1
|
Makhado BP, Oladipo AO, Gumbi NN, De Kock LA, Andraos C, Gulumian M, Nxumalo EN. Unravelling the toxicity of carbon nanomaterials - From cellular interactions to mechanistic understanding. Toxicol In Vitro 2024; 100:105898. [PMID: 39029601 DOI: 10.1016/j.tiv.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The application of carbon nanomaterials in diverse fields has substantially increased their demand for commercial usage. Within the earliest decade, the development of functional materials has further increased the significance of this element. Despite the advancements recorded, the potential harmful impacts of embracing carbon nanomaterials for biological applications must be balanced against their advantages. Interestingly, many studies have neglected the intriguing and dynamic cellular interaction of carbon nanomaterials and the mechanistic understanding of their property-driven behaviour, even though common toxicity profiles have been reported. Reiterating the toxicity issue, several researchers conclude that these materials have minimal toxicity and may be safe for contact with biological systems at certain dosages. Here, we aim to provide a report on the significance of some of the properties that influence their toxicity. After that, a description of the implication of nanotoxicology in humans and living systems, revealing piece by piece their exposure routes and possible risks, will be provided. Then, an extensive discussion of the mechanistic puzzle modulating the interface between various human cellular systems and carbon nanomaterials such as carbon nanotubes, carbon dots, graphene, fullerenes, and nanodiamonds will follow. Finally, this review also sheds light on the organization that handles the risk associated with nanomaterials.
Collapse
Affiliation(s)
- Bveledzani P Makhado
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort 1710, South Africa
| | - Nozipho N Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Lueta A De Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Charlene Andraos
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa; National Institute for Occupational Health (NIOH), National Health Laboratory Service (NHLS), Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa.
| |
Collapse
|
2
|
Hong T, Zhou Q, Liu Y, Guan J, Zhou W, Tan S, Cai Z. From individuals to families: design and application of self-similar chiral nanomaterials. MATERIALS HORIZONS 2024; 11:3975-3995. [PMID: 38957038 DOI: 10.1039/d4mh00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Establishing an intimate relationship between similar individuals is the beginning of self-extension. Various self-similar chiral nanomaterials can be designed using an individual-to-family approach, accomplishing self-extension. This self-similarity facilitates chiral communication, transmission, and amplification of synthons. We focus on describing the marriage of discrete cages to develop self-similar extended frameworks. The advantages of utilizing cage-based frameworks for chiral recognition, enantioseparation, chiral catalysis and sensing are highlighted. To further promote self-extension, fractal chiral nanomaterials with self-similar and iterated architectures have attracted tremendous attention. The beauty of a fractal family tree lies in its ability to capture the complexity and interconnectedness of a family's lineage. As a type of fractal material, nanoflowers possess an overarching importance in chiral amplification due to their large surface-to-volume ratio. This review summarizes the design and application of state-of-the-art self-similar chiral nanomaterials including cage-based extended frameworks, fractal nanomaterials, and nanoflowers. We hope this formation process from individuals to families will inherit and broaden this great chirality.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Qi Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Yilian Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Jiaqi Guan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Songwen Tan
- Monash Suzhou Research Institute, Monash University, Suzhou SIP 215000, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213100, China
| |
Collapse
|
3
|
Li S, Ju X, Liu Q, Yan Y, Zhang C, Qin Y, Deng X, Li C, Tian M, Zhang Y, Jin N, Jiang C. Ambient atmospheric PM worsens mouse lung injury induced by influenza A virus through lysosomal dysfunction. Respir Res 2023; 24:306. [PMID: 38057804 DOI: 10.1186/s12931-023-02618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Particulate matter (PM) air pollution poses a significant risk to respiratory health and is especially linked with various infectious respiratory diseases such as influenza. Our previous studies have shown that H5N1 virus infection could induce alveolar epithelial A549 cell death by enhancing lysosomal dysfunction. This study aims to investigate the mechanisms underlying the effects of PM on influenza virus infections, with a particular focus on lysosomal dysfunction. RESULTS Here, we showed that PM nanoparticles such as silica and alumina could induce A549 cell death and lysosomal dysfunction, and degradation of lysosomal-associated membrane proteins (LAMPs), which are the most abundant lysosomal membrane proteins. The knockdown of LAMPs with siRNA facilitated cellular entry of both H1N1 and H5N1 influenza viruses. Furthermore, we demonstrated that silica and alumina synergistically increased alveolar epithelial cell death induced by H1N1 and H5N1 influenza viruses by enhancing lysosomal dysfunction via LAMP degradation and promoting viral entry. In vivo, lung injury in the H5N1 virus infection-induced model was exacerbated by pre-exposure to silica, resulting in an increase in the wet/dry ratio and histopathological score. CONCLUSIONS Our findings reveal the mechanism underlying the synergistic effect of nanoparticles in the early stage of the influenza virus life cycle and may explain the increased number of respiratory patients during periods of air pollution.
Collapse
Affiliation(s)
- Shunwang Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiangwu Ju
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Qiang Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yiwu Yan
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Cong Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuhao Qin
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xingyu Deng
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yanli Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Chengyu Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
4
|
Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: A critical review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Gosavi D, Cheatham B, Sztuba-Solinska J. Label-Free Detection of Human Coronaviruses in Infected Cells Using Enhanced Darkfield Hyperspectral Microscopy (EDHM). J Imaging 2022; 8:24. [PMID: 35200727 PMCID: PMC8874371 DOI: 10.3390/jimaging8020024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Human coronaviruses (HCoV) are causative agents of mild to severe intestinal and respiratory infections in humans. In the last 15 years, we have witnessed the emergence of three zoonotic, highly pathogenic HCoVs. Thus, early and accurate detection of these viral pathogens is essential for preventing transmission and providing timely treatment and monitoring of drug resistance. Herein, we applied enhanced darkfield hyperspectral microscopy (EDHM), a novel non-invasive, label-free diagnostic tool, to rapidly and accurately identify two strains of HCoVs, i.e., OC43 and 229E. The EDHM technology allows collecting the optical image with spectral and spatial details in a single measurement without direct contact between the specimen and the sensor. Thus, it can directly map spectral signatures specific for a given viral strain in a complex biological milieu. Our study demonstrated distinct spectral patterns for HCoV-OC43 and HCoV-229E virions in the solution, serving as distinguishable parameters for their differentiation. Furthermore, spectral signatures obtained for both HCoV strains in the infected cells displayed a considerable peak wavelength shift compared to the uninfected cell, indicating that the EDHM is applicable to detect HCoV infection in mammalian cells.
