salidroside intensifies mitochondrial function of CoCl 2-damaged HT22 cells by stimulating PI3K-AKT-MAPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154568. [PMID: 36610162 DOI: 10.1016/j.phymed.2022.154568] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/29/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Salidroside (Sal), an active component from Rhodiola crenulata, has been confirmed to exert neuroprotective effects against hypoxia. However, its molecular mechanisms of intensifying mitochondrial function still largely unknown. In the present study, we aimed to explore the mechanisms by which Sal heightened mitochondrial function in CoCl2-induced HT22 hypoxic injury. METHODS The hypoxic condition of HT22 cells was performed by CoCl2 stimulus. We then investigated the effects of Sal on the viability of hypoxic HT22 cells by cell counting kit-8. The contents of lactate dehydrogenase (LDH) release in cultured supernatant were detected by using commercial biochemical kit. Superoxide free radical scavenging activity, total antioxidant capacity assay kit with ferric reducing ability of plasma and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) methods were employed to detect the free radical scavenging ability and antioxidant capacity of Sal. Meanwhile, intracellular reactive oxygen species (ROS), Ca2+ and mitochondrial membrane potential (MMP) were determined by corresponding specific labeled probes. Mitochondrial morphology was tested by Mito-tracker green with confocal microscopy. Hoechst 33342 and Annexin V-FITC/propidium iodide staining were also employed to evaluate the effect of Sal on cell apoptosis. Oxygen consumption rate (OCR), real-time ATP production and proton efflux rate were measured using a Seahorse analyzer. Additionally, the potential interactions of Sal with PI3K-AKT signaling pathway-related proteins were predicted and tested by molecular docking, molecular dynamics simulation (MDS) and localized surface plasmon resonance (LSPR) techniques, respectively. Furthermore, the protein levels of p-PI3K, PI3K, p-AKT, AKT, p-JNK, JNK, p-p38 and p38 were estimated by western blot analysis. RESULTS Sal alleviated CoCl2-induced hypoxic injury in HT22 cells as evidenced by increased cell viability and decreased LDH release. In vitro antioxidant test confirmed that Sal had marvelous antioxidant abilities. The protected mitochondrial function by Sal treatment was illustrated by the decrease of ROS, Ca2+, mitochondrial fragment and the increase of MMP. In addition, Sal ameliorated the apoptosis of HT22 cells by decreasing Hoechst 33342 positive cells and the rate of apoptotic cells. Enhancement of energy metabolism in HT22 by Sal was demonstrated by increased OCR, real-time ATP generation and proton efflux rate. The molecular docking confirmed the potential binding of Sal to PI3K, AKT and CaMK II proteins with calculated binding energy of -1.32, -4.21 and -4.38 kcal/mol, respectively. The MDS test revealed the average hydrogen bond of complex Sal-PI3K and Sal-AKT were 0.79 and 4.46, respectively. The results of LSPR verified the potential binding of Sal to proteins PI3K, AKT and HIF-1α with affinity values of 5.20 × 10 - 3, 2.83 × 10 - 3 and 3.97 × 10 - 3 KD, respectively. Western blot analysis further argued that Sal consolidated the levels of p-PI3K and p-AKT. Meanwhile, Sal could downregulate the proteins expression of p-JNK and p-p38. CONCLUSION Collectively, our findings suggested that Sal can intensify mitochondrial function of CoCl2-simulated hypoxia injury in HT22 cells by stimulating PI3K-AKT-MAPK signaling pathway. Sal is a potential agent for mitochondrial protection against hypoxia with the underlying molecular mechanisms of energy metabolism being further elucidated.
