1
|
van Hattem T, Verkaar L, Krugliakova E, Adelhöfer N, Zeising M, Drinkenburg WHIM, Claassen JAHR, Bódizs R, Dresler M, Rosenblum Y. Targeting Sleep Physiology to Modulate Glymphatic Brain Clearance. Physiology (Bethesda) 2025; 40:0. [PMID: 39601891 DOI: 10.1152/physiol.00019.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/12/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Sleep has been postulated to play an important role in the removal of potentially neurotoxic molecules, such as amyloid-β, from the brain via the glymphatic system. Disturbed sleep, on the other hand, may contribute to the accumulation of neurotoxins in brain tissue, eventually leading to neuronal death. A bidirectional relationship has been proposed between impaired sleep and neurodegenerative processes, which start years before the onset of clinical symptoms associated with conditions like Alzheimer's and Parkinson's diseases. Given the heavy burden these conditions place on society, it is imperative to develop interventions that promote efficient brain clearance, thereby potentially aiding in the prevention or slowing of neurodegeneration. In this review, we explore whether the metabolic clearance function of sleep can be enhanced through sensory (e.g., auditory, vestibular) or transcranial (e.g., magnetic, ultrasound, infrared light) stimulation, as well as pharmacological (e.g., antiepileptics) and behavioral (e.g., sleeping position, physical exercise, cognitive intervention) modulation of sleep physiology. A particular focus is placed on strategies to enhance slow-wave activity during nonrapid eye movement sleep as a driver of glymphatic brain clearance. Overall, this review provides a comprehensive overview on the potential preventative and therapeutic applications of sleep interventions in combating neurodegeneration, cognitive decline, and dementia.
Collapse
Affiliation(s)
- Timo van Hattem
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lieuwe Verkaar
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Krugliakova
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nico Adelhöfer
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Zeising
- Klinikum Ingolstadt, Centre of Mental Health, Ingolstadt, Germany
| | - Wilhelmus H I M Drinkenburg
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Jurgen A H R Claassen
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yevgenia Rosenblum
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Ringstad G, Eide PK, Naganawa S, Agarwal N. Gadolinium-Based Imaging and the Study of Neurofluid Dynamics. Neuroimaging Clin N Am 2025; 35:191-209. [PMID: 40210377 DOI: 10.1016/j.nic.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Gadolinium-based MR imaging has significantly advanced our understanding of neurofluid dynamics within the brain and spinal cord. Both intrathecal and intravenous MR imaging techniques hold promise for identifying surrogate markers of altered neurofluid dynamics in the brain. These insights can shed light on the pathophysiology of various neurologic disorders and aid in developing improved treatment strategies.
Collapse
Affiliation(s)
- Geir Ringstad
- Department of Radiology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Geriatric Medicine, Sørlandet Hospital Trust, Arendal, Norway; KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway.
| | - Per Kristian Eide
- KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway; Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway; Department of Neurosurgery, University of Oslo, Oslo, Norway
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Shouwa-ku, Nagoya, 466-8550 Japan
| | - Nivedita Agarwal
- Diagnostic Imaging and Neuroradiology Unit, Scientific Institute, IRCCS "Eugenio Medea" Via Don Luigi Monza 20, 23842 Bosisio Parini (LC), Italy
| |
Collapse
|
3
|
Rieff M, Holzberger F, Lapina O, Ringstad G, Magnus Valnes L, Warsza B, Kristian Eide P, Mardal K, Wohlmuth B. U-Net-Based Prediction of Cerebrospinal Fluid Distribution and Ventricular Reflux Grading. NMR IN BIOMEDICINE 2025; 38:e70029. [PMID: 40229147 PMCID: PMC11996590 DOI: 10.1002/nbm.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/16/2025]
Abstract
Previous work indicates evidence that cerebrospinal fluid (CSF) plays a crucial role in brain waste clearance processes and that altered flow patterns are associated with various diseases of the central nervous system. In this study, we investigate the potential of deep learning to predict the distribution in human brain of a gadolinium-based CSF contrast agent (tracer) administered intrathecal. For this, T1-weighted magnetic resonance imaging (MRI) scans taken at multiple time points before and after injection were utilized. We propose a U-net-based supervised learning model to predict pixel-wise signal increase at its peak after 24 h. Performance is evaluated based on different tracer distribution stages provided during training, including predictions from baseline scans taken before injection. Our findings show that training with imaging data from only the first 2-h postinjection yields tracer flow predictions comparable to models trained with additional later-stage scans. Validation against ventricular reflux gradings from neuroradiologists confirmed alignment with expert evaluations. These results demonstrate that deep learning-based methods for CSF flow prediction deserve more attention, as minimizing MR imaging without compromising clinical analysis could enhance efficiency, improve patient well-being and lower healthcare costs.
