1
|
Im Y, Li R, Ma S. Bayesian Modeling of Cancer Outcomes Using Genetic Variables Assisted by Pathological Imaging Data. Stat Med 2025; 44:e10350. [PMID: 39840672 PMCID: PMC11774474 DOI: 10.1002/sim.10350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/23/2025]
Abstract
With the increasing maturity of genetic profiling, an essential and routine task in cancer research is to model disease outcomes/phenotypes using genetic variables. Many methods have been successfully developed. However, oftentimes, empirical performance is unsatisfactory because of a "lack of information." In cancer research and clinical practice, a source of information that is broadly available and highly cost-effective comes from pathological images, which are routinely collected for definitive diagnosis and staging. In this article, we consider a Bayesian approach for selecting relevant genetic variables and modeling their relationships with a cancer outcome/phenotype. We propose borrowing information from (manually curated, low-dimensional) pathological imaging features via reinforcing the same selection results for the cancer outcome and imaging features. We further develop a weighting strategy to accommodate the scenario where information borrowing may not be equally effective for all subjects. Computation is carefully examined. Simulations demonstrate competitive performance of the proposed approach. We analyze TCGA (The Cancer Genome Atlas) LUAD (lung adenocarcinoma) data, with overall survival and gene expressions being the outcome and genetic variables, respectively. Findings different from the alternatives and with sound properties are made.
Collapse
Affiliation(s)
- Yunju Im
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rong Li
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Cho J, Chung H, Lee S, Kim WH. Evaluation of MCL-1 as a prognostic factor in canine mammary gland tumors. PLoS One 2024; 19:e0306398. [PMID: 39012900 PMCID: PMC11251587 DOI: 10.1371/journal.pone.0306398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/16/2024] [Indexed: 07/18/2024] Open
Abstract
Myeloid cell leukemia-1 (MCL-1), which belongs to the anti-apoptotic B cell lymphoma-2 family protein, is overexpressed in various cancers and is associated with cell immortality, malignant transformation, chemoresistance, and poor prognosis in humans. However, the significance of MCL-1 in canine mammary gland tumors (MGTs) remains unknown. This study aimed to examine MCL-1 expression in normal canine mammary glands and tumors and to assess its correlation with clinical and histologic variables. In total, 111 samples were examined, including 12 normal mammary gland tissues, 51 benign MGTs, and 48 malignant MGTs. Immunohistochemistry revealed that 53% of benign tumors and 75% of malignant tumors exhibited high MCL-1 expression, whereas only 8% of normal mammary glands exhibited high MCL-1 expression. High MCL-1 expression correlated with tumor malignancy (p < 0.001), large tumor size (> 3 cm) (p = 0.005), high Ki-67 expression (p = 0.046), and metastasis (p = 0.027). Survival curve analysis of dogs with malignant MGTs demonstrated a significant association between high MCL-1 expression and shorter median overall survival (p = 0.027) and progression-free survival (p = 0.014). Our study identified MCL-1 as a prognostic factor and potential therapeutic target in canine MGTs.
Collapse
Affiliation(s)
- Jaeho Cho
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Heaji Chung
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Sungin Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Alhammadi SHA, Baby B, Antony P, Jobe A, Humaid RSM, Alhammadi FJA, Vijayan R. Modeling the Binding of Anticancer Peptides and Mcl-1. Int J Mol Sci 2024; 25:6529. [PMID: 38928234 PMCID: PMC11203456 DOI: 10.3390/ijms25126529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Mcl-1 (myeloid cell leukemia 1), a member of the Bcl-2 family, is upregulated in various types of cancer. Peptides representing the BH3 (Bcl-2 homology 3) region of pro-apoptotic proteins have been demonstrated to bind the hydrophobic groove of anti-apoptotic Mcl-1, and this interaction is responsible for regulating apoptosis. Structural studies have shown that, while there is high overall structural conservation among the anti-apoptotic Bcl-2 (B-cell lymphoma 2) proteins, differences in the surface groove of these proteins facilitates binding specificity. This binding specificity is crucial for the mechanism of action of the Bcl-2 family in regulating apoptosis. Bim-based peptides bind specifically to the hydrophobic groove of Mcl-1, emphasizing the importance of these interactions in the regulation of cell death. Molecular docking was performed with BH3-like peptides derived from Bim to identify high affinity peptides that bind to Mcl-1 and to understand the molecular mechanism of their interactions. The interactions of three identified peptides, E2gY, E2gI, and XXA1_F3dI, were further evaluated using 250 ns molecular dynamics simulations. Conserved hydrophobic residues of the peptides play an important role in their binding and the structural stability of the complexes. Understanding the molecular basis of interaction of these peptides will assist in the development of more effective Mcl-1 specific inhibitors.