Collapse
Affiliation(s)
- Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yating Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shengnan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Na Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
10
|
Anfuso CD, Cosentino A, Agafonova A, Zappalà A, Giurdanella G, Trovato Salinaro A, Calabrese V, Lupo G. Pericytes of Stria Vascularis Are Targets of Cisplatin-Induced Ototoxicity: New Insights into the Molecular Mechanisms Involved in Blood-Labyrinth Barrier Breakdown. Int J Mol Sci 2022; 23:ijms232415790. [PMID: 36555432 PMCID: PMC9781621 DOI: 10.3390/ijms232415790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
The stria vascularis (SV) contributes to cochlear homeostasis and consists of three layers, one of which contains the blood-labyrinthic barrier (BLB), with a large number of bovine cochlear pericytes (BCPs). Cisplatin is a chemotherapeutic drug that can damage the SV and cause hearing loss. In this study, cell viability, proliferation rate, cytotoxicity and reactive oxygen species production were evaluated. The protein content of phospho-extracellular signal-regulated kinases (ERK) 1/2, total ERK 1/2, phospho-cytosolic phospholipase A2 (cPLA2), total cPLA2 and cyclooxygenase 2 (COX-2) and the release of prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) from BCPs were analyzed. Finally, the protective effect of platelet-derived growth factor (PDGF-BB) on BCPs treated with cisplatin was investigated. Cisplatin reduced viability and proliferation, activated ERK 1/2, cPLA2 and COX-2 expression and increased PGE2 and VEGF release; these effects were reversed by Dexamethasone. The presence of PDGF-BB during the treatment with cisplatin significantly increased the proliferation rate. No studies on cell regeneration in ear tissue evaluated the effect of the PDGF/Dex combination. The aim of this study was to investigate the effects of cisplatin on cochlear pericytes and propose new otoprotective agents aimed at preventing the reduction of their vitality and thus maintaining the BLB structure.
Collapse
Affiliation(s)
- Carmelina Daniela Anfuso
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Alessia Cosentino
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Aleksandra Agafonova
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Agata Zappalà
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | | | - Angela Trovato Salinaro
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Vittorio Calabrese
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Gabriella Lupo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence:
| |
Collapse
|
11
|
Sato K, Nakagawa S, Morofuji Y, Matsunaga Y, Fujimoto T, Watanabe D, Izumo T, Niwa M, Walter FR, Vigh JP, Santa-Maria AR, Deli MA, Matsuo T. Effects of fasudil on blood-brain barrier integrity. Fluids Barriers CNS 2022; 19:43. [PMID: 35659272 PMCID: PMC9166508 DOI: 10.1186/s12987-022-00336-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cerebral infarction accounts for 85% of all stroke cases. Even in an era of rapid and effective recanalization using an intravascular approach, the majority of patients have poor functional outcomes. Thus, there is an urgent need for the development of therapeutic agents to treat acute ischemic stroke. We evaluated the effect of fasudil, a Rho kinase inhibitor, on blood brain barrier (BBB) functions under normoxia or oxygen–glucose deprivation (OGD) conditions using a primary cell-based in vitro BBB model. Methods BBB models from rat primary cultures (brain capillary endothelial cells, astrocytes, and pericytes) were subjected to either normoxia or 6 h OGD/24 h reoxygenation. To assess the effects of fasudil on BBB functions, we evaluated real time impedance, transendothelial electrical resistance (TEER), sodium fluorescein permeability, and tight junction protein expression using western blotting. Lastly, to understand the observed protective mechanism on BBB functions by fasudil we examined the role of cyclooxygenase-2 and thromboxane A2 receptor agonist U-46619 in BBB-forming cells. Results We found that treatment with 0.3–30 µM of fasudil increased cellular impedance. Fasudil enhanced barrier properties in a concentration-dependent manner, as measured by an increased (TEER) and decreased permeability. Fasudil also increased the expression of tight junction protein claudin-5. Reductions in TEER and increased permeability were observed after OGD/reoxygenation exposure in mono- and co-culture models. The improvement in BBB integrity by fasudil was confirmed in both of the models, but was significantly higher in the co-culture than in the monoculture model. Treatment with U-46619 did not show significant changes in TEER in the monoculture model, whereas it showed a significant reduction in TEER in the co-culture model. Fasudil significantly improved the U-46619-induced TEER reduction in the co-culture models. Pericytes and astrocytes have opposite effects on endothelial cells and may contribute to endothelial injury in hyperacute ischemic stroke. Overall, fasudil protects the integrity of BBB both by a direct protective effect on endothelial cells and by a pathway mediated via pericytes and astrocytes. Conclusions Our findings suggest that fasudil is a BBB-protective agent against acute ischemic stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00336-w.
