1
|
Panda D, Karmakar S, Dash M, Tripathy SK, Das P, Banerjee S, Qi Y, Samantaray S, Mohapatra PK, Baig MJ, Molla KA. Optimized protoplast isolation and transfection with a breakpoint: accelerating Cas9/sgRNA cleavage efficiency validation in monocot and dicot. ABIOTECH 2024; 5:151-168. [PMID: 38974867 PMCID: PMC11224192 DOI: 10.1007/s42994-024-00139-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 07/09/2024]
Abstract
The CRISPR-Cas genome editing tools are revolutionizing agriculture and basic biology with their simplicity and precision ability to modify target genomic loci. Software-predicted guide RNAs (gRNAs) often fail to induce efficient cleavage at target loci. Many target loci are inaccessible due to complex chromatin structure. Currently, there is no suitable tool available to predict the architecture of genomic target sites and their accessibility. Hence, significant time and resources are spent on performing editing experiments with inefficient guides. Although in vitro-cleavage assay could provide a rough assessment of gRNA efficiency, it largely excludes the interference of native genomic context. Transient in-vivo testing gives a proper assessment of the cleavage ability of editing reagents in a native genomic context. Here, we developed a modified protocol that offers highly efficient protoplast isolation from rice, Arabidopsis, and chickpea, using a sucrose gradient, transfection using PEG (polyethylene glycol), and validation of single guide RNAs (sgRNAs) cleavage efficiency of CRISPR-Cas9. We have optimized various parameters for PEG-mediated protoplast transfection and achieved high transfection efficiency using our protocol in both monocots and dicots. We introduced plasmid vectors containing Cas9 and sgRNAs targeting genes in rice, Arabidopsis, and chickpea protoplasts. Using dual sgRNAs, our CRISPR-deletion strategy offers straightforward detection of genome editing success by simple agarose gel electrophoresis. Sanger sequencing of PCR products confirmed the editing efficiency of specific sgRNAs. Notably, we demonstrated that isolated protoplasts can be stored for up to 24/48 h with little loss of viability, allowing a pause between isolation and transfection. This high-efficiency protocol for protoplast isolation and transfection enables rapid (less than 7 days) validation of sgRNA cleavage efficiency before proceeding with stable transformation. The isolation and transfection method can also be utilized for rapid validation of editing strategies, evaluating diverse editing reagents, regenerating plants from transfected protoplasts, gene expression studies, protein localization and functional analysis, and other applications. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00139-7.
Collapse
Affiliation(s)
- Debasmita Panda
- ICAR National Rice Research Institute, Cuttack, Odisha 753006 India
- Department of Botany, Ravenshaw University, Cuttack, Odisha 753003 India
| | | | - Manaswini Dash
- ICAR National Rice Research Institute, Cuttack, Odisha 753006 India
| | | | - Priya Das
- ICAR National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Sagar Banerjee
- ICAR National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742 USA
| | | | | | - Mirza J. Baig
- ICAR National Rice Research Institute, Cuttack, Odisha 753006 India
| | | |
Collapse
|
2
|
Yang P, Sun Y, Sun X, Li Y, Wang L. Optimization of preparation and transformation of protoplasts from Populus simonii × P. nigra leaves and subcellular localization of the major latex protein 328 (MLP328). PLANT METHODS 2024; 20:3. [PMID: 38178205 PMCID: PMC10765669 DOI: 10.1186/s13007-023-01128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Populus simonii × P. nigra is an ideal material for studying the molecular mechanisms of woody plants. In recent years, research on Populus simonii × P. nigra has increasingly focused on the application of transgenic technology to improve salt tolerance. However, the rapid characterization of gene functions has been hampered by the long growth cycle and exceedingly poor transformation efficiency. Protoplasts are an important tool for plant gene engineering, which can assist with challenging genetic transformation and the protracted growth cycle of Populus simonii × P. nigra. This study established an optimized system for the preparation and transformation of protoplasts from Populus simonii × P. nigra leaves, making genetic research on Populus simonii × P. nigra faster and more convenient. Major Latex Protein (MLP) family genes play a crucial role in plant salt stress response. In the previous study, we discovered that PsnMLP328 can be induced by salt treatment, which suggested that this gene may be involved in response to salt stress. Protein localization is a suggestion for its function. Therefore, we conducted subcellular localization analysis using protoplasts of Populus simonii × P. nigra to study the function of the PsnMLP328 gene preliminarily. RESULTS This study established an optimized system for the preparation and transformation of Populus simonii × P. nigra protoplasts. The research results indicate that the optimal separation scheme for the protoplasts of Populus simonii × P. nigra leaves included 2.5% cellulase R-10, 0.6% macerozyme R-10, 0.3% pectolyase Y-23, and 0.8 M mannitol. After enzymatic digestion for 5 h, the yield of obtained protoplasts could reach up to 2 × 107 protoplasts/gFW, with a high viability of 98%. We carried out the subcellular localization analysis based on the optimized transient transformation system, and the results indicated that the MLP328 protein is localized in the nucleus and cytoplasm; thereby proving the effectiveness of the transformation system. CONCLUSION In summary, this study successfully established an efficient system for preparing and transforming leaf protoplasts of Populus simonii × P. nigra, laying the foundation for future research on gene function and expression of Populus simonii × P. nigra.