Collapse
Affiliation(s)
- Shamsa Husain Ahmed Alhammadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Raghad Salman Mohammed Humaid
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Fatema Jumaa Ahmed Alhammadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Abusaliya A, Bhosale PB, Kim HH, Park MY, Jeong SH, Lee S, Kim GS. Investigation of prunetrin induced G2/M cell cycle arrest and apoptosis via Akt/mTOR/MAPK pathways in hepatocellular carcinoma cells. Biomed Pharmacother 2024; 174:116483. [PMID: 38552440 DOI: 10.1016/j.biopha.2024.116483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as a leading cause of mortality, and despite recent advancements in the overall survival rates, the prognosis remains dismal. Prunetin 4-O-glucoside (Prunetrin or PUR), an active compound derived from Prunus sp., was explored for its impact on HepG2 and Huh7 cells. The cytotoxicity assessment revealed a notable reduction in cell viability in both cell lines, while exhibiting non-toxicity towards HaCaT cells. Colony formation studies underscored PUR's inhibitory effect on cell proliferation, dose-dependently. Mechanistically, PUR downregulated cell cycle proteins (CDC25c, Cdk1/CDC2, and Cyclin B1), inducing G2/M phase arrest, corroborated by flow cytometry. Western blot analyses exhibited dose-dependent cleavages of PARP and caspase 3, indicative of apoptosis. Treatment with the apoptotic inhibitor z-vmd-fmk provided evidence of PUR-induced apoptosis. Annexin V and PI flow cytometry further affirmed apoptotic induction. Enhanced expression of cleaved-caspase 9 and the pro-apoptotic protein Bak, coupled with reduced anti-apoptotic Bcl-xL, and affirmed PUR's induction of intrinsic apoptosis. Additionally, PUR activated the MAPK pathway, evidenced by elevated phospho p38 and phospho ERK expressions in both cell lines. Notably, a concentration-dependent decrease in mTOR and Akt expressions indicated PUR's inhibition of the Akt/mTOR pathway in HepG2 and Huh7 cells. These findings illuminate PUR's multifaceted impact, revealing its potential as a promising therapeutic agent against HepG2 and Huh7 cells through modulation of cell cycle, apoptosis, and key signaling pathways.
Collapse
Affiliation(s)
- Abuyaseer Abusaliya
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Hun Hwan Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Min Yeong Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Se Hyo Jeong
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Sijoon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chombok-ro, Daegu 41061, Republic of Korea
| | - Gon Sup Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea.
| |
Collapse
|
5
|
Bui I, Baritaki S, Libra M, Zaravinos A, Bonavida B. Cancer Resistance Is Mediated by the Upregulation of Several Anti-Apoptotic Gene Products via the Inducible Nitric Oxide Synthase/Nitric Oxide Pathway: Therapeutic Implications. Antioxid Redox Signal 2023; 39:853-889. [PMID: 37466477 DOI: 10.1089/ars.2023.0250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Significance: Several therapeutic strategies for cancer treatments have been developed with time, and significant milestones have been achieved recently. However, with these novel therapies, not all cancer types respond and in the responding cancer types only a subset is affected. The failure to respond is principally the result that these cancers develop several mechanisms of resistance. Thus, a focus of current research investigations is to unravel the various mechanisms that regulate resistance and identify suitable targets for new therapeutics. Recent Advances: Hence, many human cancer types have been reported to overexpress the inducible nitric oxide synthase (iNOS) and it has been suggested that iNOS/nitric oxide (NO) plays a pivotal role in the regulation of resistance. We have postulated that iNOS overexpression or NO regulates the overexpression of pivotal anti-apoptotic gene products such as B-cell lymphoma 2 (Bcl-2), B-cell lymphoma extra large (Bcl-xL), myeloid cell leukemia-1 (Mcl-1), and survivin. In this report, we describe the various mechanisms, transcriptional, post-transcriptional, and post-translational, by which iNOS/NO regulates the expression of the above anti-apoptotic gene products. Critical Issues: The iNOS/NO-mediated regulation of the four gene products is not the same with both specific and overlapping pathways. Our findings are, in large part, validated by bioinformatic analyses demonstrating, in several cancers, several direct correlations between the expression of iNOS and each of the four examined anti-apoptotic gene products. Future Directions: We have proposed that targeting iNOS may be highly efficient since it will result in the underexpression of multiple anti-apoptotic proteins and shifting the balance toward the proapoptotic gene products and reversal of resistance. Antioxid. Redox Signal. 39, 853-889.