Collapse
Affiliation(s)
- Kei Sato
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yoichi Morofuji
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Yuki Matsunaga
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takashi Fujimoto
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Daisuke Watanabe
- BBB Laboratory, PharmaCo-Cell Company Ltd, Nagasaki, 852-8135, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masami Niwa
- BBB Laboratory, PharmaCo-Cell Company Ltd, Nagasaki, 852-8135, Japan
| | - Fruzsina R Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Szeged, 6726, Hungary
| | - Judit P Vigh
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Szeged, 6726, Hungary
| | - Ana Raquel Santa-Maria
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Szeged, 6726, Hungary.,Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Maria A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Szeged, 6726, Hungary
| | - Takayuki Matsuo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
12
|
Cai M, Lin W. The Function of NF-Kappa B During Epilepsy, a Potential Therapeutic Target. Front Neurosci 2022; 16:851394. [PMID: 35360161 PMCID: PMC8961383 DOI: 10.3389/fnins.2022.851394] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
The transcriptional regulator nuclear factor kappa B (NF-κB) modulates cellular biological activity by binding to promoter regions in the nucleus and transcribing various protein-coding genes. The NF-κB pathway plays a major role in the expressing genes related to inflammation, including chemokines, interleukins, and tumor necrosis factor. It also transcribes genes that can promote neuronal survival or apoptosis. Epilepsy is one of the most common brain disorders and it not only causes death worldwide but also affects the day-to-day life of affected individuals. While epilepsy has diverse treatment options, there remain patients who are not sensitive to the existing treatment methods. Recent studies have implicated the critical role of NF-κB in epilepsy. It is upregulated in neurons, glial cells, and endothelial cells, due to neuronal loss, glial cell proliferation, blood-brain barrier dysfunction, and hippocampal sclerosis through the glutamate and γ-aminobutyric acid imbalance, ion concentration changes, and other mechanisms. In this review, we summarize the functional changes caused by the upregulation of NF-κB in the central nervous system during different periods after seizures. This review is the first to deconvolute the complicated functions of NF-κB, and speculate that the regulation of NF-κB can be a safe and effective treatment strategy for epilepsy.
Collapse
|
13
|
van Vliet EA, Marchi N. Neurovascular unit dysfunction as a mechanism of seizures and epilepsy during aging. Epilepsia 2022; 63:1297-1313. [PMID: 35218208 PMCID: PMC9321014 DOI: 10.1111/epi.17210] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
The term neurovascular unit (NVU) describes the structural and functional liaison between specialized brain endothelium, glial and mural cells, and neurons. Within the NVU, the blood‐brain barrier (BBB) is the microvascular structure regulating neuronal physiology and immune cross‐talk, and its properties adapt to brain aging. Here, we analyze a research framework where NVU dysfunction, caused by acute insults or disease progression in the aging brain, represents a converging mechanism underlying late‐onset seizures or epilepsy and neurological or neurodegenerative sequelae. Furthermore, seizure activity may accelerate brain aging by sustaining regional NVU dysfunction, and a cerebrovascular pathology may link seizures to comorbidities. Next, we focus on NVU diagnostic approaches that could be tailored to seizure conditions in the elderly. We also examine the impending disease‐modifying strategies based on the restoration of the NVU and, more in general, the homeostatic control of anti‐ and pro‐inflammatory players. We conclude with an outlook on current pre‐clinical knowledge gaps and clinical challenges pertinent to seizure onset and conditions in an aging population.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Amsterdam UMC, University of Amsterdam, dept. of (Neuro)pathology, Amsterdam, the Netherlands.,University of Amsterdam, Swammerdam Institute for Life Sciences, Center for Neuroscience, Amsterdam, the Netherlands
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
14
|
Walter FR, Harazin A, Tóth AE, Veszelka S, Santa-Maria AR, Barna L, Kincses A, Biczó G, Balla Z, Kui B, Maléth J, Cervenak L, Tubak V, Kittel Á, Rakonczay Z, Deli MA. Blood-brain barrier dysfunction in L-ornithine induced acute pancreatitis in rats and the direct effect of L-ornithine on cultured brain endothelial cells. Fluids Barriers CNS 2022; 19:16. [PMID: 35177109 PMCID: PMC8851707 DOI: 10.1186/s12987-022-00308-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND In severe acute pancreatitis (AP) the CNS is affected manifesting in neurological symptoms. Earlier research from our laboratory showed blood-brain barrier (BBB) permeability elevation in a taurocholate-induced AP model. Here we aimed to further explore BBB changes in AP using a different, non-invasive in vivo model induced by L-ornithine. Our goal was also to identify whether L-ornithine, a cationic amino acid, has a direct effect on brain endothelial cells in vitro contributing to the observed BBB changes. METHODS AP was induced in rats by the intraperitoneal administration of L-ornithine-HCl. Vessel permeability and the gene expression of the primary