Collapse
Affiliation(s)
- Ping Yang
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150001, China
| | - Yao Sun
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150001, China
| | - Xin Sun
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150001, China
| | - Yao Li
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150001, China
| | - Lei Wang
- Department of Biotechnology, Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150001, China.
| |
Collapse
|
3
|
Kumar A, Rawat N, Thakur S, Joshi R, Pandey SS. A highly efficient protocol for isolation of protoplast from China, Assam and Cambod types of tea plants [Camellia sinensis (L.) O. Kuntze]. PLANT METHODS 2023; 19:147. [PMID: 38102681 PMCID: PMC10724972 DOI: 10.1186/s13007-023-01120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Tea is the most popular beverage worldwide second only to water. Its demand is tremendously rising due to increased awareness of its medicinal importance. The quality and uses of tea depend on the tea-types which are mainly three types including China, Assam and Cambod type having distinct compositions of secondary metabolites. Huge variation in secondary metabolites in different tea-types and cultivars limited the successful application of various approaches used for its trait improvement. The efficiency of a protocol for isolation of protoplast is specific to the types and cultivars of tea plants. The existing tea protoplast-isolation protocols [which were optimized for tea-types (China and Assam type) and Chinese cultivars grown in China] were found ineffective on types/cultivars grown in India due to type/cultivar variability. Therefore, optimization of protoplast-isolation protocol is essential for tea-types/cultivars grown in India, as it is the second largest producer of tea and the largest producer of black tea. Here, efforts were made to develop an efficient protoplast-isolation protocol from all major types of tea (China, Assam and Cambod types) grown in India and also from three types of tender leaves obtained from field-grown, hydroponically-grown and tissue culture-grown tea plants. RESULTS Developed protoplast-isolation protocol was effective for different types of leaf tissue obtained from the tender leaves of field-grown, hydroponically-grown and tissue culture-grown tea plants. Moreover, optimized protocol effectively worked on all three types of tea including China, Assam and Cambod types cultivated in India. The digestion of leaves with 3% cellulase R-10, 0.6% macerozyme, 1% hemicellulase and 4% polyvinylpyrrolidone for 12 h at 28ºC yielded approximately 3.8-4.6 × 107 protoplasts per gram fresh tissue and 80-95% viability in selected tea cultivars, and tissue culture plant material was found most appropriate for protoplast isolation. CONCLUSIONS In conclusion, we reported an efficient protocol for isolation of protoplasts from tender tea leaves of all major tea-types (China, Assam and Cambod) grown in India. Moreover, the protocol is also effective for tender-leaf tissue of field-grown, hydroponically-grown and tissue culture-grown tea plants. The findings are expected to contribute to the genetic improvement of tea traits widely.
Collapse
Affiliation(s)
- Abhishek Kumar
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Nikhil Rawat
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shweta Thakur
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Rohit Joshi
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Shanker Pandey
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Wang L, Liu H, Liu P, Wu G, Shen W, Cui H, Dai Z. Cotyledon peeling method for passion fruit protoplasts: a versatile cell system for transient gene expression in passion fruit (Passiflora edulis). FRONTIERS IN PLANT SCIENCE 2023; 14:1236838. [PMID: 37636087 PMCID: PMC10449601 DOI: 10.3389/fpls.2023.1236838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Passion fruit (Passiflora edulis) is a perennial evergreen vine that grows mainly in tropical and subtropical regions due to its nutritional, medicinal and ornamental values. However, the molecular biology study of passion fruit is extremely hindered by the lack of an easy and efficient method for transformation. The protoplast transformation system plays a vital role in plant regeneration, gene function analysis and genome editing. Here, we present a new method ('Cotyledon Peeling Method') for simple and efficient passion fruit protoplast isolation using cotyledon as the source tissue. A high yield (2.3 × 107 protoplasts per gram of fresh tissues) and viability (76%) of protoplasts were obtained upon incubation in the enzyme solution [1% (w/v) cellulase R10, 0.25% (w/v) macerozyme R10, 0.4 M mannitol, 10 mM CaCl2, 20 mM KCl, 20 mM MES and 0.1% (w/v) BSA, pH 5.7] for 2 hours. In addition, we achieved high transfection efficiency of 83% via the polyethylene glycol (PEG)-mediated transformation with a green fluorescent protein (GFP)-tagged plasmid upon optimization. The crucial factors affecting transformation efficiency were optimized as follows: 3 μg of plasmid DNA, 5 min transfection time, PEG concentration at 40% and protoplast density of 100 × 104 cells/ml. Furthermore, the established protoplast system was successfully applied for subcellular localization analysis of multiple fluorescent organelle markers and protein-protein interaction study. Taken together, we report a simple and efficient passion fruit protoplast isolation and transformation system, and demonstrate its usage in transient gene expression for the first time in passion fruit. The protoplast system would provide essential support for various passion fruit biology studies, including genome editing, gene function analysis and whole plant regeneration.