Collapse
Affiliation(s)
- Indy Bui
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Department of Surgery, School of Medicine, University of Crete, Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Italian League Against Cancer, Catania, Italy
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Sancho M, Leiva D, Lucendo E, Orzáez M. Understanding MCL1: from cellular function and regulation to pharmacological inhibition. FEBS J 2022; 289:6209-6234. [PMID: 34310025 PMCID: PMC9787394 DOI: 10.1111/febs.16136] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022]
Abstract
Myeloid cell leukemia-1 (MCL1), an antiapoptotic member of the BCL2 family characterized by a short half-life, functions as a rapid sensor that regulates cell death and other relevant processes that include cell cycle progression and mitochondrial homeostasis. In cancer, MCL1 overexpression contributes to cell survival and resistance to diverse chemotherapeutic agents; for this reason, several MCL1 inhibitors are currently under preclinical and clinical development for cancer treatment. However, the nonapoptotic functions of MCL1 may influence their therapeutic potential. Overall, the complexity of MCL1 regulation and function represent challenges to the clinical application of MCL1 inhibitors. We now summarize the current knowledge regarding MCL1 structure, regulation, and function that could impact the clinical success of MCL1 inhibitors.
Collapse
Affiliation(s)
- Mónica Sancho
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Diego Leiva
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Estefanía Lucendo
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Mar Orzáez
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| |
Collapse
|
7
|
siRNA Targeting Mcl-1 Potentiates the Anticancer Activity of Andrographolide Nanosuspensions via Apoptosis in Breast Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14061196. [PMID: 35745769 PMCID: PMC9230779 DOI: 10.3390/pharmaceutics14061196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
Breast cancer is the second leading cause of cancer-related death in the US. However, recurrence is frequently found despite adjuvant therapy being available. Combination therapy with cytotoxic drugs and gene therapy is being developed to be a new promising cancer treatment strategy. Introducing substituted dithiocarbamate moieties at the C12 position of andrographolide (3nAG) could improve its anticancer selectivity in the MCF-7 breast cancer cell line. However, its hydrophobicity is one of its main drawbacks. This work successfully prepared 3nAG nanosuspension stabilized with the chitosan derivative NSC (3nAGN-NSC) to increase solubility and pharmacological effectiveness. siRNAs have emerged as a promising therapeutic alternative for interfering with particular mRNA. The 3nAGN-NSC had also induced Mcl-1 mRNA expression in MCF-7 human breast cancer cells at 8, 12, and 24 h. This indicates that, in addition to Mcl-1 silencing by siRNA (siMcl-1) in MCF-7 with substantial Mcl-1 reliance, rationally devised combination treatment may cause the death of cancer cells in breast cancer. The Fa-CI analysis showed that the combination of 3nAGN-NSC and siMcl-1 had a synergistic effect with a combination index (CI) value of 0.75 (CI < 1 indicating synergistic effects) at the fractional inhibition of Fa 0.7. The synergistic effect was validated by flow cytometry, with the induction of apoptosis as the mechanism of reduced cell viability. Our findings suggested the rational use of 3nAGN-NSC in combination with siMcl-1 to kill breast cancer cells.