transporter of L-ornithine, cationic amino acid transporter-1 (Cat-1) in the brain cortex, pancreas, liver and lung were determined. Ultrastructural changes were followed by transmission electron microscopy. The direct effect of L-ornithine was tested on primary rat brain endothelial cells and a triple co-culture model of the BBB. Viability and barrier integrity, including permeability and TEER, nitrogen monoxide (NO) and reactive oxygen species (ROS) production and NF-κB translocation were measured. Fluorescent staining for claudin-5, occludin, ZO-1, β-catenin, cell adhesion molecules Icam-1 and Vcam-1 and mitochondria was performed. Cell surface charge was measured by laser Doppler velocimetry. RESULTS In the L-ornithine-induced AP model vessel permeability for fluorescein and Cat-1 expression levels were elevated in the brain cortex and pancreas. On the ultrastructural level surface glycocalyx and mitochondrial damage, tight junction and basal membrane alterations, and glial edema were observed. L-ornithine decreased cell impedance and elevated the BBB model permeability in vitro. Discontinuity in the surface glycocalyx labeling and immunostaining of junctional proteins, cytoplasmic redistribution of ZO-1 and β-catenin, and elevation of Vcam-1 expression were measured. ROS production was increased and mitochondrial network was damaged without NF-κB, NO production or mitochondrial membrane potential alterations. Similar ultrastructural changes were seen in L-ornithine treated brain endothelial cells as in vivo. The basal negative zeta potential of brain endothelial cells became more positive after L-ornithine treatment. CONCLUSION We demonstrated BBB damage in the L-ornithine-induced rat AP model suggesting a general, AP model independent effect. L-ornithine induced oxidative stress, decreased barrier integrity and altered BBB morphology in a culture BBB model. These data suggest a direct effect of the cationic L-ornithine on brain endothelium. Endothelial surface glycocalyx injury was revealed both in vivo and in vitro, as an additional novel component of the BBB-related pathological changes in AP.
Collapse
Affiliation(s)
- Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Andrea E Tóth
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ana R Santa-Maria
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Lilla Barna
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - György Biczó
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
| | - Zsolt Balla
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
- Institute of Applied Sciences, Department of Environmental Biology and Education, Juhász Gyula Faculty of Education, University of Szeged, Boldogasszony sgt. 6, Szeged, 6725, Hungary
| | - Balázs Kui
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
| | - József Maléth
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, University of Szeged, Dóm sqr. 10, Szeged, 6720, Hungary
- HCEMM-SZTE Molecular Gastroenterology Research Group, University of Szeged, Dóm sqr. 10, Szeged, 6720, Hungary
| | - László Cervenak
- Department of Internal Medicine and Hematology, Research Laboratory, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Vilmos Tubak
- Creative Laboratory Ltd, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ágnes Kittel
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Szigony u. 43, Budapest, 1083, Hungary
| | - Zoltán Rakonczay
- Department of Medicine, University of Szeged, Kálvária sgt 57, Szeged, 6725, Hungary
- Department of Pathophysiology, University of Szeged, Semmelweis u. 1, Szeged, 6701, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
15
|
NMDA mediates disruption of blood-brain barrier permeability via Rho/ROCK signaling pathway. Neurochem Int 2022; 154:105278. [PMID: 35017026 DOI: 10.1016/j.neuint.2022.105278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023]
Abstract
Glutamate can activate the N-methyl-D-aspartatic acid (NMDA) receptor (NMDAR), damage brain microvascular endothelial cells, and disturb the intercellular tight junctions (TJs). These result in changes in the permeability of the blood brain barrier (BBB). In neurons, the activation of Rho/ROCK signaling pathway is related to the activation of NMDAR,however, whether human brain vascular endothelial cells NMDAR mediates the Rho/ROCK pathway is not fully understood. The present study evaluates the effects of excessive NMDAR activation induced by NMDA (a glutamate analog) on the Rho/ROCK signaling pathway and the permeability of BBB by using a primary human brain microvascular endothelial cell (HBMEC) model. NMDAR subunit GluN1 was expressed in HBMECs and promoted by NMDA detected by Western blot and qRT-PCR. Furthermore, NMDA exposure decreased HBMEC viability, promoted HBMEC apoptosis, increased intracellular reactive oxygen species (ROS) levels, and destroyed the endothelial cytoskeleton. Additionally, NMDA exposure suppressed transendothelial electrical resistance (TEER) values and the expression of TJ proteins occludin and claudin5; it also promoted ROCK activated substrate myosin phosphatase target subunit-1 (MYPT)-1 phosphorylation and the transmittance of sodium fluorescein. In contrast, these effects were attenuated by ROCK inhibitor hydroxyfasudil (HF) and NMDAR antagonist MK801, respectively. Therefore, these results indicate that excessive endothelial NMDAR activation induced by NMDA may induce TJs and cytoskeleton damage, while HF attenuated NMDA-induced cytotoxicity in HBMECs by inhibiting the Rho/ROCK signaling pathway.