Collapse
Affiliation(s)
- Melanie Rieff
- Department of Mathematics, School of Computation, Information, and TechnologyTechnical University of MunichGarchingGermany
- Department of Computer ScienceETH ZurichZurichSwitzerland
| | - Fabian Holzberger
- Department of Mathematics, School of Computation, Information, and TechnologyTechnical University of MunichGarchingGermany
| | - Oksana Lapina
- Department of RadiologyOslo University Hospital RikshospitaletOsloNorway
| | - Geir Ringstad
- Department of RadiologyOslo University Hospital RikshospitaletOsloNorway
- Department of Geriatrics and Internal MedicineSorlandet HospitalArendalNorway
- KG Jebsen Centre for Brain Fluid Research, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Lars Magnus Valnes
- Department of NeurosurgeryOslo University Hospital RikshospitaletOsloNorway
| | - Bogna Warsza
- Department of RadiologyOslo University Hospital RikshospitaletOsloNorway
| | - Per Kristian Eide
- KG Jebsen Centre for Brain Fluid Research, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of NeurosurgeryOslo University Hospital RikshospitaletOsloNorway
| | - Kent‐André Mardal
- KG Jebsen Centre for Brain Fluid Research, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway
- Department of MathematicsUniversity of OsloOsloNorway
- Department of Numerical Analysis and Scientific ComputingSimula Research LaboratoryOsloNorway
| | - Barbara Wohlmuth
- Department of Mathematics, School of Computation, Information, and TechnologyTechnical University of MunichGarchingGermany
| |
Collapse
|
4
|
Xu Y, Yin H, Li L, Wang X, Hou Q. Covert cerebrospinal fluid dynamics dysfunction: evolution from conventional to innovative therapies. Front Neurol 2025; 16:1554813. [PMID: 40144621 PMCID: PMC11936825 DOI: 10.3389/fneur.2025.1554813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Cerebrospinal fluid (CSF) dynamics disorders are intricately linked to diverse neurological pathologies, though they usually are mild and covert. Contemporary insights into glymphatic system function, particularly the CSF transport, drainage, and its role in clearing metabolic waste and toxic substances in both normal and pathological states, and the pivotal role of aquaporin-4 (AQP4) in CSF-interstitial fluid (ISF) exchange, have established novel theoretical frameworks of subclinical CSF dynamics dysfunction, and have promoted the development of non-surgical therapeutic approaches for them simultaneously. This review comprehensively analyzes the advancement of non-surgical interventions for CSF dynamics disorders, emphasizing the transition from established methodologies to innovative approaches. Current non-surgical treatment strategies primarily encompass three directions: pharmacological therapy, physical therapy, and biological regulation therapy. In terms of pharmacological interventions, developments from traditional diuretics to novel small-molecule drugs show promising therapeutic potential. In physical therapy, innovative techniques such as lower body negative pressure, transcranial magnetic stimulation, and vagus nerve stimulation have provided new options for clinical practice. Meanwhile, biological regulation therapy, exemplified by recombinant VEGF-C administration, has established novel therapeutic paradigms. These therapeutic strategies have demonstrated potential in improving CSF dynamics and enhancing CSF waste elimination. Future research should focus on developing individualized treatment protocols, elucidating of therapeutic mechanisms, and assessing longitudinal outcomes. This will facilitate the development of more precise therapeutic strategies and exploration of optimized multimodal treatment combinations in handling the so-called convert CSF dynamics dysfunction.
Collapse
Affiliation(s)
- Yi Xu
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hua Yin
- Class 6, 2020 Clinical Medicine Program, Sun Yat-Sen University, Shenzhen, China
| | - Lingge Li
- Class 2, 2020 Clinical Medicine Program, Sun Yat-Sen University, Shenzhen, China
| | - Xiaodi Wang
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qinghua Hou
- Department of Neurology, Clinical Neuroscience Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
5
|
Xiong R, Feng J, Zhu H, Li C, Hu P, Zou Y, Zhou M, Wang Y, Tang X. Quantitative evaluation of dynamic glymphatic activity in insomnia: A contrast-enhanced synthetic MRI study. Sleep Med 2025; 127:16-23. [PMID: 39756155 DOI: 10.1016/j.sleep.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Sleep is associated with glymphatic circulation activity; however, there is no direct imaging modality to validate glymphatic circulation disorders in patients with insomnia. Therefore, this study aimed to explore the relationship between insomnia disorder (ID) and the glymphatic system. Dynamic synthetic magnetic resonance imaging (syMRI) was performed. METHODS Thirty-two patients with insomnia and ten healthy volunteers were prospectively recruited from the Second Affiliated Medical Hospital of Nanchang University, China. All subjects underwent syMRI at baseline (0 h), 0.5 h, 1 h, 1.5 h, 12 h, and 3 d after enhancement. The MAGiC post-processing workstation was used to measure T1 signal changes in different brain regions, peak ΔT1, and slopes at different time periods. All patients with insomnia underwent polysomnography (PSG) and were evaluated using the Pittsburgh Sleep Quality Index (PSQI). Repeated measures analysis of variance, Bonferroni multiple comparison, Shapiro-Wilk test, t-test, and Pearson or Spearman correlation analysis were used. RESULTS The main effect of T1 values for the cerebral white matter, cerebral gray matter, putamen, thalamus, and cerebellar white matter at different measurement times were significant in all subjects (all p < 0.05). The T1 values of the insula gray matter at 0.5 h were statistically different between the insomnia group and the control group (1231.76 ± 9.42 vs. 1272.95 ± 16.86 ms; p = 0.005), and the T1 values of the hippocampal gray matter at 3 d were different between the two groups (1198.24 ± 9.01 vs. 1234.55 ± 16.12 ms; p = 0.025). The time-varying curves of the T1 values in the cerebral gray matter and putamen were statistically different between the two groups (p = 0.009, 0.026). The cerebellar gray matter slope (1-1.5 h) and thalamic slope (1-1.5 h) were statistically different between the two groups [-113 (-188.5, -28) vs. 4.739 (-2.07, 7.98); 52 (-10, 119.75) vs. -19.25 (-120, 31.50]; p = 0.048, 0.017). CONCLUSION Reduced clearance of the gadolinium-based contrast agent by the gray matter and deep nuclei indicates the presence of glymphatic system impairment in insomnia.