Collapse
|
8
|
Sulkshane P, Teni T. Myeloid cell leukemia-1: a formidable barrier to anticancer therapeutics and the quest of targeting it. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:278-296. [PMID: 36045907 PMCID: PMC9400788 DOI: 10.37349/etat.2022.00083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
The antiapoptotic B cell lymphoma-2 (Bcl-2) family members are apical regulators of the intrinsic pathway of apoptosis that orchestrate mitochondrial outer membrane permeabilization (MOMP) through interactions with their proapoptotic counterparts. Overexpression of antiapoptotic Bcl-2 family proteins has been linked to therapy resistance and poor prognosis in diverse cancers. Among the antiapoptotic Bcl-2 family members, predominant overexpression of the prosurvival myeloid cell leukemia-1 (Mcl-1) has been reported in a myriad of hematological malignancies and solid tumors, contributing to therapy resistance and poor outcomes, thus making it a potential druggable target. The unique structure of Mcl-1 and its complex regulatory mechanism makes it an adaptive prosurvival switch that ensures tumor cell survival despite therapeutic intervention. This review focusses on diverse mechanisms adopted by tumor cells to maintain sustained elevated levels of Mcl-1 and how high Mcl-1 levels contribute to resistance in conventional as well as targeted therapies. Moreover, recent developments in the Mcl-1-targeted therapeutics and the underlying challenges and considerations in designing novel Mcl-1 inhibitors are also discussed.
Collapse
Affiliation(s)
- Prasad Sulkshane
- Glickman Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tanuja Teni
- Teni Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Mumbai 400094, India
| |
Collapse
|
9
|
Sakuma Y, Hirai S, Sumi T, Tada M, Kojima T, Niki T, Yamaguchi M. MCL1 inhibition enhances the efficacy of docetaxel against airway-derived squamous cell carcinoma cells. Exp Cell Res 2021; 406:112763. [PMID: 34358524 DOI: 10.1016/j.yexcr.2021.112763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
MCL1 is an anti-apoptotic BCL2 family member that is often overexpressed in various malignant tumors. However, few reports have described the role of MCL1 in squamous cell carcinoma (SqCC) derived from airways including the lung. In this study, we examined whether MCL1 could be a novel druggable target for airway-derived SqCC, for which effective molecular targeted drugs are unavailable. We searched the Kaplan-Meier Plotter database and found that high MCL1 mRNA expression was significantly associated with shorter survival in patients with lower airway (lung) or upper airway (head and neck) derived SqCC. We also explored the Expression Atlas database and learned that authentic lung SqCC cell lines expressing both TP63 and KRT5 mRNA were extremely sparse among the publicly available "lung SqCC cell lines", with an exception being HARA cells. HARA cells were highly dependent on MCL1 for survival, and MCL1-depleted cells were not able to grow, and even declined in number, upon docetaxel (DTX) exposure in vitro and in vivo. Similar in vitro experimental findings, including those in a 3D culture model, were also obtained using Detroit 562 pharyngeal SqCC cells. These findings suggested that combined treatment with MCL1 silencing plus DTX appears highly effective against airway-derived SqCC.
Collapse
Affiliation(s)
- Yuji Sakuma
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Sachie Hirai
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Toshiyuki Sumi
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan; Department of Respiratory Medicine and Allergology Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Makoto Tada
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan; Department of Thoracic Surgery, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Toshiro Niki
- Division of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Miki Yamaguchi
- Department of Molecular Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
10
|
Juric V, Hudson L, Fay J, Richards CE, Jahns H, Verreault M, Bielle F, Idbaih A, Lamfers MLM, Hopkins AM, Rehm M, Murphy BM. Transcriptional CDK inhibitors, CYC065 and THZ1 promote Bim-dependent apoptosis in primary and recurrent GBM through cell cycle arrest and Mcl-1 downregulation. Cell Death Dis 2021; 12:763. [PMID: 34344865 PMCID: PMC8333061 DOI: 10.1038/s41419-021-04050-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022]
Abstract
Activation of cyclin-dependent kinases (CDKs) contributes to the uncontrolled proliferation of tumour cells. Genomic alterations that lead to the constitutive activation or overexpression of CDKs can support tumourigenesis including glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. The incurability of GBM highlights the need to discover novel and more effective treatment options. Since CDKs 2, 7 and 9 were found to be overexpressed in GBM, we tested the therapeutic efficacy of two CDK inhibitors (CKIs) (CYC065 and THZ1) in a heterogeneous panel of GBM patient-derived cell lines (PDCLs) cultured as gliomaspheres, as preclinically relevant models. CYC065 and THZ1 treatments suppressed invasion and induced viability loss in the majority of gliomaspheres, irrespective of the mutational background of the GBM cases, but spared primary cortical neurons. Viability loss arose from G2/M cell cycle arrest following treatment and subsequent induction of apoptotic cell death. Treatment efficacies and treatment durations required to induce cell death were associated with proliferation velocities, and apoptosis induction correlated with complete abolishment of Mcl-1 expression, a cell cycle-regulated antiapoptotic Bcl-2 family member. GBM models generally appeared highly dependent on Mcl-1 expression for cell survival, as demonstrated by pharmacological Mcl-1 inhibition or depletion of Mcl-1 expression. Further analyses identified CKI-induced Mcl-1 loss as a prerequisite to establish conditions at which the BH3-only protein Bim can efficiently induce apoptosis, with cellular Bim amounts strongly correlating with treatment efficacy. CKIs reduced proliferation and promoted apoptosis also in chick embryo xenograft models of primary and recurrent GBM. Collectively, these studies highlight the potential of these novel CKIs to suppress growth and induce cell death of patient-derived GBM cultures in vitro and in vivo, warranting further clinical investigation.
