1
|
Ma Y, Dong T, Luan F, Yang J, Miao F, Wei P. Interaction of major facilitator superfamily domain containing 2A with the blood-brain barrier. Neural Regen Res 2025; 20:2133-2152. [PMID: 39248155 PMCID: PMC11759009 DOI: 10.4103/nrr.nrr-d-24-00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/02/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment; however, the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood. The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function. It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier, in addition to the transport of lipids, such as docosahexaenoic acid, across the blood-brain barrier. Furthermore, an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases; however, little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier. This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier, including their basic structures and functions, cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier, and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability. This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date. This will not only help to elucidate the pathogenesis of neurological diseases, improve the accuracy of laboratory diagnosis, and optimize clinical treatment strategies, but it may also play an important role in prognostic monitoring. In addition, the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized. This review may contribute to the development of new approaches for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yilun Ma
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Taiwei Dong
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Fei Luan
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Juanjuan Yang
- National Drug Clinical Trial Agency, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine/Xixian New District Central Hospital, Xi′an, Shaanxi Province, China
| | - Feng Miao
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Peifeng Wei
- National Drug Clinical Trial Agency, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine/Xixian New District Central Hospital, Xi′an, Shaanxi Province, China
| |
Collapse
|
2
|
Bolanle IO, de Liedekerke Beaufort GC, Weinberg PD. Transcytosis of LDL Across Arterial Endothelium: Mechanisms and Therapeutic Targets. Arterioscler Thromb Vasc Biol 2025; 45:468-480. [PMID: 40013359 PMCID: PMC11936472 DOI: 10.1161/atvbaha.124.321549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Transport of LDL (low-density lipoprotein) from plasma to arterial intima is thought to be rate limiting in the development of atherosclerosis. Its variation likely determines where lesions develop within arteries and might account for some of the currently unexplained difference in disease susceptibility between individuals. It may also be critical in the development of lipid-rich, unstable plaques. Mechanisms have been controversial but recent evidence suggests that caveolar transcytosis across endothelial cells is the dominant pathway. Receptors involved are LDLR (LDL receptor), SR-B1 (scavenger receptor class B type 1), and ALK1 (activin receptor-like kinase 1). The role of LDLR is influenced by IL-1β (interleukin-1β); the role of SR-B1 by HDL (high-density lipoprotein), DOCK4 (dedicator of cytokinesis 4), GPER (G-protein-coupled estrogen receptor), and HMGB1 (high mobility group box 1); and the role of ALK1 by BMP (bone morphogenetic protein) 9. Additionally, BMP4 stimulates transcytosis and FSTL1 (follistatin-like 1 protein) inhibits it. Fundamental transcytotic mechanisms include caveola formation, undocking, trafficking, and docking; they are influenced by cholesterol-lowering agents, MYDGF (myeloid-derived growth factor), MFSD2a (major facilitator superfamily domain containing 2a) in the blood-brain barrier, and inhibitors of dynamin-2 and tubulin polymerization. The relative merits of different therapeutic approaches are discussed, with statins, colchicine, benzimidazoles, and metformin being existing drugs that might be repurposed and salidroside and glycyrrhizic acid being nutraceuticals worth investigating. Finally, we discuss evidence against the ferry-boat model of transcytosis, the contributions of receptor-mediated, fluid-phase, and active transcytosis, and where inhibition of transcytosis might be most beneficial.
Collapse
Affiliation(s)
- Israel O. Bolanle
- Department of Bioengineering, Imperial College London, United Kingdom
| | | | - Peter D. Weinberg
- Department of Bioengineering, Imperial College London, United Kingdom
| |
Collapse
|
3
|
Sun B, Li L, Harris OA, Luo J. Blood-brain barrier disruption: a pervasive driver and mechanistic link between traumatic brain injury and Alzheimer's disease. Transl Neurodegener 2025; 14:16. [PMID: 40140960 PMCID: PMC11938631 DOI: 10.1186/s40035-025-00478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Traumatic brain injury (TBI) has emerged as a significant risk factor for Alzheimer's disease (AD), a complex and devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. Both conditions share a common feature: blood‒brain barrier (BBB) dysfunction, which is believed to play a pivotal role in linking TBI to the development of AD. This review delves into the intricate relationship between TBI and AD, with a focus on BBB dysfunction and its critical role in disease mechanisms and therapeutic development. We first present recent evidence from epidemiological studies highlighting the increased incidence of AD among individuals with a history of TBI, as well as pathological and animal model studies that demonstrate how TBI can accelerate AD-like pathology. Next, we explore the mechanisms by which BBB dysfunction may mediate TBI-induced AD pathology. Finally, we investigate the shared molecular pathways associated with BBB dysfunction in both TBI and AD conditions and discuss the latest findings on how targeting these pathways and employing regenerative approaches, such as stem cell therapy and pharmacological interventions, can enhance BBB function and mitigate neurodegeneration.