Collapse
Affiliation(s)
- Ruifang Xiong
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China; Intelligent Medical Imaging of Jiangxi Key Laboratory, 330006, Nanchang, China
| | - Jie Feng
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Hanting Zhu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China; Intelligent Medical Imaging of Jiangxi Key Laboratory, 330006, Nanchang, China
| | - Chengyi Li
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China; Intelligent Medical Imaging of Jiangxi Key Laboratory, 330006, Nanchang, China
| | - Pengxin Hu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China; Intelligent Medical Imaging of Jiangxi Key Laboratory, 330006, Nanchang, China
| | - Yu Zou
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China; Intelligent Medical Imaging of Jiangxi Key Laboratory, 330006, Nanchang, China
| | - Mingyu Zhou
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China; Intelligent Medical Imaging of Jiangxi Key Laboratory, 330006, Nanchang, China
| | - Ye Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Xiaoping Tang
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China; Intelligent Medical Imaging of Jiangxi Key Laboratory, 330006, Nanchang, China; School of Biomedical Engineering, National Graduate College for Engineers, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
6
|
Xiong R, Feng J, Zhu H, Li C, Hu P, Zou Y, Zhou M, Wang Y, Tang X. Evaluation of glymphatic system dysfunction in patients with insomnia via diffusion tensor image analysis along the perivascular space. Quant Imaging Med Surg 2025; 15:1114-1124. [PMID: 39995712 PMCID: PMC11847175 DOI: 10.21037/qims-24-1447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/02/2024] [Indexed: 02/26/2025]
Abstract
Background The glymphatic system is a crucial pathway for the clearance of metabolic waste from the brain, and its dysfunction has been linked to various neurodegenerative disorders. This study examined the connection between insomnia and glymphatic system dysfunction, offering a novel perspective on the pathophysiological mechanisms underlying insomnia. Methods We prospectively recruited 25 patients with insomnia and 37 healthy controls for a case-control study. All participants underwent routine magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) scans. Glymphatic activity was measured via diffusion tensor image analysis along the perivascular space (DTI-ALPS). All patients with insomnia underwent a polysomnogram (PSG) examination and were evaluated using the Pittsburgh Sleep Quality Index (PSQI). We used United Imaging Healthcare artificial intelligence to count the number of enlarged perivascular spaces (ePVSs) in the centrum semiovale, corona radiata, basal ganglia, and hippocampal regions. Results The left ALPS index, right ALPS index, and average ALPS index were found to be lower in the insomnia group than in the control group [P false discovery rate (PFDR)=0.002, 0.002, and 0.002]. There was no difference in the ALPS index between the left and right sides (P>0.05) in healthy control group, insomniac group, or the entire cohort. The average ALPS index was correlated with the proportion of rapid eye movement and N1 stage sleep (r=0.478 and -0.541; PFDR=0.05 and 0.03). The number of ePVSs was not statistically different between groups in the centrum semiovale, the basal ganglia region, the corona radiata region, the hippocampus region, or other regions (PFDR>0.05). Conclusions Insomnia is associated with impairments in glymphatic circulation, and the average ALPS index can serve as an imaging biomarker for glymphatic dysfunction in insomnia, aiding in the prevention of further progression to dementia.
Collapse
Affiliation(s)
- Ruifang Xiong
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Jie Feng
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hanting Zhu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Chengyi Li
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Pengxin Hu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Yu Zou
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Mingyu Zhou
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Ye Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaoping Tang
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
- School of Biomedical Engineering, National Graduate College for Engineers, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Koundal S, Chen X, Gursky Z, Lee H, Xu K, Liang F, Xie Z, Xu F, Lin HM, Van Nostrand WE, Gu X, Elkin R, Tannenbaum A, Benveniste H. Divergent brain solute clearance in rat models of cerebral amyloid angiopathy and Alzheimer's disease. iScience 2024; 27:111463. [PMID: 39720539 PMCID: PMC11667077 DOI: 10.1016/j.isci.2024.111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/05/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
Brain waste clearance from the interstitial fluid environment is challenging to measure, which has contributed to controversy regarding the significance of glymphatic transport impairment for neurodegenerative processes. Dynamic contrast enhanced MRI (DCE-MRI) with cerebrospinal fluid administration of Gd-tagged tracers is often used to assess glymphatic system function. We previously quantified glymphatic transport from DCE-MRI data utilizing regularized optimal mass transport (rOMT) analysis, however, information specific to glymphatic clearance was not directly derived. To fill this knowledge gap, we here implemented unbalanced rOMT analysis which allows for assessment of both influx and clearance. Dynamic influx/clearance brain maps were derived from rTg-DI rats with cerebral amyloid angiopathy (CAA) and TgSD-AD rats with Alzheimer's disease (AD). The rTg-DI rats with severe CAA disease exhibited abnormal influx/clearance kinetics, while TgSD-AD rats with a moderate Aβ plaque load exhibited normal transport suggesting that different Aβ lesions and their overall burden differentially impact glymphatic system function.
Collapse
Affiliation(s)
- Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Xinan Chen
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Zachary Gursky
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kaiming Xu
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA
| | - Feng Xu
- George and Anne Ryan Institute for Neuroscience and the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02906, USA
| | - Hung-Mo Lin
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - William E. Van Nostrand
- George and Anne Ryan Institute for Neuroscience and the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02906, USA
| | - Xianfeng Gu
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, USA
- Departments of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rena Elkin
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Allen Tannenbaum
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, USA
- Departments of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale School of Medicine New Haven, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Cankar N, Beschorner N, Tsopanidou A, Qvist FL, Colaço AR, Andersen M, Kjaerby C, Delle C, Lambert M, Mundt F, Weikop P, Jucker M, Mann M, Skotte NH, Nedergaard M. Sleep deprivation leads to non-adaptive alterations in sleep microarchitecture and amyloid-β accumulation in a murine Alzheimer model. Cell Rep 2024; 43:114977. [PMID: 39541211 DOI: 10.1016/j.celrep.2024.114977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Impaired sleep is a common aspect of aging and often precedes the onset of Alzheimer's disease. Here, we compare the effects of sleep deprivation in young wild-type mice and their APP/PS1 littermates, a murine model of Alzheimer's disease. After 7 h of sleep deprivation, both genotypes exhibit an increase in EEG slow-wave activity. However, only the wild-type mice demonstrate an increase in the power of infraslow norepinephrine oscillations, which are characteristic of healthy non-rapid eye movement sleep. Notably, the APP/PS1 mice fail to enhance norepinephrine oscillations 24 h after sleep deprivation, coinciding with an accumulation of cerebral amyloid-β protein. Proteome analysis of cerebrospinal fluid and extracellular fluid further supports these findings by showing altered protein clearance in APP/PS1 mice. We propose that the suppression of infraslow norepinephrine oscillations following sleep deprivation contributes to increased vulnerability to sleep loss and heightens the risk of developing amyloid pathology in early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Neža Cankar
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Natalie Beschorner
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Anastasia Tsopanidou
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Filippa L Qvist
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ana R Colaço
- Proteomics Research Infrastructure, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mie Andersen
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Celia Kjaerby
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Christine Delle
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Marius Lambert
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Filip Mundt
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Matthias Mann
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department for Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Niels Henning Skotte
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY 14642, USA.