Collapse
Affiliation(s)
- Viktorija Juric
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Lance Hudson
- Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, RCSI Education and Research Centre, Smurfit Building, Beaumont Hospital, Dublin, Ireland
| | - Joanna Fay
- Department of Pathology, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Cathy E Richards
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Hanne Jahns
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Maïté Verreault
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, Paris, France
| | - Franck Bielle
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, Paris, France
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Ahmed Idbaih
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, Paris, France
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, the Netherlands
| | - Ann M Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, RCSI Education and Research Centre, Smurfit Building, Beaumont Hospital, Dublin, Ireland
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Brona M Murphy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
11
|
Orabi KY, Abaza MS, Luqmani YA, Al-Attiyah R. Psiadin and plectranthone selectively inhibit colorectal carcinoma cells proliferation via modulating cyclins signaling and apoptotic pathways. PLoS One 2021; 16:e0252820. [PMID: 34086816 PMCID: PMC8177666 DOI: 10.1371/journal.pone.0252820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/23/2021] [Indexed: 12/16/2022] Open
Abstract
Three scarce terpenes, psiadin, plectranthone and saudinolide, were obtained after chromatographic isolation and purification from the aerial parts of the respective plants. Their identities were established based on their spectral data. Their anticancer effects against two human colorectal carcinoma cell lines, CCL233 and CCL235, along with the potential molecular mechanisms of action, were explored. Psiadin and plectranthone exhibited marked growth inhibition on both cell lines in a time- and dose-dependent manner with minimal cytotoxicity against normal breast cells (HB2). The terpenes even showed superior activities to the tested standards. Flow cytometry showed apoptosis induction and alteration in the cell cycle in colorectal cancer cells treated with both compounds. Nevertheless, it was also found that both compounds inhibited NF-κB transcriptional activity, induced mitochondrial membrane potential depolarization and increased the percentage of reactive oxygen species in the treated cancer cells in a dose-dependent manner as well. Since the anticancer effect of psiadin on cancer cells was higher than that produced by plectranthone, only psiadin was tested to determine its possible targets. The results suggested a high degree of specificity of action affecting particular cellular processes in both cancer cells. In conclusion, both terpenes, in particular psiadin, showed significant discriminative therapeutic potential between cancer and normal cells, a value that is missing in current chemotherapies.