Collapse
Affiliation(s)
- Linxi Wang
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Haobin Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Peilan Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Wentao Shen
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Hongguang Cui
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| | - Zhaoji Dai
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| |
Collapse
|
5
|
Ren M, Ma J, Lu D, Wu C, Zhu S, Chen X, Wu Y, Shen Y. STAY-GREEN Accelerates Chlorophyll Degradation in Magnolia sinostellata under the Condition of Light Deficiency. Int J Mol Sci 2023; 24:ijms24108510. [PMID: 37239857 DOI: 10.3390/ijms24108510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Species of the Magnoliaceae family are valued for their ornamental qualities and are widely used in landscaping worldwide. However, many of these species are endangered in their natural environments, often due to being overshadowed by overstory canopies. The molecular mechanisms of Magnolia's sensitivity to shade have remained hitherto obscure. Our study sheds light on this conundrum by identifying critical genes involved in governing the plant's response to a light deficiency (LD) environment. In response to LD stress, Magnolia sinostellata leaves were endowed with a drastic dwindling in chlorophyll content, which was concomitant to the downregulation of the chlorophyll biosynthesis pathway and upregulation in the chlorophyll degradation pathway. The STAY-GREEN (MsSGR) gene was one of the most up-regulated genes, which was specifically localized in chloroplasts, and its overexpression in Arabidopsis and tobacco accelerated chlorophyll degradation. Sequence analysis of the MsSGR promoter revealed that it contains multiple phytohormone-responsive and light-responsive cis-acting elements and was activated by LD stress. A yeast two-hybrid analysis resulted in the identification of 24 proteins that putatively interact with MsSGR, among which eight were chloroplast-localized proteins that were significantly responsive to LD. Our findings demonstrate that light deficiency increases the expression of MsSGR, which in turn regulates chlorophyll degradation and interacts with multiple proteins to form a molecular cascade. Overall, our work has uncovered the mechanism by which MsSGR mediates chlorophyll degradation under LD stress conditions, providing insight into the molecular interactions network of MsSGR and contributing to a theoretical framework for understanding the endangerment of wild Magnoliaceae species.
Collapse
Affiliation(s)
- Mingjie Ren
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jingjing Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Danying Lu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Chao Wu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Senyu Zhu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xiaojun Chen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yufeng Wu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yamei Shen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| |
Collapse
|
6
|
Kang H, Naing AH, Park SK, Chung MY, Kim CK. Protoplast isolation and transient gene expression in different petunia cultivars. PROTOPLASMA 2023; 260:271-280. [PMID: 35622155 DOI: 10.1007/s00709-022-01776-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The protocol optimized for Petunia hybrida cv. Mirage Rose produced high protoplast yields in 3 out of other 11 cultivars (Damask White, Dreams White, and Opera Supreme White). Factors optimized in the protoplast transfection process showed that the best transfection efficiency (80%) was obtained using 2.5 × 105 protoplast density, 40% polyethylene glycol (PEG) concentration, 10 µg plasmid DNA, and 15 min of transfection time. Assessing the usability of the protocol for other cultivars (Damask White, Dreams White, and Opera Supreme White), a reasonable protoplast transfection efficiency (⁓50%) was observed in the cultivars Dreams White and Opera Supreme White, with lower efficiency (⁓50%) observed in the cv. Damask White. The transient expression of enhanced green fluorescent protein (eGFP) in the nucleus of the transfected protoplasts of all cultivars was confirmed using PCR. This system could be valuable for genome editing of unwanted genes in petunias using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) technology. Furthermore, it could contribute to other studies on protein subcellular localization, protein-protein interactions, and functional gene expression in the petunias.