| |
Collapse
|
9
|
Dreyer LW, Eklund A, Rognes ME, Malm J, Qvarlander S, Støverud KH, Mardal KA, Vinje V. Modeling CSF circulation and the glymphatic system during infusion using subject specific intracranial pressures and brain geometries. Fluids Barriers CNS 2024; 21:82. [PMID: 39407250 PMCID: PMC11481529 DOI: 10.1186/s12987-024-00582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Infusion testing is an established method for assessing CSF resistance in patients with idiopathic normal pressure hydrocephalus (iNPH). To what extent the increased resistance is related to the glymphatic system is an open question. Here we introduce a computational model that includes the glymphatic system and enables us to determine the importance of (1) brain geometry, (2) intracranial pressure, and (3) physiological parameters on the outcome of and response to an infusion test. METHODS We implemented a seven-compartment multiple network porous medium model with subject specific geometries from MR images using the finite element library FEniCS. The model consists of the arterial, capillary and venous blood vessels, their corresponding perivascular spaces, and the extracellular space (ECS). Both subject specific brain geometries and subject specific infusion tests were used in the modeling of both healthy adults and iNPH patients. Furthermore, we performed a systematic study of the effect of variations in model parameters. RESULTS Both the iNPH group and the control group reached a similar steady state solution when subject specific geometries under identical boundary conditions was used in simulation. The difference in terms of average fluid pressure and velocity between the iNPH and control groups, was found to be less than 6% during all stages of infusion in all compartments. With subject specific boundary conditions, the largest computed difference was a 75% greater fluid speed in the arterial perivascular space (PVS) in the iNPH group compared to the control group. Changes to material parameters changed fluid speeds by several orders of magnitude in some scenarios. A considerable amount of the CSF pass through the glymphatic pathway in our models during infusion, i.e., 28% and 38% in the healthy and iNPH patients, respectively. CONCLUSIONS Using computational models, we have found the relative importance of subject specific geometries to be less important than individual differences in resistance as measured with infusion tests and model parameters such as permeability, in determining the computed pressure and flow during infusion. Model parameters are uncertain, but certain variations have large impact on the simulation results. The computations resulted in a considerable amount of the infused volume passing through the brain either through the perivascular spaces or the extracellular space.
Collapse
Affiliation(s)
- Lars Willas Dreyer
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Oslo, Norway
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Anders Eklund
- Department of Diagnostics and Intervention, Biomedical engineering and radiation physics, Umeå University, Umeå, Sweden
| | - Marie E Rognes
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Oslo, Norway
- KG Jebsen Center for Brain Fluid Research, Oslo, Norway
| | - Jan Malm
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Sara Qvarlander
- Department of Diagnostics and Intervention, Biomedical engineering and radiation physics, Umeå University, Umeå, Sweden
| | - Karen-Helene Støverud
- Department of Diagnostics and Intervention, Biomedical engineering and radiation physics, Umeå University, Umeå, Sweden
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - Kent-Andre Mardal
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Oslo, Norway.
- Department of Mathematics, University of Oslo, Oslo, Norway.
- Expert Analytics AS, Oslo, Norway.
- KG Jebsen Center for Brain Fluid Research, Oslo, Norway.
| | - Vegard Vinje
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Oslo, Norway
- Expert Analytics AS, Oslo, Norway
- BI Norwegian Business School, Oslo, Norway
| |
Collapse
|
10
|
Quirk K, Boster KAS, Tithof J, Kelley DH. A brain-wide solute transport model of the glymphatic system. J R Soc Interface 2024; 21:20240369. [PMID: 39439312 PMCID: PMC11496954 DOI: 10.1098/rsif.2024.0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Brain waste is largely cleared via diffusion and advection in cerebrospinal fluid (CSF). CSF flows through a pathway referred to as the glymphatic system, which is also being targeted for delivering drugs to the brain. Despite the importance of solute transport, no brain-wide models for predicting clearance and delivery through perivascular pathways and adjacent parenchyma existed. We devised such a model by upgrading an existing model of CSF flow in the mouse brain to additionally solve advection-diffusion equations, thereby estimating solute transport. We simulated steady-state transport of 3 kDa dextran injected proximal to the perivascular space (PVS) of the middle cerebral artery, mimicking in vivo experiments. We performed a sensitivity analysis of 11 biological properties of PVSs and brain parenchyma by repeatedly simulating solute transport with varying parameter values. Parameter combinations that led to a large total pressure gradient, poor CSF perfusion or a steep solute gradient were deemed unrealistic. Solute concentrations in parenchyma were most sensitive to changes in pial PVS size, as this parameter linearly affects volume flow rates. We also found that realistic transport requires both highly permeable penetrating PVSs and high-resistance parenchyma. This study highlights the potential of brain-wide models to provide insights into solute transport processes.