Collapse
|
16
|
Veszelka S, Mészáros M, Porkoláb G, Szecskó A, Kondor N, Ferenc G, Polgár TF, Katona G, Kóta Z, Kelemen L, Páli T, Vigh JP, Walter FR, Bolognin S, Schwamborn JC, Jan JS, Deli MA. A Triple Combination of Targeting Ligands Increases the Penetration of Nanoparticles across a Blood-Brain Barrier Culture Model. Pharmaceutics 2021; 14:pharmaceutics14010086. [PMID: 35056983 PMCID: PMC8778049 DOI: 10.3390/pharmaceutics14010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022] Open
Abstract
Nanosized drug delivery systems targeting transporters of the blood-brain barrier (BBB) are promising carriers to enhance the penetration of therapeutics into the brain. The expression of solute carriers (SLC) is high and shows a specific pattern at the BBB. Here we show that targeting ligands ascorbic acid, leucine and glutathione on nanoparticles elevated the uptake of albumin cargo in cultured primary rat brain endothelial cells. Moreover, we demonstrated the ability of the triple-targeted nanovesicles to deliver their cargo into midbrain organoids after crossing the BBB model. The cellular uptake was temperature- and energy-dependent based on metabolic inhibition. The process was decreased by filipin and cytochalasin D, indicating that the cellular uptake of nanoparticles was partially mediated by endocytosis. The uptake of the cargo encapsulated in triple-targeted nanoparticles increased after modification of the negative zeta potential of endothelial cells by treatment with a cationic lipid or after cleaving the glycocalyx with an enzyme. We revealed that targeted nanoparticles elevated plasma membrane fluidity, indicating the fusion of nanovesicles with endothelial cell membranes. Our data indicate that labeling nanoparticles with three different ligands of multiple transporters of brain endothelial cells can promote the transfer and delivery of molecules across the BBB.
Collapse
Affiliation(s)
- Szilvia Veszelka
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
- Correspondence: (S.V.); (M.A.D.)
| | - Mária Mészáros
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Gergő Porkoláb
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
- Doctoral School of Biology, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
| | - Anikó Szecskó
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Nóra Kondor
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Györgyi Ferenc
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Tamás F. Polgár
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Gábor Katona
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Zoltán Kóta
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Lóránd Kelemen
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Tibor Páli
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Judit P. Vigh
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
- Doctoral School of Biology, University of Szeged, Dugonics tér 13, H-6720 Szeged, Hungary
| | - Fruzsina R. Walter
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 4365 Belvaux, Luxembourg; (S.B.); (J.C.S.)
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, 4365 Belvaux, Luxembourg; (S.B.); (J.C.S.)
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Mária A. Deli
- Biological Research Centre, Institute of Biophysics, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary; (M.M.); (G.P.); (A.S.); (N.K.); (T.F.P.); (Z.K.); (L.K.); (T.P.); (J.P.V.); (F.R.W.)
- Correspondence: (S.V.); (M.A.D.)
| |
Collapse
|
17
|
Fekete T, Mészáros M, Szegletes Z, Vizsnyiczai G, Zimányi L, Deli MA, Veszelka S, Kelemen L. Optically Manipulated Microtools to Measure Adhesion of the Nanoparticle-Targeting Ligand Glutathione to Brain Endothelial Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39018-39029. [PMID: 34397215 DOI: 10.1021/acsami.1c08454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Targeting nanoparticles as drug delivery platforms is crucial to facilitate their cellular entry. Docking of nanoparticles by targeting ligands on cell membranes is the first step for the initiation of cellular uptake. As a model system, we studied brain microvascular endothelial cells, which form the anatomical basis of the blood-brain barrier, and the tripeptide glutathione, one of the most effective targeting ligands of nanoparticles to cross the blood-brain barrier. To investigate this initial docking step between glutathione and the membrane of living brain endothelial cells, we applied our recently developed innovative optical method. We present a microtool, with a task-specific geometry used as a probe, actuated by multifocus optical tweezers to characterize the adhesion probability and strength of glutathione-coated surfaces to the cell membrane of endothelial cells. The binding probability of the glutathione-coated surface and the adhesion force between the microtool and cell membrane was measured in a novel arrangement: cells were cultured on a vertical polymer wall and the mechanical forces were generated laterally and at the same time, perpendicularly to the plasma membrane. The adhesion force values were also determined with more conventional atomic force microscopy (AFM) measurements using functionalized colloidal probes. The optical trapping-based method was found to be suitable to measure very low adhesion forces (≤ 20 pN) without a high level of noise, which is characteristic for AFM measurements in this range. The holographic optical tweezers-directed functionalized microtools may help characterize the adhesion step of nanoparticles initiating transcytosis and select ligands to target nanoparticles.