Collapse
Affiliation(s)
- Devadatta Gosavi
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL 36849, USA;
| | - Byron Cheatham
- Cytoviva, Inc., 570 Devall Drive Suite 301, Auburn, AL 36832, USA;
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL 36849, USA;
| |
Collapse
|
6
|
Roy S, Sarkhel S, Bisht D, Hanumantharao SN, Rao S, Jaiswal A. Antimicrobial Mechanisms of Biomaterials: From Macro to Nano. Biomater Sci 2022; 10:4392-4423. [DOI: 10.1039/d2bm00472k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overcoming the global concern of antibiotic resistance is one of the biggest challenge faced by scientists today and the key to tackle this issue of emerging infectious diseases is the...
Collapse
|
7
|
Manzanas C, Alam MM, Loeb JC, Lednicky JA, Wu CY, Fan ZH. A Valve-Enabled Sample Preparation Device with Isothermal Amplification for Multiplexed Virus Detection at the Point-of-Care. ACS Sens 2021; 6:4176-4184. [PMID: 34767357 PMCID: PMC8609915 DOI: 10.1021/acssensors.1c01718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses at the point-of-care is crucial for reducing disease transmission during the current pandemic and future flu seasons. To prepare for potential cocirculation of these two viruses, we report a valve-enabled, paper-based sample preparation device integrated with isothermal amplification for their simultaneous detection. The device incorporates (1) virus lysis and RNA enrichment, enabled by ball-based valves for sequential delivery of reagents with no pipet requirement, (2) reverse transcription loop-mediated isothermal amplification, carried out in a coffee mug, and (3) colorimetric detection. We have used the device for simultaneously detecting inactivated SARS-CoV-2 and influenza A H1N1 viruses in 50 min, with limits of detection at 2 and 6 genome equivalents, respectively. The device was further demonstrated to detect both viruses in environmental samples.
Collapse
Affiliation(s)
- Carlos Manzanas
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P. O. Box 116250, Gainesville, Florida 32611, United States
| | - Md Mahbubul Alam
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida 32610, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Julia C Loeb
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida 32610, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32610, United States
| | - John A Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida 32610, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P. O. Box 116250, Gainesville, Florida 32611, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Russo M, Humes ST, Figueroa AM, Tagmount A, Zhang P, Loguinov A, Lednicky JA, Sabo-Attwood T, Vulpe CD, Liu B. Organochlorine Pesticide Dieldrin Suppresses Cellular Interferon-Related Antiviral Gene Expression. Toxicol Sci 2021; 182:260-274. [PMID: 34051100 DOI: 10.1093/toxsci/kfab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Organochlorine pesticides (OCPs) are persistent pollutants linked to diverse adverse health outcomes. Environmental exposure to OCPs has been suggested to negatively impact the immune system but their effects on cellular antiviral responses remain unknown. Transcriptomic analysis of N27 rat dopaminergic neuronal cells unexpectedly detected high level expression of genes in the interferon (IFN)-related antiviral response pathways including the IFN-induced protein with tetratricopeptide repeats 1 and 2 (Ifit1/2) and the MX Dynamin Like GTPases Mx1 and Mx2. Interestingly, treatment of N27 cells with dieldrin markedly downregulated the expression of many of these genes. Dieldrin exterted a similar effect in inhibiting IFIT2 and MX1 gene expression in human SH-SY5Y neuronal cells induced by an RNA viral mimic, polyinosinic: polycytidylic acid (poly I:C) and IFIT2/3 gene expression in human pulmonary epithelial cells exposed to human influenza H1N1 virus. Mechanistically, dieldrin induced a rapid rise in levels of intracellular reactive oxygen species (iROS) and a decrease in intracellular glutathione (GSH) levels in SH-SY5Y cells. Treatment with N-acetylcysteine, an antioxidant and GSH biosynthesis precursor, effectively blocked both dieldrin-induced increases in iROS and its inhibition of poly I:C-induced upregulation of IFIT and MX gene expression, suggesting a role for intracellular oxidative status in dieldrin's modulation of antiviral gene expression. This study demonstrates that dieldrin modulates key genes of the cellular innate immune responses that are normally involved in the host's cellular defense against viral infections. Our findings have potential relevance to understanding the organismal effects of environmentally persistent organochlorine contaminants on the mammalian cellular immune system.
Collapse
Affiliation(s)
- Max Russo
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Sara T Humes
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Ariana M Figueroa
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Abderrahmane Tagmount
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - Ping Zhang
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Alex Loguinov
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - John A Lednicky
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Chris D Vulpe
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - Bin Liu
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| |
Collapse
|
9
|
Clarke K, Manrique A, Sabo-Attwood T, Coker ES. A Narrative Review of Occupational Air Pollution and Respiratory Health in Farmworkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4097. [PMID: 33924663 PMCID: PMC8070429 DOI: 10.3390/ijerph18084097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 01/13/2023]
Abstract
The agricultural crop sector in the United States depends on migrant, seasonal, and immigrant farmworkers. As an ethnic minority group in the U.S. with little access to health care and a high level of poverty, farmworkers face a combination of adverse living and workplace conditions, such as exposure to high levels of air pollution, that can place them at a higher risk for adverse health outcomes including respiratory infections. This narrative review summarizes peer-reviewed original epidemiology research articles (2000-2020) focused on respirable dust exposures in the workplace and respiratory illnesses among farmworkers. We found studies (n = 12) that assessed both air pollution and respiratory illnesses in farmworkers. Results showed that various air pollutants and respiratory illnesses have been assessed using appropriate methods (e.g., personal filter samplers and spirometry) and a consistent pattern of increased respiratory illness in relation to agricultural dust exposure. There were several gaps in the literature; most notably, no study coupled occupational air exposure and respiratory infection among migrant, seasonal and immigrant farmworkers in the United States. This review provides an important update to the literature regarding recent epidemiological findings on the links between occupational air pollution exposures and respiratory health among vulnerable farmworker populations.