Collapse
Affiliation(s)
- Keelin Quirk
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| | - Kimberly A. S. Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN55455, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| |
Collapse
|
11
|
Kim E, Van Reet J, Yoo SS. Enhanced transport of brain interstitial solutes mediated by stimulation of sensorimotor area in rats. Neuroreport 2024; 35:729-733. [PMID: 38829951 DOI: 10.1097/wnr.0000000000002065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Solute transport in the brain is essential for maintaining cerebral homeostasis. Recent studies have shown that neuronal activity enhances the transport of cerebrospinal fluid solutes, but its impact on interstitial solute transport has not been established. In this study, we investigated whether neuronal activity affects the transport of interstitial solutes. METHODS Fluorescent Texas Red ovalbumin was injected intracortically into the unilateral sensorimotor area of the Sprague-Dawley rats. Regional neuronal activity around the injection site was elicited by transdermal electrical stimulation of a corresponding forelimb for 90 min ( n = 6). The control group of rats ( n = 6) did not receive any electrical stimulation. Subsequently, the spatial distributions of the tracer over the cortical surface and from the brain sections were imaged and compared between two groups. The ovalbumin fluorescence from the cervical lymph nodes was also compared between the groups to evaluate the effect of neuronal activity on solute clearance from the brain. RESULTS Tracer distribution over the brain surface/sections revealed a significantly higher uptake of ovalbumin in the hemisphere ipsilateral to the injection among the stimulated animals compared to the unstimulated group. This difference, however, was not seen in the hemisphere contralateral to injection. A trace amount of ovalbumin in the lymph nodes was equivalent between the groups, which indicated a considerable time needed for interstitial solutes to be drained from the brain. CONCLUSION The results suggest that neuronal activity enhances interstitial solute transport, calling for further examination of ultimate routes and mechanisms for brain solute clearance.
Collapse
Affiliation(s)
- Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
12
|
Hladky SB, Barrand MA. Regulation of brain fluid volumes and pressures: basic principles, intracranial hypertension, ventriculomegaly and hydrocephalus. Fluids Barriers CNS 2024; 21:57. [PMID: 39020364 PMCID: PMC11253534 DOI: 10.1186/s12987-024-00532-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/21/2024] [Indexed: 07/19/2024] Open
Abstract
The principles of cerebrospinal fluid (CSF) production, circulation and outflow and regulation of fluid volumes and pressures in the normal brain are summarised. Abnormalities in these aspects in intracranial hypertension, ventriculomegaly and hydrocephalus are discussed. The brain parenchyma has a cellular framework with interstitial fluid (ISF) in the intervening spaces. Framework stress and interstitial fluid pressure (ISFP) combined provide the total stress which, after allowing for gravity, normally equals intracerebral pressure (ICP) with gradients of total stress too small to measure. Fluid pressure may differ from ICP in the parenchyma and collapsed subarachnoid spaces when the parenchyma presses against the meninges. Fluid pressure gradients determine fluid movements. In adults, restricting CSF outflow from subarachnoid spaces produces intracranial hypertension which, when CSF volumes change very little, is called idiopathic intracranial hypertension (iIH). Raised ICP in iIH is accompanied by increased venous sinus pressure, though which is cause and which effect is unclear. In infants with growing skulls, restriction in outflow leads to increased head and CSF volumes. In adults, ventriculomegaly can arise due to cerebral atrophy or, in hydrocephalus, to obstructions to intracranial CSF flow. In non-communicating hydrocephalus, flow through or out of the ventricles is somehow obstructed, whereas in communicating hydrocephalus, the obstruction is somewhere between the cisterna magna and cranial sites of outflow. When normal outflow routes are obstructed, continued CSF production in the ventricles may be partially balanced by outflow through the parenchyma via an oedematous periventricular layer and perivascular spaces. In adults, secondary hydrocephalus with raised ICP results from obvious obstructions to flow. By contrast, with the more subtly obstructed flow seen in normal pressure hydrocephalus (NPH), fluid pressure must be reduced elsewhere, e.g. in some subarachnoid spaces. In idiopathic NPH, where ventriculomegaly is accompanied by gait disturbance, dementia and/or urinary incontinence, the functional deficits can sometimes be reversed by shunting or third ventriculostomy. Parenchymal shrinkage is irreversible in late stage hydrocephalus with cellular framework loss but may not occur in early stages, whether by exclusion of fluid or otherwise. Further studies that are needed to explain the development of hydrocephalus are outlined.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, Tennis Court Rd, Cambridge, CB2 1PD, UK.
| | | |
Collapse
|
13
|
Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS): Revisiting the Meaning and Significance of the Method. Magn Reson Med Sci 2024; 23:268-290. [PMID: 38569866 PMCID: PMC11234944 DOI: 10.2463/mrms.rev.2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
More than 5 years have passed since the Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS) method was proposed with the intention of evaluating the glymphatic system. This method is handy due to its noninvasiveness, provision of a simple index in a straightforward formula, and the possibility of retrospective analysis. Therefore, the ALPS method was adopted to evaluate the glymphatic system for many disorders in many studies. The purpose of this review is to look back and discuss the ALPS method at this moment.The ALPS-index was found to be an indicator of a number of conditions related to the glymphatic system. Thus, although this was expected in the original report, the results of the ALPS method are often interpreted as uniquely corresponding to the function of the glymphatic system. However, a number of subsequent studies have pointed out the problems on the data interpretation. As they rightly point out, a higher ALPS-index indicates predominant Brownian motion of water molecules in the radial direction at the lateral ventricular body level, no more and no less. Fortunately, the term "ALPS-index" has become common and is now known as a common term by many researchers. Therefore, the ALPS-index should simply be expressed as high or low, and whether it reflects a glymphatic system is better to be discussed carefully. In other words, when a decreased ALPS-index is observed, it should be expressed as "decreased ALPS-index" and not directly as "glymphatic dysfunction". Recently, various methods have been proposed to evaluate the glymphatic system. It has become clear that these methods also do not seem to reflect the entirety of the extremely complex glymphatic system. This means that it would be desirable to use various methods in combination to evaluate the glymphatic system in a comprehensive manner.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
14
|
Eide PK. Neurosurgery and the glymphatic system. Acta Neurochir (Wien) 2024; 166:274. [PMID: 38904802 PMCID: PMC11192689 DOI: 10.1007/s00701-024-06161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
The discovery of the glymphatic system has fundamentally altered our comprehension of cerebrospinal fluid transport and the removal of waste from brain metabolism. In the past decade, since its initial characterization, research on the glymphatic system has surged exponentially. Its potential implications for central nervous system disorders have sparked significant interest in the field of neurosurgery. Nonetheless, ongoing discussions and debates persist regarding the concept of the glymphatic system, and our current understanding largely relies on findings from experimental animal studies. This review aims to address several key inquiries: What methodologies exist for evaluating glymphatic function in humans today? What is the current evidence supporting the existence of a human glymphatic system? Can the glymphatic system be considered distinct from the meningeal-lymphatic system? What is the human evidence for glymphatic-meningeal lymphatic system failure in neurosurgical diseases? Existing literature indicates a paucity of techniques available for assessing glymphatic function in humans. Thus far, intrathecal contrast-enhanced magnetic resonance imaging (MRI) has shown the most promising results and have provided evidence for the presence of a glymphatic system in humans, albeit with limitations. It is, however, essential to recognize the interconnection between the glymphatic and meningeal lymphatic systems, as they operate in tandem. There are some human studies demonstrating deteriorations in glymphatic function associated with neurosurgical disorders, enriching our understanding of their pathophysiology. However, the translation of this knowledge into clinical practice is hindered by the constraints of current glymphatic imaging modalities.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Nydalen, Pb 4950 N-0424, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway.