Collapse
Affiliation(s)
- Bryan Sun
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Lulin Li
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Odette A Harris
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Polytrauma System of Care, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
- Polytrauma System of Care, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
4
|
Trevino TN, Almousawi AA, Martins-Goncalves R, Ochoa-Raya A, Robinson KF, Abad GL, Tai LM, Oliveira SD, Minshall RD, Lutz SE. A Brain Endothelial Cell Caveolin-1/CXCL10 Axis Promotes T Cell Transcellular Migration Across the Blood-Brain Barrier. ASN Neuro 2025; 17:2472070. [PMID: 40063988 PMCID: PMC12047051 DOI: 10.1080/17590914.2025.2472070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 05/04/2025] Open
Abstract
The mechanisms that govern whether T cells cross blood-brain barrier (BBB) endothelium by transcellular versus paracellular routes are unclear. Caveolin-1 is a membrane scaffolding and signaling protein associated with transcellular transmigration through the endothelial cytoplasm. Here, we report that the neuroinflammatory chemokine CXCL10 induced transcellular, caveolar transmigration of CXCR3+ CD4+ T cells. Specifically, data revealed that CXCL10-induced transcellular transmigration requires expression of Caveolin-1 and ICAM-1 in brain endothelial cells and of the CXCL10 receptor, CXCR3, and LFA-1 in T cells. Moreover, Caveolin-1 promoted CXCL10 aggregation into brain endothelial cytoplasmic stores, providing a mechanism for activation and recruitment of CXCR3+ T cells to migrate at cytoplasmic locations, distal to cell-cell junctions. Consistent with our in vitro data, genetic ablation of Caveolin-1 reduces infiltration of CXCR3+ CD4+ T cells into the CNS in experimental autoimmune encephalomyelitis. Our findings establish a novel mechanism by which brain endothelial cells utilize Caveolin-1 dependent CXCL10 intracellular stores to license T cells for transcellular migration across the blood-brain barrier.
Collapse
Affiliation(s)
- Troy N. Trevino
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Ali A. Almousawi
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Remy Martins-Goncalves
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Andrea Ochoa-Raya
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - KaReisha F. Robinson
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Genesis L. Abad
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Leon M. Tai
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Suellen D. Oliveira
- Anesthesiology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
- Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Richard D. Minshall
- Anesthesiology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
- Pharmacology and Regenerative Medicine, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Sarah E. Lutz
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Benarroch E. What Are the Functions of Caveolins and Their Role in Neurologic Disorders? Neurology 2025; 104:e213341. [PMID: 39805058 DOI: 10.1212/wnl.0000000000213341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
|
6
|
Wang L, Kong Q, Leng X, Leung H, Li Y. The sphingosine-1-phosphate signaling pathway (sphingosine-1-phosphate and its receptor, sphingosine kinase) and epilepsy. Epilepsia Open 2025; 10:55-73. [PMID: 39727628 PMCID: PMC11803289 DOI: 10.1002/epi4.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Epilepsy is one of the common chronic neurological diseases, affecting more than 70 million people worldwide. The brains of people with epilepsy exhibit a pathological and persistent propensity for recurrent seizures. Epilepsy often coexists with cardiovascular disease, cognitive dysfunction, depression, etc., which seriously affects the patient's quality of life. Although our understanding of epilepsy has advanced, the pathophysiological mechanisms leading to epileptogenesis, drug resistance, and associated comorbidities remain largely unknown. The use of newer antiepileptic drugs has increased, but this has not improved overall outcomes. We need to deeply study the pathogenesis of epilepsy and find drugs that can not only prevent the epileptogenesis and interfere with the process of epileptogenesis but also treat epilepsy comorbidities. Sphingosine-1-phosphate (S1P) is an important lipid molecule. It not only forms the basis of cell membranes but is also an important bioactive mediator. It can not only act as a second messenger in cells to activate downstream signaling pathways but can also exert biological effects by being secreted outside cells and binding to S1P receptors on the cell membrane. Fingolimod (FTY720) is the first S1P receptor modulator developed and approved for the treatment of multiple sclerosis. More and more studies have proven that the S1P signaling pathway is closely related to epilepsy, drug-resistant epilepsy, epilepsy comorbidities, or other epilepsy-causing diseases. However, there is much controversy over the role of certain natural molecules in the pathway and receptor modulators (such as FTY720) in epilepsy. Here, we summarize and analyze the role of the S1P signaling pathway in epilepsy, provide a basis for finding potential therapeutic targets and/or epileptogenic biomarkers, analyze the reasons for these controversies, and put forward our opinions. PLAIN LANGUAGE SUMMARY: This article combines the latest research literature at home and abroad to review the sphingosine 1-phosphate signaling pathway and epileptogenesis, drug-resistant epilepsy, epilepsy comorbidities, other diseases that can cause epilepsy, as well as the sphingosine-1-phosphate signaling pathway regulators and epilepsy, with the expectation of providing a certain theoretical basis for finding potential epilepsy treatment targets and/or epileptogenic biomarkers in the sphingosine-1-phosphate signaling pathway.