Collapse
Affiliation(s)
- Khaled Y. Orabi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Mohamed S. Abaza
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Yunus A. Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Rajaa Al-Attiyah
- Department of Microbiology and Immunology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
12
|
Tang Y, Yang Y, Luo J, Liu S, Zhan Y, Zang H, Zheng H, Zhang Y, Feng J, Fan S, Wen Q. Overexpression of HSP10 correlates with HSP60 and Mcl-1 levels and predicts poor prognosis in non-small cell lung cancer patients. Cancer Biomark 2021; 30:85-94. [PMID: 32986659 PMCID: PMC7990427 DOI: 10.3233/cbm-200410] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND HSP60 and its partner HSP10 are members of heat shock proteins (HSPs) family, which help mitochondrial protein to fold correctly. Mcl-1, a member of the Bcl-2 family, plays a crucial role in regulation of cell apoptosis. Aberrant expression of HSP10, HSP60 and Mcl-1 is involved in the development of many tumors. OBJECTIVE To examine the association between expression of HSP10, HSP60 and Mcl-1 and clinicopathological features of non-small cell lung cancer (NSCLC). METHODS Tissue microarrays including 53 non-cancerous lung tissues (Non-CLT) and 354 surgically resected NSCLC were stained with anti-HSP10, anti-HSP60 and anti-Mcl-1 antibodies respectively by immunohistochemistry. RESULTS Higher expression of HSP10, HSP60 and Mcl-1 was found in NSCLC compared with Non-CLT. Both individual and combined HSP10 and HSP60 expression in patients with clinical stage III was higher than that in stage I ∼ II. Expression of HSP10 showed a positive correlation with HSP60 and Mcl-1. Overall survival time of NSCLC patients was remarkably shorter with elevated expression of HSP10, HSP60 and Mcl-1 alone and in combination. Moreover overexpression of HSP10 and Mcl-1 was poor independent prognostic factor for lung adenocarcinoma patients. CONCLUSIONS High expression of HSP10, HSP60 and Mcl-1 might act as novel biomarker of poor prognosis for NSCLC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qiuyuan Wen
- Corresponding author: Qiuyuan Wen, Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. E-mail:
| |
Collapse
|
13
|
Zhou T, Zhang L, Liu T, Yang Y, Luo F, Zhang Z, Huang Y, Zhao H, Zhang L, Zhao Y. Myeloid cell leukemia-1 is an important predictor of survival and progression of small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1589. [PMID: 33437788 PMCID: PMC7791257 DOI: 10.21037/atm-20-2305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Small cell lung cancer (SCLC) is the most fatal malignancy for which more effective therapies are urgently needed. Overexpression of myeloid cell leukemia-1 (Mcl-1) has been demonstrated to be one of the most common genetic alterations among different types of tumor/cancer, which induces resistance against various anti-cancer therapies including cisplatin. The study aimed to explore the role of Mcl-1 in the prognosis and resistance to anti-cancer therapy in patients with SCLC. Methods Patients with SCLC were recruited from those enrolled/treated in Sun Yat-sen University Cancer Center. Their specimens were collected for immunohistochemical evaluation. We compared the baseline characteristics, response to chemotherapy and overall survival (OS) of the patients with different expression levels of Mcl-1. Results The expression level of Mcl-1 was significantly lower in patients with limited stage SCLC than in those with extensive stage SCLC (P=0.014). Based on the median value of Mcl-1 expression level, the patients were divided into high and low Mcl-1 groups, respectively. Univariate analysis revealed that low Mcl-1 expression was associated with a significant improvement in OS, with a hazard ratio (HR) of 0.538. Multivariate analysis confirmed the independent prognostic value of Mcl-1 expression level (P=0.014). Moreover, we found a significantly close relationship between higher Mcl-1 expression level and shorter time to progression (TTP) of the patients received chemotherapy (P=0.040). Conclusions Our findings demonstrated that Mcl-1 expression level was a prognostic biomarker for survival outcomes and cancer progression in the patients with SCLC. Thus, it could be used as a valuable biomarker in identifying those patients with high risk of treatment failure.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lin Zhang
- Department of Clinical Laboratory, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tingting Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhonghan Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongyun Zhao
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuanyuan Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
14
|
Negi A, Murphy PV. Development of Mcl-1 inhibitors for cancer therapy. Eur J Med Chem 2020; 210:113038. [PMID: 33333396 DOI: 10.1016/j.ejmech.2020.113038] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The myeloid leukemia cell differentiation protein (Mcl-1) is an anti-apoptotic protein of the B-cell lymphoma 2 (Bcl-2) family, which regulates cellular apoptosis. Mcl-1 expression plays a key role in survival of cancer cells and therefore serves as a promising target in cancer therapy. Besides, its importance as a cancer target, various peptides and small-molecule inhibitors have been successfully designed and synthesized, yet no Mcl-1 inhibitor is approved for clinical use. However, recent development on the understanding of Mcl-1's role in key cellular processes in cancer and an upsurge of reports highlighting its association in various anticancer drug resistance supports the view that Mcl-1 is a key target in various cancers, especially hematological cancers. This review compiles structures of a variety of inhibitors of Mcl-1 reported to date. These include inhibitors based on a diverse range of heterocycles (e.g. indole, imidazole, thiophene, nicotinic acid, piperazine, triazine, thiazole, isoindoline), oligomers (terphenyl, quaterpyridine), polyphenol, phenalene, anthranilic acid, anthraquinone, macrocycles, natural products, and metal-based complexes. In addition, an effort has been made to summarize the structure activity relationships, based on a variety of assays, of some important classes of Mcl-1 inhibitors, giving affinities and selectivities for Mcl-1 compared to other Bcl-2 family members. A focus has been placed on categorizing the inhibitors based on their core frameworks (scaffolds) to appeal to the chemical biologist or medicinal chemist.