Collapse
Affiliation(s)
| | | | | | - Eric S. Coker
- Environmental and Global Health Department, University of Florida, Gainesville, FL 32603, USA; (K.C.); (A.M.); (T.S.-A.)
| |
Collapse
|
10
|
Goswami M, Rekhi P, Debnath M, Ramakrishna S. Microbial Polyhydroxyalkanoates Granules: An Approach Targeting Biopolymer for Medical Applications and Developing Bone Scaffolds. Molecules 2021; 26:860. [PMID: 33562111 PMCID: PMC7915662 DOI: 10.3390/molecules26040860] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Microbial polyhydroxyalkanoates (PHA) are proteinaceous storage granules ranging from 100 nm to 500 nm. Bacillus sp. serve as unique bioplastic sources of short-chain length and medium-chain length PHA showcasing properties such as biodegradability, thermostability, and appreciable mechanical strength. The PHA can be enhanced by adding functional groups to make it a more industrially useful biomaterial. PHA blends with hydroxyapatite to form nanocomposites with desirable features of compressibility. The reinforced matrices result in nanocomposites that possess significantly improved mechanical and thermal properties both in solid and melt states along with enhanced gas barrier properties compared to conventional filler composites. These superior qualities extend the polymeric composites' applications to aggressive environments where the neat polymers are likely to fail. This nanocomposite can be used in different industries as nanofillers, drug carriers for packaging essential hormones and microcapsules, etc. For fabricating a bone scaffold, electrospun nanofibrils made from biocomposite of hydroxyapatite and polyhydroxy butyrate, a form of PHA, can be incorporated with the targeted tissue. The other methods for making a polymer scaffold, includes gas foaming, lyophilization, sol-gel, and solvent casting method. In this review, PHA as a sustainable eco-friendly NextGen biomaterial from bacterial sources especially Bacillus cereus, and its application for fabricating bone scaffold using different strategies for bone regeneration have been discussed.
Collapse
Affiliation(s)
- Moushmi Goswami
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Pavni Rekhi
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore;
| |
Collapse
|
11
|
Cardoso VMDO, Moreira BJ, Comparetti EJ, Sampaio I, Ferreira LMB, Lins PMP, Zucolotto V. Is Nanotechnology Helping in the Fight Against COVID-19? FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.588915] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
12
|
Chen H, Humes ST, Rose M, Robinson SE, Loeb JC, Sabaraya IV, Smith LC, Saleh NB, Castleman WL, Lednicky JA, Sabo-Attwood T. Hydroxyl functionalized multi-walled carbon nanotubes modulate immune responses without increasing 2009 pandemic influenza A/H1N1 virus titers in infected mice. Toxicol Appl Pharmacol 2020; 404:115167. [PMID: 32771490 PMCID: PMC10636740 DOI: 10.1016/j.taap.2020.115167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
Growing use of carbon nanotubes (CNTs) have garnered concerns regarding their association with adverse health effects. Few studies have probed how CNTs affect a host's susceptibility to pathogens, particularly respiratory viruses. We reported that exposure of lung cells and mice to pristine single-walled CNTs (SWCNTs) leads to significantly increased influenza virus H1N1 strain A/Mexico/4108/2009 (IAV) titers in concert with repressed antiviral immune responses. In the present study, we investigated if hydroxylated multi-walled CNTs (MWCNTs), would result in similar outcomes. C57BL/6 mice were exposed to 20 μg MWCNTs on day 0 and IAV on day 3 and samples were collected on day 7. We investigated pathological changes, viral titers, immune-related gene expression in lung tissue, and quantified differential cell counts and cytokine and chemokine levels in bronchoalveolar lavage fluid. MWCNTs alone caused mild inflammation with no apparent changes in immune markers whereas IAV alone presented typical infection-associated inflammation, pathology, and titers. The co-exposure (MWCNTs + IAV) did not alter titers or immune cell profiles compared to the IAV only but increased concentrations of IL-1β, TNFα, GM-CSF, KC, MIPs, and RANTES and inhibited mRNA expression of Tlr3, Rig-i, Mda5, and Ifit2. Our findings suggest MWCNTs modulate immune responses to IAV with no effect on the viral titer and modest pulmonary injury, a result different from those reported for SWCNT exposures. This is the first study to show that MWCNTs modify cytokine and chemokine responses that control aspects of host defenses which may play a greater role in mitigating IAV infections.