Collapse
Affiliation(s)
- Hyunhee Kang
- Department of Horticulture, Kyungpook National University, Daegu, 41566, Korea
| | - Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, 41566, Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Mi Young Chung
- Department of Agricultural Education, Sunchon National University, Suncheon, 540-950, Jeonnam, Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
7
|
Li S, Zhao R, Ye T, Guan R, Xu L, Ma X, Zhang J, Xiao S, Yuan D. Isolation, purification and PEG-mediated transient expression of mesophyll protoplasts in Camellia oleifera. PLANT METHODS 2022; 18:141. [PMID: 36550558 PMCID: PMC9773467 DOI: 10.1186/s13007-022-00972-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Camellia oleifera (C. oleifera) is a woody edible oil crop of great economic importance. Because of the lack of modern biotechnology research, C. oleifera faces huge challenges in both breeding and basic research. The protoplast and transient transformation system plays an important role in biological breeding, plant regeneration and somatic cell fusion. The objective of this present study was to develop a highly efficient protocol for isolating and purifying mesophyll protoplasts and transient transformation of C. oleifera. Several critical factors for mesophyll protoplast isolation from C. oleifera, including starting material (leaf age), pretreatment, enzymatic treatment (type of enzyme, concentration and digestion time), osmotic pressure and purification were optimized. Then the factors affecting the transient transformation rate of mesophyll protoplasts such as PEG molecular weights, PEG4000 concentration, plasmid concentration and incubation time were explored. RESULTS The in vitro grown seedlings of C. oleifera 'Huashuo' were treated in the dark for 24 h, then the 1st to 2nd true leaves were picked and vacuumed at - 0.07 MPa for 20 min. The maximum yield (3.5 × 107/g·FW) and viability (90.9%) of protoplast were reached when the 1st to 2nd true leaves were digested in the enzymatic solution containing1.5% (w/v) Cellulase R-10, 0.5% (w/v) Macerozyme R-10 and 0.25% (w/v) Snailase and 0.4 M mannitol for 10 h. Moreover, the protoplast isolation method was also applicable to the other two cultivars, the protoplast yield for 'TXP14' and 'DP47' was 1.1 × 107/g·FW and 2.6 × 107/g·FW, the protoplast viability for 'TXP14' and 'DP47' was 90.0% and 88.2%. The purification effect was the best when using W buffer as a cleaning agent by centrifugal precipitation. The maximum transfection efficiency (70.6%) was obtained with the incubation of the protoplasts with 15 µg plasmid and 40% PEG4000 for 20 min. CONCLUSION In summary, a simple and efficient system for isolation and transient transformation of C. oleifera mesophyll protoplast is proposed, which is of great significance in various aspects of C. oleifera research, including the study of somatic cell fusion, genome editing, protein function, signal transduction, transcriptional regulation and multi-omics analyses.
Collapse
Affiliation(s)
- Sufang Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Rui Zhao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Tianwen Ye
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Rui Guan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, 23053, Skåne, Sweden
| | - Linjie Xu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xiaoling Ma
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jiaxi Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Shixin Xiao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
8
|
Ghose AK, Abdullah SNA, Md Hatta MA, Megat Wahab PE. DNA Free CRISPR/DCAS9 Based Transcriptional Activation System for UGT76G1 Gene in Stevia rebaudiana Bertoni Protoplasts. PLANTS (BASEL, SWITZERLAND) 2022; 11:2393. [PMID: 36145794 PMCID: PMC9501275 DOI: 10.3390/plants11182393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The UDP-glycosyltransferase 76G1 (UGT76G1) is responsible for the conversion of stevioside to rebaudioside A. Four single guide RNAs (sgRNAs) were designed from the UGT76G1 proximal promoter region of stevia by using the online-based tool, benchling. The dCas9 fused with VP64 as a transcriptional activation domain (TAD) was produced and purified for the formation of ribonucleoproteins (RNPs) by mixing with the in vitro transcribed sgRNAs. Protoplast yield was the highest from leaf mesophyll of in vitro grown stevia plantlets (3.16 × 106/g of FW) using ES5 (1.25% cellulase R-10 and 0.75% macerozyme R-10). The RNPs were delivered into the isolated protoplasts through the Polyethylene glycol (PEG)-mediated transfection method. The highest endogenous activation of the UGT76G1 gene was detected at 27.51-fold after 24 h of transfection with RNP30 consisting of CRISPR/dCas9-TAD with sgRNA30 and a similar activation level was obtained using RNP18, RNP33, and RNP34, produced using sgRNA18, sgRNA33, and sgRNA34, respectively. Activation of UGT76G1 by RNP18 led to a significant increase in the expression of the rate-limiting enzyme UGT85C2 by 2.37-fold and there was an increasing trend in the expression of UGT85C2 using RNP30, RNP33, and RNP34. Successful application of CRISPR/dCas9-TAD RNP in activating specific genes can avoid the negative integration effects of introduced DNA in the host genome.