Collapse
Affiliation(s)
- Lin Wang
- Department of NeurologyAffiliated Hospital of Jining Medical UniversityJining CityChina
- Epilepsy CenterAffiliated Hospital of Jining Medical UniversityJining CityChina
- The Chinese University of Hong Kong, Department of Medicine and TherapeuticsThe Chinese University of Hong Kong, Central AveHong KongHong Kong
| | - Qingxia Kong
- Department of NeurologyAffiliated Hospital of Jining Medical UniversityJining CityChina
- Epilepsy CenterAffiliated Hospital of Jining Medical UniversityJining CityChina
| | - Xinyi Leng
- The Chinese University of Hong Kong, Department of Medicine and TherapeuticsThe Chinese University of Hong Kong, Central AveHong KongHong Kong
| | - Howan Leung
- Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital7/F Clinical Science Building, Prince of Wales HospitalHong KongHong Kong
| | - Yang Li
- Department of OncologyAffiliated Hospital of Jining Medical UniversityJining CityChina
| |
Collapse
|
7
|
Wang L, Ouyang D, Li L, Cao Y, Wang Y, Gu N, Zhang Z, Li Z, Tang S, Tang H, Zhang Y, Sun X, Yan J. TREM2 affects DAM-like cell transformation in the acute phase of TBI in mice by regulating microglial glycolysis. J Neuroinflammation 2025; 22:6. [PMID: 39800730 PMCID: PMC11727224 DOI: 10.1186/s12974-025-03337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is characterized by high mortality and disability rates. Disease-associated microglia (DAM) are a newly discovered subtype of microglia. However, their presence and function in the acute phase of TBI remain unclear. Although glycolysis is important for microglial differentiation, its regulatory role in DAM transformation during the acute phase of TBI is still unclear. In this study, we investigated the functions of DAM-like cells in the acute phase of TBI in mice, as well as the relationship between their transformation and glycolysis. METHODS In this study, a controlled cortical impact model was used to induce TBI in adult male wild-type (WT) C57BL/6 mice and adult male TREM2 knockout mice. Various techniques were used to assess the role of DAM-like cells in TBI and the effects of glycolysis on DAM-like cells, including RT‒qPCR, immunofluorescence assays, behavioural tests, extracellular acidification rate (ECAR) tests, Western blot analysis, cell magnetic sorting and culture, glucose and lactate assays, and flow cytometry. RESULTS DAM-like cells were observed in the acute phase of TBI in mice, and their transformation depended on TREM2 expression. TREM2 knockout impaired neurological recovery in TBI mice, possibly due in part to their role in clearing debris and secreting VEGFa and BDNF. Moreover, DAM-like cells exhibited significantly increased glycolytic activity. TREM2 regulated the AKT‒mTOR‒HIF-1α pathway and glycolysis in microglia in the acute phase of TBI. The increase in glycolysis in microglia partially contributed to the transformation of DAM-like cells in the acute phase of TBI in mice. CONCLUSIONS Taken together, the results of our study demonstrated that DAM-like cells were present in the acute phase of TBI in mice. TREM2 might influence DAM-like cell transformation by modulating the glycolysis of microglia. Our results provide a new possible pathway for intervening TBI.
Collapse
Affiliation(s)
- Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurosurgery, The Second Clinical Medical College of North Sichuan Medical College, Beijing Anzhen Nanchong Hospital of Capital Medical University & Nanchong Central Hospital, Nanchong, 637000, China
| | - Diqing Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yunchuan Cao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Nina Gu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhaosi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhao Li
- Emergency Department, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Shuang Tang
- Department of Neurosurgery, Suining Central Hospital, Suining, 629000, China
| | - Hui Tang
- Department of Neurosurgery, The Second Clinical Medical College of North Sichuan Medical College, Beijing Anzhen Nanchong Hospital of Capital Medical University & Nanchong Central Hospital, Nanchong, 637000, China
| | - Yuan Zhang
- Department of Neurosurgery, The Second Clinical Medical College of North Sichuan Medical College, Beijing Anzhen Nanchong Hospital of Capital Medical University & Nanchong Central Hospital, Nanchong, 637000, China.