Collapse
Affiliation(s)
- Hao Chen
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Sara T Humes
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Melanie Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Julia C Loeb
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Indu V Sabaraya
- Department of Civil, Architectural, and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | - L Cody Smith
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Navid B Saleh
- Department of Civil, Architectural, and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | - William L Castleman
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, Gainesville, FL 32611, USA
| | - John A Lednicky
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
13
|
Sheikhpour M, Naghinejad M, Kasaeian A, Lohrasbi A, Shahraeini SS, Zomorodbakhsh S. The Applications of Carbon Nanotubes in the Diagnosis and Treatment of Lung Cancer: A Critical Review. Int J Nanomedicine 2020; 15:7063-7078. [PMID: 33061368 PMCID: PMC7522408 DOI: 10.2147/ijn.s263238] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The importance of timely diagnosis and the complete treatment of lung cancer for many people with this deadly disease daily increases due to its high mortality. Diagnosis and treatment with helping the nanoparticles are useful, although they have reasonable harms. This article points out that the side effects of using carbon nanotube (CNT) in this disease treatment process such as inflammation, fibrosis, and carcinogenesis are very problematic. Toxicity can reduce to some extent using the techniques such as functionalizing to proper dimensions as a longer length, more width, and greater curvature. The targeted CNT sensors can be connected to various modified vapors. In this regard, with helping this method, screening makes non-invasive diagnosis possible. Researchers have also found that nanoparticles such as CNTs could be used as carriers to direct drug delivery, especially with chemotherapy drugs. Most of these carriers were multi-wall carbon nanotubes (MWCNT) used for cancerous cell targeting. The results of laboratory and animal researches in the field of diagnosis and treatment became very desirable and hopeful. The collection of researches summarized has highlighted the requirement for a detailed assessment which includes CNT dose, duration, method of induction, etc., to achieve the most controlled conditions for animal and human studies. In the discussion section, 4 contradictory issues are discussed which are invited researchers to do more research to get clearer results.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Naghinejad
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Alibakhsh Kasaeian
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Armaghan Lohrasbi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shahab Zomorodbakhsh
- Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
| |
Collapse
|
14
|
Chen KK, Minakuchi M, Wuputra K, Ku CC, Pan JB, Kuo KK, Lin YC, Saito S, Lin CS, Yokoyama KK. Redox control in the pathophysiology of influenza virus infection. BMC Microbiol 2020; 20:214. [PMID: 32689931 PMCID: PMC7370268 DOI: 10.1186/s12866-020-01890-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Triggered in response to external and internal ligands in cells and animals, redox homeostasis is transmitted via signal molecules involved in defense redox mechanisms through networks of cell proliferation, differentiation, intracellular detoxification, bacterial infection, and immune reactions. Cellular oxidation is not necessarily harmful per se, but its effects depend on the balance between the peroxidation and antioxidation cascades, which can vary according to the stimulus and serve to maintain oxygen homeostasis. The reactive oxygen species (ROS) that are generated during influenza virus (IV) infection have critical effects on both the virus and host cells. In this review, we outline the link between viral infection and redox control using IV infection as an example. We discuss the current state of knowledge on the molecular relationship between cellular oxidation mediated by ROS accumulation and the diversity of IV infection. We also summarize the potential anti-IV agents available currently that act by targeting redox biology/pathophysiology.
Collapse
Affiliation(s)
- Ker-Kong Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Densitory, Kaohisung University Hospital, Kaohisung, 807, Taiwan
| | - Moeko Minakuchi
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kung-Kai Kuo
- Department Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
- Saito Laboratory of Cell Technology Institute, Yalta, Tochigi, 329-1471, Japan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Kazunari K Yokoyama
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan.
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
15
|
Nanomaterial Effects on Viral Infection. INTERACTION OF NANOMATERIALS WITH THE IMMUNE SYSTEM 2020. [PMCID: PMC7122331 DOI: 10.1007/978-3-030-33962-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The potential for environmental and occupational exposures of populations to nanomaterials (NMs) has fostered concerns of associated adverse health effects, with a particular emphasis on pulmonary injury and disease. Many studies have revealed that several types of NMs can evoke a variety of biological responses, such as pulmonary inflammation and oxidative stress, which contribute to allergy, fibrosis, and granuloma formation. Less attention has been paid to health effects that may result from exposure to NMs and additional stressors such as pathogens, with a particular focus on susceptibility to viral infection. This chapter will summarize the current body of literature related to NMs and viral exposures with a primary focus on immune modulation. A summary of the studies performed and major findings to date will be discussed, highlighting proposed molecular mechanisms behind NM-driven host susceptibility, challenges, limitations, and future research needs. Specific mechanisms discussed include direct interaction between NMs and biological molecules, activation of pattern recognition receptors (PRRs) and related signaling pathways, production of oxidative stress and mitochondrial dysfunction, inflammasome activation, and modulation of lipid signaling networks.
Collapse
|
16
|
Chen H, Humes ST, Robinson SE, Loeb JC, Sabaraya IV, Saleh NB, Khattri RB, Merritt ME, Martyniuk CJ, Lednicky JA, Sabo-Attwood T. Single-walled carbon nanotubes repress viral-induced defense pathways through oxidative stress. Nanotoxicology 2019; 13:1176-1196. [PMID: 31328592 DOI: 10.1080/17435390.2019.1645903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Exposure of lung cells in vitro or mice to single-walled carbon nanotubes (SWCNTs) directly to the respiratory tract leads to a reduced host anti-viral immune response to infection with influenza A virus H1N1 (IAV), resulting in significant increases in viral titers. This suggests that unintended exposure to nanotubes via inhalation may increase susceptibility to notorious respiratory viruses that carry a high social and economic burden globally. However, the molecular mechanisms that contribute to viral susceptibility have not been elucidated. In the present study, we identified the retinoic acid-induced gene I (RIG-I) like receptors (RLRs)/mitochondrial antiviral signaling (MAVS) pathway as a target of SWCNT-induced oxidative stress in small airway epithelial cells (SAEC) that contribute to significantly enhanced influenza viral titers. Exposure of SAEC to SWCNTs increases viral titers while repressing several aspects of the RLR pathway, including mRNA expression of key genes (e.g. IFITs, RIG-I, MDA5, IFNβ1, CCL5). SWCNTs also reduce mitochondrial membrane potential without altering oxygen consumption rates. Our findings also indicate that SWCNTs can impair formation of MAVS prion-like aggregates, which is known to impede downstream activation of the RLR pathway and hence the transcriptional production of interferon-regulated anti-viral genes and cytokines. Furthermore, application of the antioxidant NAC alleviates inhibition of gene expression levels by SWCNTs, as well as MAVS signalosome formation, and increased viral titers. These data provide evidence of targeted impairment of anti-viral signaling networks that are vital to immune defense mechanisms in lung cells, contributing to increased susceptibility to IAV infections by SWCNTs.