Collapse
Affiliation(s)
- Tamás Fekete
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
- Doctoral School in Multidisciplinary Medicine, University of Szeged, Szeged 6720, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Zsolt Szegletes
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Gaszton Vizsnyiczai
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - László Zimányi
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| | - Lóránd Kelemen
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged 6726, Hungary
| |
Collapse
|
18
|
Matsunaga Y, Nakagawa S, Morofuji Y, Dohgu S, Watanabe D, Horie N, Izumo T, Niwa M, Walter FR, Santa-Maria AR, Deli MA, Matsuo T. MAP Kinase Pathways in Brain Endothelial Cells and Crosstalk with Pericytes and Astrocytes Mediate Contrast-Induced Blood-Brain Barrier Disruption. Pharmaceutics 2021; 13:1272. [PMID: 34452232 PMCID: PMC8400240 DOI: 10.3390/pharmaceutics13081272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Neurointervention with contrast media (CM) has rapidly increased, but the impact of CM extravasation and the related side effects remain controversial. This study investigated the effect of CM on blood-brain barrier (BBB) integrity. We established in vitro BBB models using primary cultures of rat BBB-related cells. To assess the effects of CM on BBB functions, we evaluated transendothelial electrical resistance, permeability, and tight junction (TJ) protein expression using immunohistochemistry (IHC) and Western blotting. To investigate the mechanism of iopamidol-induced barrier dysfunction, the role of mitogen-activated protein (MAP) kinases in brain endothelial cells was examined. We assessed the effect of conditioned medium derived from astrocytes and pericytes under iopamidol treatment. Short-term iopamidol exposure on the luminal side induced transient, while on the abluminal side caused persistent BBB dysfunction. IHC and immunoblotting revealed CM decreased the expression of TJ proteins. Iopamidol-induced barrier dysfunction was improved via the regulation of MAP kinase pathways. Conditioned medium from CM-exposed pericytes or astrocytes lacks the ability to enhance barrier function. CM may cause BBB dysfunction. MAP kinase pathways in brain endothelial cells and the interactions of astrocytes and pericytes mediate iopamidol-induced barrier dysfunction. CM extravasation may have negative effects on clinical outcomes in patients.
Collapse
Affiliation(s)
- Yuki Matsunaga
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (Y.M.); (N.H.); (T.I.); (T.M.)
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (S.N.); (S.D.)
| | - Yoichi Morofuji
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (Y.M.); (N.H.); (T.I.); (T.M.)
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (S.N.); (S.D.)
| | - Daisuke Watanabe
- BBB Laboratory, PharmaCo-Cell Company Ltd., Dai-ichi-senshu bldg. 2nd Floor, 6-19 Chitose-machi, Nagasaki 852-8135, Japan; (D.W.); (M.N.)
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (Y.M.); (N.H.); (T.I.); (T.M.)
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (Y.M.); (N.H.); (T.I.); (T.M.)
| | - Masami Niwa
- BBB Laboratory, PharmaCo-Cell Company Ltd., Dai-ichi-senshu bldg. 2nd Floor, 6-19 Chitose-machi, Nagasaki 852-8135, Japan; (D.W.); (M.N.)
| | - Fruzsina R. Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (F.R.W.); (A.R.S.-M.); (M.A.D.)
| | - Ana Raquel Santa-Maria
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (F.R.W.); (A.R.S.-M.); (M.A.D.)
| | - Maria A. Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (F.R.W.); (A.R.S.-M.); (M.A.D.)
| | - Takayuki Matsuo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (Y.M.); (N.H.); (T.I.); (T.M.)