| |
Collapse
|
15
|
Miao A, Luo T, Hsieh B, Edge CJ, Gridley M, Wong RTC, Constandinou TG, Wisden W, Franks NP. Brain clearance is reduced during sleep and anesthesia. Nat Neurosci 2024; 27:1046-1050. [PMID: 38741022 PMCID: PMC11156584 DOI: 10.1038/s41593-024-01638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
It has been suggested that the function of sleep is to actively clear metabolites and toxins from the brain. Enhanced clearance is also said to occur during anesthesia. Here, we measure clearance and movement of fluorescent molecules in the brains of male mice and show that movement is, in fact, independent of sleep and wake or anesthesia. Moreover, we show that brain clearance is markedly reduced, not increased, during sleep and anesthesia.
Collapse
Affiliation(s)
- Andawei Miao
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Tianyuan Luo
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Bryan Hsieh
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
- Centre for Doctoral Training and Centre for Neurotechnology, Imperial College London, London, UK
| | - Christopher J Edge
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
| | - Morgan Gridley
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
| | - Ryan Tak Chun Wong
- Department of Life Sciences, Imperial College London, South Kensington, London, UK
| | - Timothy G Constandinou
- Department of Electrical and Electronic Engineering and UK Dementia Research Institute, Care Research & Technology, Imperial College London, London, UK
| | - William Wisden
- Department of Life Sciences, Imperial College London, South Kensington, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- Centre for Doctoral Training and Centre for Neurotechnology, Imperial College London, London, UK.
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, South Kensington, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- Centre for Doctoral Training and Centre for Neurotechnology, Imperial College London, London, UK.
| |
Collapse
|
16
|
Shang Q, Zhou J, Yao J, Feng C, Lou H, Cong D. Sleep duration and the risk of new-onset arthritis in middle-aged and older adult population: results from prospective cohort study in China. Front Public Health 2024; 12:1321860. [PMID: 38873298 PMCID: PMC11169742 DOI: 10.3389/fpubh.2024.1321860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Background The pain and sleep disorders caused by arthritis are health issues that have been re-emphasized with the aging population. However, the majority of research on arthritis and sleep disorders has focused on cases that have already been diagnosed with arthritis. This research aims to explore the correlation between sleep duration and new-onset arthritis in middle-aged and older adult individuals. Methods Utilizing data from the China Health and Retirement Longitudinal Study from baseline (2011) to the Wave 3 follow-up (2018), we conducted a 7-year longitudinal investigation targeting populations with valid sleep questionnaire records and without arthritis. Sleep duration was assessed from nighttime sleep and daytime nap records. The new-onset of arthritis was determined based on self-reported diagnosis. We employed different logistic regression models to consider the potential impact of sleep duration on arthritis and conducted mediation analyses to assess the involvement of BMI in the association between sleep duration and the new-onset risk of arthritis. Results Out of the 6,597 individuals analyzed in the cohort, 586 (8.9%) were diagnosed with new-onset arthritis. Median sleep duration was notably shorter in the new-onset arthritis group (6.63 vs. 6.41 h, p < 0.05). There was a notable negative correlation found between new-onset risk of arthritis and sleep duration, with each Interquartile Range (IQR) increment in sleep leading to a 16% risk reduction (OR: 0.864; 95% CI: 0.784-0.954). Stratified analyses revealed BMI as a potential modifier in the sleep-arthritis relationship (P for interaction = 0.05). Mediation analyses further showed that about 3.5% of the association was mediated by BMI. Additionally, the inclusion of sleep duration improved the arthritis predictive power of our model, with an IDI of 0.105 (0.0203, 0.1898) and an NRI of 0.0013 (0.0004, 0.0022) after adding sleep duration to the basic model. Conclusion In the middle-aged and older adult demographic of China, increased sleep duration is associated with a decreased new-onset risk of arthritis, with BMI potentially playing a role in mediating this connection.
Collapse
Affiliation(s)
- Qiangqiang Shang
- Department of Tuina, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jie Zhou
- Department of Anorectal, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Junjie Yao
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chaoqun Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Huijuan Lou
- Department of Tuina, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Deyu Cong
- Department of Tuina, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
17
|
Bork PAR, Hauglund NL, Mori Y, Møllgård K, Hjorth PG, Nedergaard M. Modeling of brain efflux: Constraints of brain surfaces. Proc Natl Acad Sci U S A 2024; 121:e2318444121. [PMID: 38598340 PMCID: PMC11032467 DOI: 10.1073/pnas.2318444121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024] Open
Abstract
Fluid efflux from the brain plays an important role in solute waste clearance. Current experimental approaches provide little spatial information, and data collection is limited due to short duration or low frequency of sampling. One approach shows tracer efflux to be independent of molecular size, indicating bulk flow, yet also decelerating like simple membrane diffusion. In an apparent contradiction to this report, other studies point to tracer efflux acceleration. We here develop a one-dimensional advection-diffusion model to gain insight into brain efflux principles. The model is characterized by nine physiological constants and three efflux parameters for which we quantify prior uncertainty. Using Bayes' rule and the two efflux studies, we validate the model and calculate data-informed parameter distributions. The apparent contradictions in the efflux studies are resolved by brain surface boundaries being bottlenecks for efflux. To critically test the model, a custom MRI efflux assay measuring solute dispersion in tissue and release to cerebrospinal fluid was employed. The model passed the test with tissue bulk flow velocities in the range 60 to 190 [Formula: see text]m/h. Dimensional analysis identified three principal determinants of efflux, highlighting brain surfaces as a restricting factor for metabolite solute clearance.