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Jin Yan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Luo Y, Meng D, Tang H, Wu P, Zhang Y. Exercise alleviates CUS-induced depressive-like behaviors by modulating paracellular and transcellular permeability of the blood-brain barrier in the prefrontal cortex. Behav Brain Res 2025; 476:115286. [PMID: 39389268 DOI: 10.1016/j.bbr.2024.115286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Increased blood-brain barrier (BBB) permeability is implicated in the pathophysiology of major depressive disorder (MDD). While aerobic exercise has shown promise in mitigating MDD symptoms by potentially preserving BBB integrity, the detailed mechanisms remain unclear. This study explores these mechanisms to assess aerobic exercise's therapeutic potential for MDD. METHODS Male C57BL/6 J mice were used in this study to investigate the effects of aerobic exercise on CUS-induced BBB permeability and depressive-like behaviors. Chronic unpredictable stress (CUS)-induced MDD mouse models were divided into three groups: Control, CUS, and CUS+Exercise. We monitored body weight, blood S100β levels, and cytokines via ELISA. Claudin-5 and Caveolin-1 (CAV-1) expressions in the medial prefrontal cortex were evaluated using Western blotting and immunofluorescence. BBB permeability was assessed using biocytin-TMR and Alb-Alexa 594 tracers. Transmission electron microscopy was used to observe ultrastructural changes in the BBB directly. Depression-related behaviors were tested through several behavioral assays. RESULTS CUS significantly increased CAV-1 expression and Alb-Alexa 594 leakage, suggesting enhanced transcellular BBB permeability. Despite unchanged Claudin-5 levels, its tight junction ultrastructure was altered, leading to increased biocytin-TMR leakage. Aerobic exercise ameliorated these disruptions, reduced inflammatory cytokines, and improved behavioral outcomes in CUS mice. CONCLUSION Disruptions in both paracellular and transcellular BBB pathways are pivotal in depression development. Aerobic exercise offers potential therapeutic benefits for MDD linked with BBB dysfunction by mitigating stress-induced structural and functional changes.
Collapse
MESH Headings
- Animals
- Blood-Brain Barrier/metabolism
- Male
- Mice, Inbred C57BL
- Prefrontal Cortex/metabolism
- Mice
- Physical Conditioning, Animal/physiology
- Stress, Psychological/metabolism
- Stress, Psychological/therapy
- Stress, Psychological/physiopathology
- Caveolin 1/metabolism
- Disease Models, Animal
- Claudin-5/metabolism
- Depressive Disorder, Major/therapy
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/physiopathology
- Depression/therapy
- Depression/metabolism
- Behavior, Animal/physiology
- Permeability
- Exercise Therapy/methods
Collapse
Affiliation(s)
- Ye Luo
- College of fine arts, China West Normal University, Nanchong, China
| | - Dewang Meng
- College of Physical Education, China West Normal University, Nanchong, China
| | - Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Panwen Wu
- College of Physical Education, China West Normal University, Nanchong, China
| | - Yuan Zhang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
9
|
Badaut J, Blochet C, Obenaus A, Hirt L. Physiological and pathological roles of caveolins in the central nervous system. Trends Neurosci 2024; 47:651-664. [PMID: 38972795 PMCID: PMC11324375 DOI: 10.1016/j.tins.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Caveolins are a family of transmembrane proteins located in caveolae, small lipid raft invaginations of the plasma membrane. The roles of caveolin-enriched lipid rafts are diverse, and include mechano-protection, lipid homeostasis, metabolism, transport, and cell signaling. Caveolin-1 (Cav-1) and other caveolins were described in endothelial cells and later in other cell types of the central nervous system (CNS), including neurons, astrocytes, oligodendrocytes, microglia, and pericytes. This pancellular presence of caveolins demands a better understanding of their functional roles in each cell type. In this review we describe the various functions of Cav-1 in the cells of normal and pathological brains. Several emerging preclinical findings suggest that Cav-1 could represent a potential therapeutic target in brain disorders.