| |
Collapse
|
19
|
Walter FR, Gilpin TE, Herbath M, Deli MA, Sandor M, Fabry Z. A Novel In Vitro Mouse Model to Study Mycobacterium tuberculosis Dissemination Across Brain Vessels: A Combination Granuloma and Blood-Brain Barrier Mouse Model. ACTA ACUST UNITED AC 2021; 130:e101. [PMID: 32716613 DOI: 10.1002/cpim.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vitro culture models of the blood-brain barrier (BBB) provide a useful platform to test the mechanisms of cellular infiltration and pathogen dissemination into the central nervous system (CNS). We present an in vitro mouse model of the BBB to test Mycobacterium tuberculosis (Mtb) dissemination across brain endothelial cells. One-third of the global population is infected with Mtb, and in 1%-2% of cases bacteria invade the CNS through a largely unknown process. The "Trojan horse" theory supports the role of a cellular carrier that engulfs bacteria and carries them to the brain without being recognized. We present for the first time a protocol for an in vitro BBB-granuloma model that supports the Trojan horse mechanism of Mtb dissemination into the CNS. Handling of bacterial cultures, in vivo and in vitro infections, isolation of primary astroglial and endothelial cells, and assembly of the in vitro BBB model is presented. These techniques can be used to analyze the interaction of adaptive and innate immune system cells with brain endothelial cells, cellular transmigration, BBB morphological and functional changes, and methods of bacterial dissemination. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Isolation of primary mouse brain astrocytes and endothelial cells Basic Protocol 2: Isolation of primary mouse bone marrow-derived dendritic cells Support Protocol 1: Validation of dendritic cell purity by flow cytometry Basic Protocol 3: Isolation of primary mouse peripheral blood mononuclear cells Support Protocol 2: Isolation of primary mouse spleen cells Support Protocol 3: Purification and validation of CD4+ T cells from PBMCs and spleen cells Basic Protocol 4: Isolation of liver granuloma supernatant and determination of organ load Support Protocol 4: In vivo and in vitro infection with mycobacteria Basic Protocol 5: Assembly of the BBB co-culture model Basic Protocol 6: Assembly of the combined in vitro granuloma and BBB model.
Collapse
Affiliation(s)
- Fruzsina R Walter
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Department of Cell Biology and Molecular Medicine, University of Szeged, Hungary
| | - Trey E Gilpin
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Graduate Training Program of Cellular and Molecular Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Melinda Herbath
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maria A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Graduate Training Program of Cellular and Molecular Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Graduate Training Program of Cellular and Molecular Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Kurt S, Aygun H. Anticonvulsive effects of edaravone on penicillin-induced focal onset seizure model in the conscious rats. Fundam Clin Pharmacol 2021; 35:861-869. [PMID: 33484001 DOI: 10.1111/fcp.12651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 01/15/2023]
Abstract
Edaravone is a potent antioxidant and anti-inflammatory agent that is used in the clinic. The aim of the present study was to evaluate the chronic treatment effect of edaravone on penicillin-induced epileptiform activity. Twenty-eight Wistar rats were randomly divided into a total of four groups as penicillin control and edaravone pretreatment groups (1, 10, and 30mg/kg). Firstly, permanent electrodes for electrocorticography (ECoG) recording and canula for penicillin injection were placed as stereotactic under anesthesia. At the end of the recovery period, edaravone pretreatment groups received different doses of edaravone by intraperitoneal injection for 14 days and before 30-min penicillin microinjection. Epileptiform activity was induced by injecting 500 IU penicillin through the intracortical cannula. The effects of edaravone pretreatment on epileptiform activity were evaluated by using both electrophysiological and behavioral parameters. Edaravone pretreatment suppressed epileptiform activity by reducing the mean spike frequency and the behavior scores in ECoG recording. The results of the present study indicated that the use of chronic edaravone had an anticonvulsant effect on penicillin-induced focal onset epileptic activity. Edaravone had an anticonvulsant effect even at low doses.
Collapse
Affiliation(s)
- Semiha Kurt
- Department of Neurology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
21
|
Bicker J, Alves G, Fonseca C, Falcão A, Fortuna A. Repairing blood-CNS barriers: Future therapeutic approaches for neuropsychiatric disorders. Pharmacol Res 2020; 162:105226. [PMID: 33007420 DOI: 10.1016/j.phrs.2020.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Central nervous system (CNS) drug development faces significant difficulties that translate into high rates of failure and lack of innovation. The pathophysiology of neurological and psychiatric disorders often results in the breakdown of blood-CNS barriers, disturbing the CNS microenvironment and worsening disease progression. Therefore, restoring the integrity of blood-CNS barriers may have a beneficial influence in several CNS disorders and improve treatment outcomes. In this review, pathways that may be modulated to protect blood-CNS barriers from neuroinflammatory and oxidative insults are featured. First, the participation of the brain endothelium and glial cells in disruption processes is discussed. Then, the relevance of regulatory systems is analysed, specifically the hypothalamic-pituitary axis, the renin-angiotensin system, sleep and circadian rhythms, and glutamate neurotransmission. Lastly, compounds of endogenous and exogenous origin that are known to mediate the repair of blood-CNS barriers are presented. We believe that enhancing the protection of blood-CNS barriers is a promising therapeutic strategy to pursue in the future.