Collapse
Affiliation(s)
- Peter A. R. Bork
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200Denmark
| | - Natalie L. Hauglund
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200Denmark
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200Denmark
| | - Poul G. Hjorth
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby2800Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200Denmark
| |
Collapse
|
18
|
Gan Y, Thomas JH, Kelley DH. Gaps in the wall of a perivascular space act as valves to produce a directed flow of cerebrospinal fluid: a hoop-stress model. J R Soc Interface 2024; 21:20230659. [PMID: 38565158 PMCID: PMC10987236 DOI: 10.1098/rsif.2023.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
The flow of cerebrospinal fluid (CSF) along perivascular spaces (PVSs) is an important part of the brain's system for clearing metabolic waste. Astrocyte endfeet bound the PVSs of penetrating arteries, separating them from brain extracellular space. Gaps between astrocyte endfeet might provide a low-resistance pathway for fluid transport across the wall. Recent studies suggest that the astrocyte endfeet function as valves that rectify the CSF flow, producing the net flow observed in pial PVSs by changing the size of the gaps in response to pressure changes. In this study, we quantify this rectification based on three features of the PVSs: the quasi-circular geometry, the deformable endfoot wall, and the pressure oscillation inside. We provide an analytical model, based on the thin-shell hoop-stress approximation, and predict a pumping efficiency of about 0.4, which would contribute significantly to the observed flow. When we add the flow resistance of the extracellular space (ECS) to the model, we find an increased net flow during sleep, due to the known increase in ECS porosity (decreased flow resistance) compared to that in the awake state. We corroborate our analytical model with three-dimensional fluid-solid interaction simulations.
Collapse
Affiliation(s)
- Yiming Gan
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
19
|
Ringstad G, Eide PK. Glymphatic-lymphatic coupling: assessment of the evidence from magnetic resonance imaging of humans. Cell Mol Life Sci 2024; 81:131. [PMID: 38472405 PMCID: PMC10933166 DOI: 10.1007/s00018-024-05141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 03/14/2024]
Abstract
The discoveries that cerebrospinal fluid participates in metabolic perivascular exchange with the brain and further drains solutes to meningeal lymphatic vessels have sparked a tremendous interest in translating these seminal findings from animals to humans. A potential two-way coupling between the brain extra-vascular compartment and the peripheral immune system has implications that exceed those concerning neurodegenerative diseases, but also imply that the central nervous system has pushed its immunological borders toward the periphery, where cross-talk mediated by cerebrospinal fluid may play a role in a range of neoplastic and immunological diseases. Due to its non-invasive approach, magnetic resonance imaging has typically been the preferred methodology in attempts to image the glymphatic system and meningeal lymphatics in humans. Even if flourishing, the research field is still in its cradle, and interpretations of imaging findings that topographically associate with reports from animals have yet seemed to downplay the presence of previously described anatomical constituents, particularly in the dura. In this brief review, we illuminate these challenges and assess the evidence for a glymphatic-lymphatic coupling. Finally, we provide a new perspective on how human brain and meningeal clearance function may possibly be measured in future.
Collapse
Affiliation(s)
- Geir Ringstad
- Department of Radiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway.
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Bateman GA, Bateman AR. A perspective on the evidence for glymphatic obstruction in spaceflight associated neuro-ocular syndrome and fatigue. NPJ Microgravity 2024; 10:23. [PMID: 38418508 PMCID: PMC10901896 DOI: 10.1038/s41526-024-00365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Spaceflight associated neuro-ocular syndrome (SANS) alters the vision of astronauts during long-duration spaceflights. Previously, the current authors have discussed the similarities and differences between SANS and idiopathic intracranial hypertension to try to elucidate a possible pathophysiology. Recently, a theory has been advanced that SANS may occur secondary to failure of the glymphatic system caused by venous dilatation within the brain and optic nerves. There is recent evidence to suggest glymphatic obstruction occurs in childhood hydrocephalus, multiple sclerosis and syringomyelia due to venous outflow dilatation similar to that proposed in SANS. The purpose of the current paper is to discuss the similarities and differences between the known CSF and venous pathophysiology in SANS with these other terrestrial diseases, to see if they can shed any further light on the underlying cause of this microgravity-induced disease.
Collapse
Affiliation(s)
- Grant Alexander Bateman
- Department of Medical Imaging, John Hunter Hospital, Newcastle, NSW, Australia.