Collapse
Affiliation(s)
- Jérôme Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Camille Blochet
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - André Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Lorenz Hirt
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Zhang Y, Xu J, Li P, Luo B, Tang H. Activation of Wnt signaling mitigates blood-brain barrier disruption by inhibiting vesicular transcytosis after traumatic brain injury in mice. Exp Neurol 2024; 377:114782. [PMID: 38641126 DOI: 10.1016/j.expneurol.2024.114782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Elevated transport of Caveolin-1 (CAV-1) vesicles within vascular endothelial cells constitutes a significant secondary pathogenic event contributing to the compromise of the blood-brain barrier (BBB) post-traumatic brain injury (TBI). While Wnt/β-catenin signaling is recognized for its critical involvement in angiogenesis and the maintenance of BBB integrity, its influence on vascular endothelial transcytosis in the aftermath of TBI is not well-defined. This study aims to elucidate the impact of Wnt/β-catenin signaling on cerebrovascular vesicular transcytosis following TBI. In this experiment, adult male wild-type (WT) C57BL/6 mice underwent various interventions. TBI was induced utilizing the controlled cortical impact technique. Post-TBI, mice were administered either an inhibitor or an agonist of Wnt signaling via intraperitoneal injection. Recombinant adeno-associated virus (rAAV) was administered intracerebroventricularly to modulate the expression of the CAV-1 inhibitory protein, Major facilitator superfamily domain-containing 2a (Mfsd2a). This research utilized Evans blue assay, Western blot analysis, immunofluorescence, transmission electron microscopy, and neurobehavioral assessments. Post-TBI observations revealed substantial increases in macromolecule (Evans blue and albumin) leakage, CAV-1 transport vesicle count, astrocyte end-feet edema, and augmented aquaporin-4 (AQP4) expression, culminating in BBB disruption. The findings indicate that Wnt signaling pathway inhibition escalates CAV-1 transport vesicle activity and aggravates BBB compromise. Conversely, activating this pathway could alleviate BBB damage by curtailing CAV-1 vesicle presence. Post-TBI, there is a diminution in Mfsd2a expression, which is directly influenced by the modulation of WNT signals. Employing a viral approach to regulate Mfsd2a, we established that its down-regulation undermines the protective benefits derived from reducing CAV-1 transport vesicles through WNT signal enhancement. Moreover, we verified that the WNT signaling agonist LiCl notably ameliorates neurological deficits following TBI in mice. Collectively, our data imply that Wnt/β-catenin signaling presents a potential therapeutic target for safeguarding against BBB damage and enhancing neurological function after TBI.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Jianfeng Xu
- Neurosurgery of the Third People's Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, China
| | - Pengcheng Li
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Bo Luo
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
11
|
Trevino TN, Almousawi AA, Robinson KF, Fogel AB, Class J, Minshall RD, Tai LM, Richner JM, Lutz SE. Caveolin-1 mediates blood-brain barrier permeability, neuroinflammation, and cognitive impairment in SARS-CoV-2 infection. J Neuroimmunol 2024; 388:578309. [PMID: 38335781 PMCID: PMC11212674 DOI: 10.1016/j.jneuroim.2024.578309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Blood-brain barrier (BBB) permeability can cause neuroinflammation and cognitive impairment. Caveolin-1 (Cav-1) critically regulates BBB permeability, but its influence on the BBB and consequent neurological outcomes in respiratory viral infections is unknown. We used Cav-1-deficient mice with genetically encoded fluorescent endothelial tight junctions to determine how Cav-1 influences BBB permeability, neuroinflammation, and cognitive impairment following respiratory infection with mouse adapted (MA10) SARS-CoV-2 as a model for COVID-19. We found that SARS-CoV-2 infection increased brain endothelial Cav-1 and increased transcellular BBB permeability to albumin, decreased paracellular BBB Claudin-5 tight junctions, and caused T lymphocyte infiltration in the hippocampus, a region important for learning and memory. Concordantly, we observed learning and memory deficits in SARS-CoV-2 infected mice. Importantly, genetic deficiency in Cav-1 attenuated transcellular BBB permeability and paracellular BBB tight junction losses, T lymphocyte infiltration, and gliosis induced by SARS-CoV-2 infection. Moreover, Cav-1 KO mice were protected from the learning and memory deficits caused by SARS-CoV-2 infection. These results establish the contribution of Cav-1 to BBB permeability and behavioral dysfunction induced by SARS-CoV-2 neuroinflammation.