Collapse
Affiliation(s)
- Hao Chen
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida , Gainesville , FL , USA
| | - Sara T Humes
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida , Gainesville , FL , USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida , Gainesville , FL , USA
| | - Julia C Loeb
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida , Gainesville , FL , USA
| | - Indu V Sabaraya
- Department of Department of Civil, Architectural, and Environmental Engineering, University of Texas Austin , Austin , TX , USA
| | - Navid B Saleh
- Department of Department of Civil, Architectural, and Environmental Engineering, University of Texas Austin , Austin , TX , USA
| | - Ram B Khattri
- Department of Biochemistry & Molecular Biology, University of Florida , Gainesville , FL , USA
| | - Matthew E Merritt
- Department of Biochemistry & Molecular Biology, University of Florida , Gainesville , FL , USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida , Gainesville , FL , USA
| | - John A Lednicky
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida , Gainesville , FL , USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida , Gainesville , FL , USA
| |
Collapse
|
17
|
Nicholas J, Chen H, Liu K, Venu I, Bolser D, Saleh NB, Bisesi JH, Castleman W, Lee Ferguson P, Sabo-Attwood T. Utilization of Near Infrared Fluorescence Imaging to Track and Quantify the Pulmonary Retention of Single-Walled Carbon Nanotubes in Mice. NANOIMPACT 2019; 14:100167. [PMID: 32818159 PMCID: PMC7430926 DOI: 10.1016/j.impact.2019.100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
As nanomaterials are used in a wide array of applications, investigations regarding health impacts associated with inhalation are a concern. Reports show that exposure to single-walled carbon nanotubes (SWCNTs) can induce fibrosis, allergic-type reactions, and pathogen susceptibility. Airway clearance is known to play a primary role in these disease states, yet SWCNT detection in biological systems is challenging. Common techniques, such as electron microscopy, lack spatial resolution and specificity to delineate SWCNTs in carbon-based organisms. Here we validated a near-infrared fluorescence imaging (NIRFI) system to track and semi-quantify SWCNTs over 21 days in tissues of mice exposed intratracheally to 1 dose of SWCNTs. In tandem, we optimized a NIRF-based spectrometry method to quantify SWCNTs, showing that NIRFI was consistent with SWCNT burdens quantified by NIRF spectroscopy in whole lung tissue homogenates. Finally, NIRFI was utilized to localize SWCNTs on lung tissue sections used for pathological analysis. Results revealed that SWCNTs remained in the lung over 21 days and were consistent with alveolar wall restructuring and granuloma formation. This study is the first to quantify SWCNTs in mouse lungs using both semi-quantitative tracking and quantitative mass measurements using NIRF, highlighting this as a sensitive and specific technique for assessing SWCNT clearance in vivo.
Collapse
Affiliation(s)
- Justine Nicholas
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, United States
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, United States
| | - Hao Chen
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, United States
| | - Keira Liu
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Indu Venu
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin TX, 78712, United States
| | - Donald Bolser
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, United States
| | - Navid B. Saleh
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin TX, 78712, United States
| | - Joseph H. Bisesi
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, United States
| | - William Castleman
- Department of Infectious Disease and Pathology, University of Florida, Gainesville, FL 32610, United States
| | - P. Lee Ferguson
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
18
|
Huaux F. Emerging Role of Immunosuppression in Diseases Induced by Micro- and Nano-Particles: Time to Revisit the Exclusive Inflammatory Scenario. Front Immunol 2018; 9:2364. [PMID: 30510551 PMCID: PMC6252316 DOI: 10.3389/fimmu.2018.02364] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Fibrosis, cancer, and autoimmunity developing upon particle exposure have been exclusively linked with uncontrolled inflammatory processes. The critical role of inflammation is now challenged by several contradictory observations indicating that the emergence of these chronic disorders may result from non-inflammatory events. A growing number of studies reveals that micro- and nano-particles can cause exaggerated and persistent immunosuppression characterized by the release of potent anti-inflammatory cytokines (IL-10 and TGF-β), and the recruitment of major regulatory immune cells (M2 macrophages, T and B regs, and MDSC). This persistent immunosuppressive environment is initially established to limit early inflammation but contributes later to fibrosis, cancer, and infection. Immunosuppression promotes fibroblast proliferation and matrix element synthesis and subverts innate and adaptive immune surveillance against tumor cells and microorganisms. This review details the contribution of immunosuppressive cells and their derived immunoregulatory mediators and delineates the mutual role of inflammatory vs. immunosuppressive mechanisms in the pathogenesis of chronic diseases induced by particles. The consideration of these new results explains how particle-related diseases can develop independently of chronic inflammation, enriches current bioassays predicting particle toxicity and suggests new clinical strategies for treating patients affected by particle-associated diseases.