- Newcastle University Faculty of Health, Callaghan Campus, Newcastle, NSW, Australia.
| | | |
Collapse
|
21
|
Johnson MJ, Abdelmalik MR, Baidoo FA, Badachhape A, Hughes TJ, Hossain SS. Image-guided subject-specific modeling of glymphatic transport and amyloid deposition. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2023; 417:116449. [PMID: 38249440 PMCID: PMC10798618 DOI: 10.1016/j.cma.2023.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The glymphatic system is a brain-wide system of perivascular networks that facilitate exchange of cerebrospinal fluid (CSF) and interstitial fluid (ISF) to remove waste products from the brain. A greater understanding of the mechanisms for glymphatic transport may provide insight into how amyloid beta (A β ) and tau agglomerates, key biomarkers for Alzheimer's disease and other neurodegenerative diseases, accumulate and drive disease progression. In this study, we develop an image-guided computational model to describe glymphatic transport and A β deposition throughout the brain. A β transport and deposition are modeled using an advection-diffusion equation coupled with an irreversible amyloid accumulation (damage) model. We use immersed isogeometric analysis, stabilized using the streamline upwind Petrov-Galerkin (SUPG) method, where the transport model is constructed using parameters inferred from brain imaging data resulting in a subject-specific model that accounts for anatomical geometry and heterogeneous material properties. Both short-term (30-min) and long-term (12-month) 3D simulations of soluble amyloid transport within a mouse brain model were constructed from diffusion weighted magnetic resonance imaging (DW-MRI) data. In addition to matching short-term patterns of tracer deposition, we found that transport parameters such as CSF flow velocity play a large role in amyloid plaque deposition. The computational tools developed in this work will facilitate investigation of various hypotheses related to glymphatic transport and fundamentally advance our understanding of its role in neurodegeneration, which is crucial for the development of preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Michael J. Johnson
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th St, Austin, Texas 78712, USA
| | - Michael R.A. Abdelmalik
- Department of Mechanical Engineering, Eindhoven University of Technology, Gemini, Building number 15, Groene Loper, 5612 AE Eindhoven, The Netherlands
| | - Frimpong A. Baidoo
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th St, Austin, Texas 78712, USA
| | - Andrew Badachhape
- Department of Radiology, Baylor College of Medicine, 701 Fannin Street, Suite 47, Houston, Texas 77030, USA
| | - Thomas J.R. Hughes
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th St, Austin, Texas 78712, USA
| | - Shaolie S. Hossain
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th St, Austin, Texas 78712, USA
- Molecular Cardiology Research Laboratories, The Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas 77030, USA
| |
Collapse
|
22
|
Melin E, Pripp AH, Eide PK, Ringstad G. In vivo distribution of cerebrospinal fluid tracer in human upper spinal cord and brain stem. JCI Insight 2023; 8:e173276. [PMID: 38063195 PMCID: PMC10795833 DOI: 10.1172/jci.insight.173276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUNDIntrathecal injection is an attractive route through which drugs can be administered and directed to the spinal cord, restricted by the blood-spinal cord barrier. However, in vivo data on the distribution of cerebrospinal fluid (CSF) substances in the human spinal cord are lacking. We conducted this study to assess the enrichment of a CSF tracer in the upper cervical spinal cord and the brain stem.METHODSAfter lumbar intrathecal injection of a magnetic resonance imaging (MRI) contrast agent, gadobutrol, repeated blood samples and MRI of the upper cervical spinal cord, brain stem, and adjacent subarachnoid spaces (SAS) were obtained through 48 hours. The MRI scans were then analyzed for tracer distribution in the different regions and correlated to age, disease, and amounts of tracer in the blood to determine CSF-to-blood clearance.RESULTSThe study included 26 reference individuals and 35 patients with the dementia subtype idiopathic normal pressure hydrocephalus (iNPH). The tracer enriched all analyzed regions. Moreover, tracer enrichment in parenchyma was associated with tracer enrichment in the adjacent SAS and with CSF-to-blood clearance. Clearance from the CSF was delayed in patients with iNPH compared with younger reference patients.CONCLUSIONA CSF tracer substance administered to the lumbar thecal sac can access the parenchyma of the upper cervical spinal cord and brain stem. Since CSF-to-blood clearance is highly individual and is associated with tracer level in CSF, clearance assessment may be used to tailor intrathecal treatment regimes.FUNDINGSouth-Eastern Norway Regional Health and Østfold Hospital Trust supported the research and publication of this work.
Collapse
Affiliation(s)
- Erik Melin
- Department of Radiology, Østfold Hospital Trust, Grålum, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo, Norway
- Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Per Kristian Eide
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery and
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, Arendal, Norway
| |
Collapse
|
23
|
Gjerde IG, Rognes ME, Sánchez AL. The directional flow generated by peristalsis in perivascular networks-Theoretical and numerical reduced-order descriptions. JOURNAL OF APPLIED PHYSICS 2023; 134:174701. [PMID: 37927848 PMCID: PMC10624506 DOI: 10.1063/5.0160334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Directional fluid flow in perivascular spaces surrounding cerebral arteries is hypothesized to play a key role in brain solute transport and clearance. While various drivers for a pulsatile flow, such as cardiac or respiratory pulsations, are well quantified, the question remains as to which mechanisms could induce a directional flow within physiological regimes. To address this question, we develop theoretical and numerical reduced-order models to quantify the directional (net) flow induceable by peristaltic pumping in periarterial networks. Each periarterial element is modeled as a slender annular space bounded internally by a circular tube supporting a periodic traveling (peristaltic) wave. Under reasonable assumptions of a small Reynolds number flow, small radii, and small-amplitude peristaltic waves, we use lubrication theory and regular perturbation methods to derive theoretical expressions for the directional net flow and pressure distribution in the perivascular network. The reduced model is used to derive closed-form analytical expressions for the net flow for simple network configurations of interest, including single elements, two elements in tandem, and a three element bifurcation, with results compared with numerical predictions. In particular, we provide a computable theoretical estimate of the net flow induced by peristaltic motion in perivascular networks as a function of physiological parameters, notably, wave length, frequency, amplitude, and perivascular dimensions. Quantifying the maximal net flow for specific physiological regimes, we find that vasomotion may induce net pial periarterial flow velocities on the order of a few to tens of μ m/s and that sleep-related changes in vasomotion pulsatility may drive a threefold flow increase.
Collapse
Affiliation(s)
- I. G. Gjerde
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Kristian Augusts gate 23, Oslo 0164, Norway
| | - M. E. Rognes
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Kristian Augusts gate 23, Oslo 0164, Norway
| | - A. L. Sánchez
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, San Diego, California 92093-0411, USA
| |
Collapse
|