Collapse
Affiliation(s)
- Troy N Trevino
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, USA
| | - Ali A Almousawi
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, USA
| | - KaReisha F Robinson
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, USA
| | - Avital B Fogel
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, USA
| | - Jake Class
- Departments of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, USA
| | - Richard D Minshall
- Departments of Anesthesiology, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, USA
| | - Leon M Tai
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, USA
| | - Justin M Richner
- Departments of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, USA
| | - Sarah E Lutz
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, USA.
| |
Collapse
|
12
|
Wang Z, Xu J, Zou S, Chen Z, Dong S, Wang K. Prognostic significance of plasma S1P in acute intracerebral hemorrhage: A prospective cohort study. Clin Chim Acta 2023; 551:117585. [PMID: 37813327 DOI: 10.1016/j.cca.2023.117585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Sphingosine-1-phosphate (S1P) may regulate neuroinflammatory immunity and blood-brain barrier integrity. This study was designed to assess the prognostic role of plasma S1P in intracerebral hemorrhage (ICH). METHODS In this prospective cohort study, plasma S1P levels were measured in 51 controls, at admission in 114 ICH patients and at days 1, 3, 5 and 7 in 51 of all patients. Univariate analysis and multivariate analysis were sequentially used to investigate severity correlation and prognosis association. RESULTS Plasma S1P levels were significantly elevated at admission, peaked at day 5, and declined at day 7, which were significantly higher during 7 days than those of controls (all P < 0.001). Areas under receiver operating characteristic curve (AUCs) of plasma S1P levels insignificant differed among all time points (all P > 0.05). Admission plasma S1P levels, in close correlation with National Institutes of Health Stroke Scale (NIHSS) scores [β, 7.661; 95 % confidence interval (CI), 4.893-10.399; P < 0.001] and hematoma volume (β, 1.285; 95 % CI, 0.348-2.230; P < 0.001), independently predicted 3-month poor prognosis (modified Rankin Scale scores of 3-6) (odds ratio, 3.184; 95 % CI, 1.057-9.597; P = 0.040). Admission plasma S1P levels had AUC of 0.799 (95 % CI, 0.713-0.868) for prognosis prediction. The levels > 240.4 ng/ml distinguished risk of poor prognosis with the maximum Youden index of 0.518. Prediction model integrating NIHSS scores, hematoma volume and admission plasma S1P levels had substantially higher prognostic predictive ability than NIHSS scores (P = 0.023), but not than hematoma volume (P = 0.061). CONCLUSION There is a significant elevation of plasma S1P levels during early period after ICH, which were independently related to severity and poor prognosis. Thus, plasma S1P may be a potential prognostic biomarker of ICH.
Collapse
Affiliation(s)
- Zefan Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Jian Xu
- Graduate School, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Shengdong Zou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Ziyin Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Shuangyong Dong
- Emergency Department, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou 310006, China
| | - Keyi Wang
- Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou 310006, China.
| |
Collapse
|
13
|
Trevino TN, Fogel AB, Minshall R, Richner JM, Lutz SE. Caveolin-1 mediates neuroinflammation and cognitive impairment in SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563024. [PMID: 37905019 PMCID: PMC10614946 DOI: 10.1101/2023.10.18.563024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Leukocyte infiltration of the CNS can contribute to neuroinflammation and cognitive impairment. Brain endothelial cells regulate adhesion, activation, and diapedesis of T cells across the blood-brain barrier (BBB) in inflammatory diseases. The integral membrane protein Caveolin-1 (Cav-1) critically regulates BBB permeability, but its influence on T cell CNS infiltration in respiratory viral infections is unknown. In this study, we sought to determine the role of Cav-1 at the BBB in neuroinflammation in a COVID-19 mouse model. We used mice genetically deficient in Cav-1 to test the role of this protein in T cell infiltration and cognitive impairment. We found that SARS-CoV-2 infection upregulated brain endothelial Cav-1. Moreover, SARS-CoV-2 infection increased brain endothelial cell vascular cell adhesion molecule-1 (VCAM-1) and CD3+ T cell infiltration of the hippocampus, a region important for short term learning and memory. Concordantly, we observed learning and memory deficits. Importantly, genetic deficiency in Cav-1 attenuated brain endothelial VCAM-1 expression and T cell infiltration in the hippocampus of mice with SARS-CoV-2 infection. Moreover, Cav-1 KO mice were protected from the learning and memory deficits caused by SARS-CoV-2 infection. These results indicate the importance of BBB permeability in COVID-19 neuroinflammation and suggest potential therapeutic value of targeting Cav-1 to improve disease outcomes.