Collapse
Affiliation(s)
- Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| |
Collapse
|
22
|
Zeng Y, Zhang W. Ameliorative effects of ceftriaxone sodium combined with dexamethasone on infantile purulent meningitis and associated effects on brain-derived neurotrophic factor levels. Exp Ther Med 2020; 20:945-951. [PMID: 32742338 PMCID: PMC7388254 DOI: 10.3892/etm.2020.8769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/09/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to evaluate the role of ceftriaxone sodium combined with dexamethasone on the treatment of infant purulent meningitis (PM) and to measure brain-derived neurotrophic factor (BDNF) levels in children with PM. Of the 177 patients enrolled into the present study, 92 patients received ceftriaxone sodium+dexamethasone (combination group) and 85 patients received ceftriaxone sodium alone (monotherapy group). The time taken for the body temperature, peripheral blood (PB) and cerebrospinal fluid (CSF) white blood cell (WBC) counts to recover back to normal levels were compared between the two groups. In addition, changes in the CSF WBC counts, CSF protein and sugar concentrations, BDNF levels, effective treatment rates and incidence of adverse reactions three days before treatment (T1), after one week of treatment (T2) and after two weeks of treatment (T3) were compared between the two groups. In the combination group, the recovery time of body temperature, WBC counts in both PB and CSF were significantly lower compared with those in the monotherapy group. The combination group also exhibited lower CSF protein concentrations and higher CSF sugar concentrations at T2 and T3 compared with those in the monotherapy group (P<0.05). The effective treatment rate of the combination group was significantly higher compared with that of the monotherapy group (P=0.006). CSF protein at T1, T2 T3, and CSF sugar concentrations and BDNF levels at T1 were significantly lower in the combination group than in the monotherapy group (P<0.05) while the CSF sugar concentrations at T2, T3 were higher in the combination group than in the monotherapy group (P<0.05). Taken together, these observations suggest that ceftriaxone combined with dexamethasone was superior compared with that of ceftriaxone alone for the treatment of infantile PM, and that this combination therapy may improve the effective treatment rate and accelerate patient rehabilitation.
Collapse
Affiliation(s)
- Yiwen Zeng
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing 402160, P.R. China
| | - Wei Zhang
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing 402160, P.R. China
| |
Collapse
|
23
|
Combination of Alanine and Glutathione as Targeting Ligands of Nanoparticles Enhances Cargo Delivery into the Cells of the Neurovascular Unit. Pharmaceutics 2020; 12:pharmaceutics12070635. [PMID: 32645904 PMCID: PMC7407318 DOI: 10.3390/pharmaceutics12070635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/27/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022] Open
Abstract
Inefficient drug delivery across the blood–brain barrier (BBB) and into target cells in the brain hinders the treatment of neurological diseases. One strategy to increase the brain penetration of drugs is to use vesicular nanoparticles functionalized with multiple ligands of BBB transporters as vehicles. Once within the brain, however, drugs must also be able to reach their therapeutic targets in the different cell types. It is, therefore, favorable if such nanocarriers are designed that can deliver their cargo not only to brain endothelial cells, but to other cell types as well. Here, we show that alanine-glutathione dual-targeting of niosomes enhances the delivery of a large protein cargo into cultured cells of the neurovascular unit, namely brain endothelial cells, pericytes, astrocytes and neurons. Furthermore, using metabolic and endocytic inhibitors, we show that the cellular uptake of niosomes is energy-dependent and is partially mediated by endocytosis. Finally, we demonstate the ability of our targeted nanovesicles to deliver their cargo into astroglial cells after crossing the BBB in vitro. These data indicate that dual-labeling of nanoparticles with alanine and glutathione can potentially be exploited to deliver drugs, even biopharmacons, across the BBB and into multiple cell types in the brain.
Collapse
|