Collapse
Affiliation(s)
- François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Experimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
19
|
Bhowmick R, Derakhshan T, Liang Y, Ritchey J, Liu L, Gappa-Fahlenkamp H. A Three-Dimensional Human Tissue-Engineered Lung Model to Study Influenza A Infection. Tissue Eng Part A 2018; 24:1468-1480. [PMID: 29732955 DOI: 10.1089/ten.tea.2017.0449] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) claims ∼250,000-500,000 lives annually worldwide. Currently, there are a few in vitro models available to study IAV immunopathology. Monolayer cultures of cell lines and primary lung cells (two-dimensional [2D] cell culture) is the most commonly used tool, however, this system does not have the in vivo-like structure of the lung and immune responses to IAV as it lacks the three-dimensional (3D) tissue structure. To recapitulate the lung physiology in vitro, a system that contains multiple cell types within a 3D environment that allows cell movement and interaction would provide a critical tool. In this study, as a first step in designing a 3D-Human Tissue-Engineered Lung Model (3D-HTLM), we describe the 3D culture of primary human small airway epithelial cells (HSAEpCs) and determined the immunophenotype of this system in response to IAV infections. We constructed a 3D chitosan-collagen scaffold and cultured HSAEpCs on these scaffolds at air-liquid interface (ALI). These 3D cultures were compared with 2D-cultured HSAEpCs for viability, morphology, marker protein expression, and cell differentiation. Results showed that the 3D-cultured HSAEpCs at ALI yielded maximum viable cells and morphologically resembled the in vivo lower airway epithelium. There were also significant increases in aquaporin-5 and cytokeratin-14 expression for HSAEpCs cultured in 3D compared to 2D. The 3D culture system was used to study the infection of HSAEpCs with two major IAV strains, H1N1 and H3N2. The HSAEpCs showed distinct changes in marker protein expression, both at mRNA and protein levels, and the release of proinflammatory cytokines. This study is the first step in the development of the 3D-HTLM, which will have wide applicability in studying pulmonary pathophysiology and therapeutics development.
Collapse
Affiliation(s)
- Rudra Bhowmick
- 1 School of Chemical Engineering, Oklahoma State University , Stillwater, Oklahoma
| | - Tahereh Derakhshan
- 1 School of Chemical Engineering, Oklahoma State University , Stillwater, Oklahoma
| | - Yurong Liang
- 2 Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma
| | - Jerry Ritchey
- 3 Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma
| | - Lin Liu
- 2 Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma
| | | |
Collapse
|
20
|
Chen H, Zheng X, Nicholas J, Humes ST, Loeb JC, Robinson SE, Bisesi JH, Das D, Saleh NB, Castleman WL, Lednicky JA, Sabo-Attwood T. Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza a virus titers in mice. Virol J 2017; 14:242. [PMID: 29273069 PMCID: PMC5741862 DOI: 10.1186/s12985-017-0909-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/08/2017] [Indexed: 02/02/2023] Open
Abstract
Background Numerous toxicological studies have focused on injury caused by exposure to single types of nanoparticles, but few have investigated how such exposures impact a host’s immune response to pathogen challenge. Few studies have shown that nanoparticles can alter a host’s response to pathogens (chiefly bacteria) but there is even less knowledge of the impact of such particles on viral infections. In this study, we performed experiments to investigate if exposure of mice to single-walled carbon nanotubes (SWCNT) alters immune mechanisms and viral titers following subsequent influenza A virus (IAV) infection. Methods Male C57BL/6 mice were exposed to 20 μg of SWCNT or control vehicle by intratracheal instillation followed by intranasal exposure to 3.2 × 104 TCID50 IAV or PBS after 3 days. On day 7 mice were euthanized and near-infrared fluorescence (NIRF) imaging was used to track SWCNT in lung tissues. Viral titers, histopathology, and mRNA expression of antiviral and inflammatory genes were measured in lung tissue. Differential cell counts and cytokine levels were quantified in bronchoalveolar lavage fluid (BALF). Results Viral titers showed a 63-fold increase in IAV in SWCNT + IAV exposed lungs compared to the IAV only exposure. Quantitation of immune cells in BALF indicated an increase of neutrophils in the IAV group and a mixed profile of lymphocytes and neutrophils in SWCNT + IAV treated mice. NIRF indicated SWCNT remained in the lung throughout the experiment and localized in the junctions of terminal bronchioles, alveolar ducts, and surrounding alveoli. The dual exposure exacerbated pulmonary inflammation and tissue lesions compared to SWCNT or IAV single exposures. IAV exposure increased several cytokine and chemokine levels in BALF, but greater levels of IL-4, IL-12 (P70), IP-10, MIP-1, MIP-1α, MIP-1β, and RANTES were evident in the SWCNT + IAV group. The expression of tlr3, ifnβ1, rantes, ifit2, ifit3, and il8 was induced by IAV alone but several anti-viral targets showed a repressed trend (ifits) with pre-exposure to SWCNT. Conclusions These findings reveal a pronounced effect of SWCNT on IAV infection in vivo as evidenced by exacerbated lung injury, increased viral titers and several cytokines/chemokines levels, and reduction of anti-viral gene expression. These results imply that SWCNT can increase susceptibility to respiratory viral infections as a novel mechanism of toxicity. Electronic supplementary material The online version of this article (10.1186/s12985-017-0909-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Chen
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Xiao Zheng
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Justine Nicholas
- Department of Physiological Sciences, 1333 Center Drive, Box 100144, Gainesville, FL, 32610, USA
| | - Sara T Humes
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Julia C Loeb
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Dipesh Das
- Department of Department of Civil, Architectural, and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | - Navid B Saleh
- Department of Department of Civil, Architectural, and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | - William L Castleman
- Department of Infectious Diseases and Pathology, PO Box 110880, Gainesville, FL, 32611, USA
| | - John A Lednicky
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| |
Collapse
|
21
|