Collapse
Affiliation(s)
- Arvind Negi
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
15
|
Mcl-1 and Bok transmembrane domains: Unexpected players in the modulation of apoptosis. Proc Natl Acad Sci U S A 2020; 117:27980-27988. [PMID: 33093207 DOI: 10.1073/pnas.2008885117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Bcl-2 protein family comprises both pro- and antiapoptotic members that control the permeabilization of the mitochondrial outer membrane, a crucial step in the modulation of apoptosis. Recent research has demonstrated that the carboxyl-terminal transmembrane domain (TMD) of some Bcl-2 protein family members can modulate apoptosis; however, the transmembrane interactome of the antiapoptotic protein Mcl-1 remains largely unexplored. Here, we demonstrate that the Mcl-1 TMD forms homooligomers in the mitochondrial membrane, competes with full-length Mcl-1 protein with regards to its antiapoptotic function, and induces cell death in a Bok-dependent manner. While the Bok TMD oligomers locate preferentially to the endoplasmic reticulum (ER), heterooligomerization between the TMDs of Mcl-1 and Bok predominantly takes place at the mitochondrial membrane. Strikingly, the coexpression of Mcl-1 and Bok TMDs produces an increase in ER mitochondrial-associated membranes, suggesting an active role of Mcl-1 in the induced mitochondrial targeting of Bok. Finally, the introduction of Mcl-1 TMD somatic mutations detected in cancer patients alters the TMD interaction pattern to provide the Mcl-1 protein with enhanced antiapoptotic activity, thereby highlighting the clinical relevance of Mcl-1 TMD interactions.
Collapse
|
16
|
D’Aguanno S, Del Bufalo D. Inhibition of Anti-Apoptotic Bcl-2 Proteins in Preclinical and Clinical Studies: Current Overview in Cancer. Cells 2020; 9:cells9051287. [PMID: 32455818 PMCID: PMC7291206 DOI: 10.3390/cells9051287] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
The dynamic interplay between pro-death and pro-survival Bcl-2 family proteins is responsible for a cell’s fate. Due to the recognized relevance of this family in cancer progression and response to therapy, different efforts have made in recent years in order to develop small molecules able to target anti-apoptotic proteins such as Bcl-2, Bcl-xL and Mcl-1. The limitations of the first Bcl-2 family targeted drugs, regarding on-target and off-target toxicities, have been overcome with the development of venetoclax (ABT-199), the first BH3 mimetic inhibitor approved by the FDA. The purpose of this review is to discuss the state-of-the-art in the development of drugs targeting Bcl-2 anti-apoptotic proteins and to highlight the potential of their application as single agents or in combination for improving anti-cancer therapy, focusing in particular on solid tumors.
Collapse
|
17
|
Li Y, Zhou D, Xu S, Rao M, Zhang Z, Wu L, Zhang C, Lin N. DYRK1A suppression restrains Mcl-1 expression and sensitizes NSCLC cells to Bcl-2 inhibitors. Cancer Biol Med 2020; 17:387-400. [PMID: 32587776 PMCID: PMC7309455 DOI: 10.20892/j.issn.2095-3941.2019.0380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Objective: Mcl-1 overexpression confers acquired resistance to Bcl-2 inhibitors in non-small cell lung cancer (NSCLC), but no direct Mcl-1 inhibitor is currently available for clinical use. Thus, novel therapeutic strategies are urgently needed to target Mcl-1 and sensitize the anti-NSCLC activity of Bcl-2 inhibitors. Methods: Cell proliferation was measured using sulforhodamine B and colony formation assays, and apoptosis was detected with Annexin V-FITC staining. Gene expression was manipulated using siRNAs and plasmids. Real-time PCR and Western blot were used to measure mRNA and protein levels. Immunoprecipitation and immunofluorescence were used to analyze co-localization of dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) and Mcl-1. Results: Suppression of DYRK1A resulted in reduced Mcl-1 expression in NSCLC cells, whereas overexpression of DYRK1A significantly increased Mcl-1 expression. Suppression of DYRK1A did not alter Mcl-1 mRNA levels, but did result in an accelerated degradation of Mcl-1 protein in NSCLC cells. Furthermore, DYRK1A mediated proteasome-dependent degradation of Mcl-1 in NSCLC cells, and DYRK1A co-localized with Mcl-1 in NSCLC cells and was co-expressed with Mcl-1 in tumor samples from lung cancer patients, suggesting that Mcl-1 may be a novel DYRK1A substrate. We showed that combined therapy with harmine and Bcl-2 antagonists significantly inhibited cell proliferation and induced apoptosis in NSCLC cell lines as well as primary NSCLC cells. Conclusions: Mcl-1 is a novel DYRK1A substrate, and the role of DYRK1A in promoting Mcl-1 stability makes it an attractive target for decreasing Bcl-2 inhibitor resistance.