Collapse
|
14
|
Shi G, Liu L, Cao Y, Ma G, Zhu Y, Xu J, Zhang X, Li T, Mi L, Jia H, Zhang Y, Liu X, Zhou Y, Li S, Yang G, Liu X, Chen F, Wang B, Deng Q, Zhang S, Zhang J. Inhibition of neutrophil extracellular trap formation ameliorates neuroinflammation and neuronal apoptosis via STING-dependent IRE1α/ASK1/JNK signaling pathway in mice with traumatic brain injury. J Neuroinflammation 2023; 20:222. [PMID: 37777772 PMCID: PMC10543875 DOI: 10.1186/s12974-023-02903-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Neuroinflammation is one of the most important pathogeneses in secondary brain injury after traumatic brain injury (TBI). Neutrophil extracellular traps (NETs) forming neutrophils were found throughout the brain tissue of TBI patients and elevated plasma NET biomarkers correlated with worse outcomes. However, the biological function and underlying mechanisms of NETs in TBI-induced neural damage are not yet fully understood. Here, we used Cl-amidine, a selective inhibitor of NETs to investigate the role of NETs in neural damage after TBI. METHODS Controlled cortical impact model was performed to establish TBI. Cl-amidine, 2'3'-cGAMP (an activator of stimulating Interferon genes (STING)), C-176 (a selective STING inhibitor), and Kira6 [a selectively phosphorylated inositol-requiring enzyme-1 alpha [IRE1α] inhibitor] were administrated to explore the mechanism by which NETs promote neuroinflammation and neuronal apoptosis after TBI. Peptidyl arginine deiminase 4 (PAD4), an essential enzyme for neutrophil extracellular trap formation, is overexpressed with adenoviruses in the cortex of mice 1 day before TBI. The short-term neurobehavior tests, magnetic resonance imaging (MRI), laser speckle contrast imaging (LSCI), Evans blue extravasation assay, Fluoro-Jade C (FJC), TUNEL, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative-PCR were performed in this study. RESULTS Neutrophils form NETs presenting in the circulation and brain at 3 days after TBI. NETs inhibitor Cl-amidine treatment improved short-term neurological functions, reduced cerebral lesion volume, reduced brain edema, and restored cerebral blood flow (CBF) after TBI. In addition, Cl-amidine exerted neuroprotective effects by attenuating BBB disruption, inhibiting immune cell infiltration, and alleviating neuronal death after TBI. Moreover, Cl-amidine treatment inhibited microglia/macrophage pro-inflammatory polarization and promoted anti-inflammatory polarization at 3 days after TBI. Mechanistically, STING ligand 2'3'-cGAMP abolished the neuroprotection of Cl-amidine via IRE1α/ASK1/JNK signaling pathway after TBI. Importantly, overexpression of PAD4 promotes neuroinflammation and neuronal death via the IRE1α/ASK1/JNK signaling pathway after TBI. However, STING inhibitor C-176 or IRE1α inhibitor Kira6 effectively abolished the neurodestructive effects of PAD4 overexpression after TBI. CONCLUSION Altogether, we are the first to demonstrate that NETs inhibition with Cl-amidine ameliorated neuroinflammation, neuronal apoptosis, and neurological deficits via STING-dependent IRE1α/ASK1/JNK signaling pathway after TBI. Thus, Cl-amidine treatment may provide a promising therapeutic approach for the early management of TBI.
Collapse
Affiliation(s)
- Guihong Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Yiyao Cao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Guangshuo Ma
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
- Department of Neurosurgery, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Yanlin Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Jianye Xu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Xu Zhang
- School of Medicine, Nankai University, Tianjin, 300192, China
| | - Tuo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Liang Mi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Haoran Jia
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Yanfeng Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Xilei Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Yuan Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Shenghui Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Guili Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Xiao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Fanglian Chen
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Baolong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China
| | - Shu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
15
|
Luo J, He Z, Li Q, Lv M, Cai Y, Ke W, Niu X, Zhang Z. Adipokines in atherosclerosis: unraveling complex roles. Front Cardiovasc Med 2023; 10:1235953. [PMID: 37645520 PMCID: PMC10461402 DOI: 10.3389/fcvm.2023.1235953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Adipokines are biologically active factors secreted by adipose tissue that act on local and distant tissues through autocrine, paracrine, and endocrine mechanisms. However, adipokines are believed to be involved in an increased risk of atherosclerosis. Classical adipokines include leptin, adiponectin, and ceramide, while newly identified adipokines include visceral adipose tissue-derived serpin, omentin, and asprosin. New evidence suggests that adipokines can play an essential role in atherosclerosis progression and regression. Here, we summarize the complex roles of various adipokines in atherosclerosis lesions. Representative protective adipokines include adiponectin and neuregulin 4; deteriorating adipokines include leptin, resistin, thrombospondin-1, and C1q/tumor necrosis factor-related protein 5; and adipokines with dual protective and deteriorating effects include C1q/tumor necrosis factor-related protein 1 and C1q/tumor necrosis factor-related protein 3; and adipose tissue-derived bioactive materials include sphingosine-1-phosphate, ceramide, and adipose tissue-derived exosomes. However, the role of a newly discovered adipokine, asprosin, in atherosclerosis remains unclear. This article reviews progress in the research on the effects of adipokines in atherosclerosis and how they may be regulated to halt its progression.