Alsaleh NB, Brown JM. Immune responses to engineered nanomaterials: current understanding and challenges. CURRENT OPINION IN TOXICOLOGY 2017; 10:8-14. [PMID: 29577105 DOI: 10.1016/j.cotox.2017.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Engineered nanomaterials (ENM) are utilized in many applications due to their unique physicochemical properties. The increasing use of ENMs in consumer products raises concerns of potential adverse effects in humans and the environment. A common outcome of exposure (intentional, environmental or occupational) to ENMs is altered immune responses including inflammation, hypersensitivity, and immunosuppression. ENMs have been shown to interact with the immune system through key effector cells (i.e. mast cells and antigen presenting cells) or via complement activation leading to consequences to both innate and adaptive immunity. Further, upon introduction into a biological system, ENMs are rapidly coated with proteins, lipids and other macromolecules forming a biocorona which impacts immune cell and complement responses. In this current opinion, we highlight key studies and challenges in understanding cellular mechanisms of ENM-mediated immunomodulation and toxicity.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
22
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
23
|
Sattler C, Moritz F, Chen S, Steer B, Kutschke D, Irmler M, Beckers J, Eickelberg O, Schmitt-Kopplin P, Adler H, Stoeger T. Nanoparticle exposure reactivates latent herpesvirus and restores a signature of acute infection. Part Fibre Toxicol 2017; 14:2. [PMID: 28069010 PMCID: PMC5223553 DOI: 10.1186/s12989-016-0181-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/15/2016] [Indexed: 02/04/2023] Open
Abstract
Background Inhalation of environmental (nano) particles (NP) as well as persistent herpesvirus-infection are potentially associated with chronic lung disease and as both are omnipresent in human society a coincidence of these two factors is highly likely. We hypothesized that NP-exposure of persistently herpesvirus-infected cells as a second hit might disrupt immune control of viral latency, provoke reactivation of latent virus and eventually lead to an inflammatory response and tissue damage. Results To test this hypothesis, we applied different NP to cells or mice latently infected with murine gammaherpesvirus 68 (MHV-68) which provides a small animal model for the study of gammaherpesvirus-pathogenesis in vitro and in vivo. In vitro, NP-exposure induced expression of the typically lytic viral gene ORF50 and production of lytic virus. In vivo, lytic viral proteins in the lung increased after intratracheal instillation with NP and elevated expression of the viral gene ORF50 could be detected in cells from bronchoalveolar lavage. Gene expression and metabolome analysis of whole lung tissue revealed patterns with striking similarities to acute infection. Likewise, NP-exposure of human cells latently infected with Epstein-Barr-Virus also induced virus production. Conclusions Our results indicate that NP-exposure of persistently herpesvirus-infected cells – murine or human – restores molecular signatures found in acute virus infection, boosts production of lytic viral proteins, and induces an inflammatory response in the lung – a combination which might finally result in tissue damage and pathological alterations. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0181-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Sattler
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Franco Moritz
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit BioGeoChemistry, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Shanze Chen
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Beatrix Steer
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Marchioninistrasse 25, D-81377, Munich, Germany.,University Hospital Grosshadern, Ludwig-Maximilians-University, D-81377, Munich, Germany.,Comprehensive Pneumology Center, Member of the German Center of Lung Research (DZL), D-81377, Munich, Germany
| | - David Kutschke
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Martin Irmler
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Johannes Beckers
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.,Technische Universität München, Chair of Experimental Genetics, D-85354, Freising, Germany
| | - Oliver Eickelberg
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit BioGeoChemistry, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Heiko Adler
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Marchioninistrasse 25, D-81377, Munich, Germany. .,University Hospital Grosshadern, Ludwig-Maximilians-University, D-81377, Munich, Germany. .,Comprehensive Pneumology Center, Member of the German Center of Lung Research (DZL), D-81377, Munich, Germany.
| | - Tobias Stoeger
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
| |
Collapse
|
24
|
Park EJ, Hong YS, Lee BS, Yoon C, Jeong U, Kim Y. Single-walled carbon nanotubes disturbed the immune and metabolic regulation function 13-weeks after a single intratracheal instillation. ENVIRONMENTAL RESEARCH 2016; 148:184-195. [PMID: 27078092 DOI: 10.1016/j.envres.2016.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Due to their unique physicochemical properties, the potential health effects of single-walled carbon nanotubes (SWCNTs) have attracted continuous attention together with their extensive application. In this study, we aimed to identify local and systemic health effects following pulmonary persistence of SWCNTs. As expected, SWCNTs remained in the lung for 13 weeks after a single intratracheal instillation (50, 100, and 200μg/kg). In the lung, the total number of cells and the percentages of lymphocytes and neutrophils significantly increased at 200μg/kg compared to the control, and the Th1-polarized immune response was induced accompanying enhanced expression of tissue damage-related genes and increased release of chemokines. Additionally, SWCNTs enhanced the expression of antigen presentation-related proteins on the surface of antigen-presenting cells, however, maturation of dendritic cells was inhibited by their persistence. As compared to the control, a significant increase in the percentage of neutrophils and a remarkable decrease of BUN and potassium level were observed in the blood of mice treated with the highest dose. This was accompanied by the down-regulation of the expression of antigen presentation-related proteins on splenocytes. Moreover, protein and glucose metabolism were disturbed with an up-regulation of fatty acid β-oxidation. Taken together, we conclude that SWCNTs may induce adverse health effects by disturbing immune and metabolic regulation functions in the body. Therefore, careful application of SWCNTs is necessary for the enforcement of safety in nano-industries.
Collapse
Affiliation(s)
- Eun-Jung Park
- Myunggok Eye Research Institute, Konyang University, Daejeon 302-718, Republic of Korea.