Collapse
Affiliation(s)
- Yangling Li
- Department of Clinical Pharmacology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou 310006, China
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Dongmei Zhou
- Department of Clinical Pharmacology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou 310006, China
| | - Shuang Xu
- Department of Clinical Pharmacology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou 310006, China
| | - Mingjun Rao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Zuoyan Zhang
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linwen Wu
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Nengming Lin
- Department of Clinical Pharmacology, Hangzhou First People’s Hospital, Nanjing Medical University, Hangzhou 310006, China
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| |
Collapse
|
18
|
Pinto-Díez C, Ferreras-Martín R, Carrión-Marchante R, González VM, Martín ME. Deeping in the Role of the MAP-Kinases Interacting Kinases (MNKs) in Cancer. Int J Mol Sci 2020; 21:2967. [PMID: 32340135 PMCID: PMC7215568 DOI: 10.3390/ijms21082967] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) are involved in oncogenic transformation and can promote metastasis and tumor progression. In human cells, there are four MNKs isoforms (MNK1a/b and MNK2a/b), derived from two genes by alternative splicing. These kinases play an important role controlling the expression of specific proteins involved in cell cycle, cell survival and cell motility via eukaryotic initiation factor 4E (eIF4E) regulation, but also through other substrates such as heterogeneous nuclear ribonucleoprotein A1, polypyrimidine tract-binding protein-associated splicing factor and Sprouty 2. In this review, we provide an overview of the role of MNK in human cancers, describing the studies conducted to date to elucidate the mechanism involved in the action of MNKs, as well as the development of MNK inhibitors in different hematological cancers and solid tumors.
Collapse
Affiliation(s)
| | | | | | | | - María Elena Martín
- Grupo de Aptámeros, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Ctra. Colmenar Km. 9100, 28034 Madrid, Spain; (C.P.-D.); (R.F.-M.); (R.C.-M.); (V.M.G.)
| |
Collapse
|
19
|
Structure-Activity Relationships and Molecular Docking Analysis of Mcl-1 Targeting Renieramycin T Analogues in Patient-derived Lung Cancer Cells. Cancers (Basel) 2020; 12:cancers12040875. [PMID: 32260280 PMCID: PMC7226000 DOI: 10.3390/cancers12040875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Myeloid cell leukemia 1 (Mcl-1) and B-cell lymphoma 2 (Bcl-2) proteins are promising targets for cancer therapy. Here, we investigated the structure-activity relationships (SARs) and performed molecular docking analysis of renieramycin T (RT) and its analogues and identified the critical functional groups of Mcl-1 targeting. RT have a potent anti-cancer activity against several lung cancer cells and drug-resistant primary cancer cells. RT mediated apoptosis through Mcl-1 suppression and it also reduced the level of Bcl-2 in primary cells. For SAR study, five analogues of RT were synthesized and tested for their anti-cancer and Mcl-1- and Bcl-2-targeting effects. Only two of them (TM-(-)-18 and TM-(-)-4a) exerted anti-cancer activities with the loss of Mcl-1 and partly reduced Bcl-2, while the other analogues had no such effects. Specific cyanide and benzene ring parts of RT's structure were identified to be critical for its Mcl-1-targeting activity. Computational molecular docking indicated that RT, TM-(-)-18, and TM-(-)-4a bound to Mcl-1 with high affinity, whereas TM-(-)-45, a compound with a benzene ring but no cyanide for comparison, showed the lowest binding affinity. As Mcl-1 helps cancer cells evading apoptosis, these data encourage further development of RT compounds as well as the design of novel drugs for treating Mcl-1-driven cancers.
Collapse
|