Collapse
Affiliation(s)
- Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Targeting Non-Coding RNA for CNS Injuries: Regulation of Blood-Brain Barrier Functions. Neurochem Res 2023; 48:1997-2016. [PMID: 36786944 DOI: 10.1007/s11064-023-03892-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Central nervous system (CNS) injuries are the most common cause of death and disability around the world. The blood-brain barrier (BBB) is located at the interface between the CNS and the surrounding environment, which protects the CNS from exogenous molecules, harmful agents or microorganisms in the blood. The disruption of BBB is a common feature of CNS injuries and participates in the pathological processes of secondary brain damage. Recently, a growing number of studies have indicated that non-coding RNAs (ncRNAs) play an important role in brain development and are involved in CNS injuries. In this review, we summarize the mechanisms of BBB breakdown after CNS injuries. We also discuss the effects of ncRNAs including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) on BBB damage in CNS injuries such as ischemic stroke, traumatic brain injury (TBI), intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). In addition, we clarify the pharmacotherapies that could regulate BBB function via ncRNAs in CNS injuries, as well as the challenges and perspectives of ncRNAs on modulation of BBB function. Hence, on the basis of these effects, ncRNAs may be developed as therapeutic agents to protect the BBB for CNS injury patients.
Collapse
|
17
|
Yan J, Zhang Y, Wang L, Li Z, Tang S, Wang Y, Gu N, Sun X, Li L. TREM2 activation alleviates neural damage via Akt/CREB/BDNF signalling after traumatic brain injury in mice. J Neuroinflammation 2022; 19:289. [PMID: 36463233 PMCID: PMC9719652 DOI: 10.1186/s12974-022-02651-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Neuroinflammation is one of the most important processes in secondary injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 2 (TREM2) has been proven to exert neuroprotective effects in neurodegenerative diseases and stroke by modulating neuroinflammation, and promoting phagocytosis and cell survival. However, the role of TREM2 in TBI has not yet been elucidated. In this study, we are the first to use COG1410, an agonist of TREM2, to assess the effects of TREM2 activation in a murine TBI model. METHODS Adult male wild-type (WT) C57BL/6 mice and adult male TREM2 KO mice were subjected to different treatments. TBI was established by the controlled cortical impact (CCI) method. COG1410 was delivered 1 h after CCI via tail vein injection. Western blot analysis, immunofluorescence, laser speckle contrast imaging (LSCI), neurological behaviour tests, brain electrophysiological monitoring, Evans blue assays, magnetic resonance imaging (MRI), and brain water content measurement were performed in this study. RESULTS The expression of endogenous TREM2 peaked at 3 d after CCI, and it was mainly expressed on microglia and neurons. We found that COG1410 improved neurological functions within 3 d, as well as neurological functions and brain electrophysiological activity at 2 weeks after CCI. COG1410 exerted neuroprotective effects by inhibiting neutrophil infiltration and microglial activation, and suppressing neuroinflammation after CCI. In addition, COG1410 treatment alleviated blood brain barrier (BBB) disruption and brain oedema; furthermore, COG1410 promoted cerebral blood flow (CBF) recovery at traumatic injury sites after CCI. In addition, COG1410 suppressed neural apoptosis at 3 d after CCI. TREM2 activation upregulated p-Akt, p-CREB, BDNF, and Bcl-2 and suppressed TNF-α, IL-1β, Bax, and cleaved caspase-3 at 3 d after CCI. Moreover, TREM2 knockout abolished the effects of COG1410 on vascular phenotypes and microglial states. Finally, the neuroprotective effects of COG1410 were suppressed by TREM2 depletion. CONCLUSIONS Altogether, we are the first to demonstrate that TREM2 activation by COG1410 alleviated neural damage through activation of Akt/CREB/BDNF signalling axis in microglia after CCI. Finally, COG1410 treatment improved neurological behaviour and brain electrophysiological activity after CCI.
Collapse
Affiliation(s)
- Jin Yan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
| | - Yuan Zhang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Zhao Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
- Department of Neurosurgery, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Shuang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
| | - Nina Gu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China.
| | - Lin Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing, 400016, China.
- Department of Neuro-oncology, Chongqing University Cancer Hospital, Chongqing, China.
- Department of Neurosurgery, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|