| | - Young-Shick Hong
- Division of Food and Nutrition, Chonnam National University, Yongbong-Ro, Buk-Gu, Gwangju 500-757, Republic of Korea
| | - Byoung-Seok Lee
- Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Cheolho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul 126-16, Republic of Korea
| | - Uiseok Jeong
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| |
Collapse
|
25
|
Nikota J, Williams A, Yauk CL, Wallin H, Vogel U, Halappanavar S. Meta-analysis of transcriptomic responses as a means to identify pulmonary disease outcomes for engineered nanomaterials. Part Fibre Toxicol 2016; 13:25. [PMID: 27169501 PMCID: PMC4865099 DOI: 10.1186/s12989-016-0137-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
Background The increasing use of engineered nanomaterials (ENMs) of varying physical and chemical characteristics poses a great challenge for screening and assessing the potential pathology induced by these materials, necessitating novel toxicological approaches. Toxicogenomics measures changes in mRNA levels in cells and tissues following exposure to toxic substances. The resulting information on altered gene expression profiles, associated pathways, and the doses at which these changes occur, are used to identify the underlying mechanisms of toxicity and to predict disease outcomes. We evaluated the applicability of toxicogenomics data in identifying potential lung-specific (genomic datasets are currently available from experiments where mice have been exposed to various ENMs through this common route of exposure) disease outcomes following exposure to ENMs. Methods Seven toxicogenomics studies describing mouse pulmonary responses over time following intra-tracheal exposure to increasing doses of carbon nanotubes (CNTs), carbon black, and titanium dioxide (TiO2) nanoparticles of varying properties were examined to understand underlying mechanisms of toxicity. mRNA profiles from these studies were compared to the publicly available datasets of 15 other mouse models of lung injury/diseases induced by various agents including bleomycin, ovalbumin, TNFα, lipopolysaccharide, bacterial infection, and welding fumes to delineate the implications of ENM-perturbed biological processes to disease pathogenesis in lungs. Results The meta-analysis revealed two distinct clusters—one driven by TiO2 and the other by CNTs. Unsupervised clustering of the genes showing significant expression changes revealed that CNT response clustered with bleomycin injury and bacterial infection models, both of which are known to induce lung fibrosis, in a post-exposure-time dependent manner, irrespective of the CNT’s physical-chemical properties. TiO2 samples clustered separately from CNTs and disease models. Conclusions These results indicate that in the absence of apical toxicity data, a tiered strategy beginning with short term, in vivo tissue transcriptomics profiling can effectively and efficiently screen new ENMs that have a higher probability of inducing pulmonary pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0137-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jake Nikota
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Håkan Wallin
- National Research Centre for the Working Environment, Lerso Parkallé 105, Copenhagen, DK-2100, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen K, DK-1353, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lerso Parkallé 105, Copenhagen, DK-2100, Denmark.,Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
26
|
Fibrogenic and Immunotoxic Responses to Carbon Nanotubes. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2016. [DOI: 10.1007/978-4-431-55732-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Plazas-Tuttle J, Rowles LS, Chen H, Bisesi JH, Sabo-Attwood T, Saleh NB. Dynamism of Stimuli-Responsive Nanohybrids: Environmental Implications. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:1102-1123. [PMID: 28347054 PMCID: PMC5312917 DOI: 10.3390/nano5021102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/04/2015] [Indexed: 01/04/2023]
Abstract
Nanomaterial science and design have shifted from generating single passive nanoparticles to more complex and adaptive multi-component nanohybrids. These adaptive nanohybrids (ANHs) are designed to simultaneously perform multiple functions, while actively responding to the surrounding environment. ANHs are engineered for use as drug delivery carriers, in tissue-engineered templates and scaffolds, adaptive clothing, smart surface coatings, electrical switches and in platforms for diversified functional applications. Such ANHs are composed of carbonaceous, metallic or polymeric materials with stimuli-responsive soft-layer coatings that enable them to perform such switchable functions. Since ANHs are engineered to dynamically transform under different exposure environments, evaluating their environmental behavior will likely require new approaches. Literature on polymer science has established a knowledge core on stimuli-responsive materials. However, translation of such knowledge to environmental health and safety (EHS) of these ANHs has not yet been realized. It is critical to investigate and categorize the potential hazards of ANHs, because exposure in an unintended or shifting environment could present uncertainty in EHS. This article presents a perspective on EHS evaluation of ANHs, proposes a principle to facilitate their identification for environmental evaluation, outlines a stimuli-based classification for ANHs and discusses emerging properties and dynamic aspects for systematic EHS evaluation.
Collapse
Affiliation(s)
- Jaime Plazas-Tuttle
- Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712, USA.
| | - Lewis S Rowles
- Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712, USA.
| | - Hao Chen
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - Joseph H Bisesi
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - Navid B Saleh
- Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
28
|
GASPARINI R, AMICIZIA D, LAI P, BRAGAZZI N, PANATTO D. Compounds with anti-influenza activity: present and future of strategies for the optimal treatment and management of influenza. Part II: Future compounds against influenza virus. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2014; 55:109-29. [PMID: 26137785 PMCID: PMC4718316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In the first part of this overview, we described the life cycle of the influenza virus and the pharmacological action of the currently available drugs. This second part provides an overview of the molecular mechanisms and targets of still-experimental drugs for the treatment and management of influenza. Briefly, we can distinguish between compounds with anti-influenza activity that target influenza virus proteins or genes, and molecules that target host components that are essential for viral replication and propagation. These latter compounds have been developed quite recently. Among the first group, we will focus especially on hemagglutinin, M2 channel and neuraminidase inhibitors. The second group of compounds may pave the way for personalized treatment and influenza management. Combination therapies are also discussed. In recent decades, few antiviral molecules against influenza virus infections have been available; this has conditioned their use during human and animal outbreaks. Indeed, during seasonal and pandemic outbreaks, antiviral drugs have usually been administered in mono-therapy and, sometimes, in an uncontrolled manner to farm animals. This has led to the emergence of viral strains displaying resistance, especially to compounds of the amantadane family. For this reason, it is particularly important to develop new antiviral drugs against influenza viruses. Indeed, although vaccination is the most powerful means of mitigating the effects of influenza epidemics, antiviral drugs can be very useful, particularly in delaying the spread of new pandemic viruses, thereby enabling manufacturers to prepare large quantities of pandemic vaccine. In addition, antiviral drugs are particularly valuable in complicated cases of influenza, especially in hospitalized patients. To write this overview, we mined various databases, including Embase, PubChem, DrugBank and Chemical Abstracts Service, and patent repositories.
Collapse
Affiliation(s)
- R. GASPARINI
- Correspondence: R. Gasparini, Department of Health Sciences of Genoa University, via Pastore 1, 16132 Genoa, Italy - E-mail:
| | | | | | | | | |
Collapse
|