Collapse
Affiliation(s)
- Asish Kumar Ghose
- Laboratory of Agronomy and Sustainable Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Biotechnology Division, Bangladesh Sugarcrop Research Institute, Ishurdi, Pabna 6620, Bangladesh
| | - Siti Nor Akmar Abdullah
- Laboratory of Agronomy and Sustainable Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Asyraf Md Hatta
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Puteri Edaroyati Megat Wahab
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
9
|
Zhang D, Wang R, Han S, Li Z, Xiao J, Li Y, Wang L, Li S. Transcriptome Analysis of Sugarcane Young Leaves and Protoplasts after Enzymatic Digestion. Life (Basel) 2022; 12:1210. [PMID: 36013389 PMCID: PMC9410293 DOI: 10.3390/life12081210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 02/01/2023] Open
Abstract
Sugarcane somatic cell hybridization can break through the barrier of genetic incompatibility between distantly related species in traditional breeding. However, the molecular mechanisms of sugarcane protoplast regeneration and the conditions for protoplast preparation remain largely unknown. In this study, young sugarcane (ROC22) leaves were enzymatically digested, and the viability of protoplasts reached more than 90% after enzymatic digestion (Enzymatic combination: 2% cellulase + 0.5% pectinase + 0.1% dissociative enzyme + 0.3% hemicellulase, pH = 5.8). Transcriptome sequencing was performed on young sugarcane leaves and protoplasts after enzymatic digestion to analyze the differences in gene expression in somatic cells before and after enzymatic digestion. A total of 117,411 unigenes and 43,460 differentially expressed genes were obtained, of which 21,123 were up-regulated and 22,337 down-regulated. The GO terms for the 43,460 differentially expressed genes (DEGs) were classified into three main categories: biological process, cellular component and molecular function, which related to developmental process, growth, cell proliferation, transcription regulator activity, signal transducer activity, antioxidant activity, oxidative stress, kinase activity, cell cycle, cell differentiation, plant hormone signal transduction, and so on. After enzymatic digestion of young sugarcane leaves, the expressions of GAUT, CESA, PSK, CyclinB, CyclinA, CyclinD3 and cdc2 genes associated with plant regeneration were significantly down-regulated to 65%, 47%, 2%, 18.60%, 21.32%, 52% and 45% of young leaves, respectively. After enzymatic digestion, Aux/IAA expression was up-regulated compared with young leaves, and Aux/IAA expression was 3.53 times higher than that of young leaves. Compared with young leaves, these key genes were significantly changed after enzymatic digestion. These results indicate that the process of somatic enzymatic digestion process may affect the regeneration of heterozygous cells to a certain extent.
Collapse
Affiliation(s)
- Demei Zhang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Rui Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Shijian Han
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Zhigang Li
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Jiming Xiao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Yangrui Li
- Guangxi Academy of Agricultural Sciences, 174 Daxue Rd., Nanning 530007, China
| | - Lingqiang Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Suli Li
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| |
Collapse
|
10
|
Huang Y, An W, Yang Z, Xie C, Liu S, Zhan T, Pan H, Zheng X. Metabolic stimulation-elicited transcriptional responses and biosynthesis of acylated triterpenoids precursors in the medicinal plant Helicteres angustifolia. BMC PLANT BIOLOGY 2022; 22:86. [PMID: 35216551 PMCID: PMC8876399 DOI: 10.1186/s12870-022-03429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Helicteres angustifolia has long been used in Chinese traditional medicine. It has multiple pharmacological benefits, including anti-inflammatory, anti-viral and anti-tumor effects. Its main active chemicals include betulinic acid, oleanolic acid, helicteric acid, helicterilic acid, and other triterpenoid saponins. It is worth noting that some acylated triterpenoids, such as helicteric acid and helicterilic acid, are characteristic components of Helicteres and are relatively rare among other plants. However, reliance on natural plants as the only sources of these is not enough to meet the market requirement. Therefore, the engineering of its metabolic pathway is of high research value for enhancing the production of secondary metabolites. Unfortunately, there are few studies on the biosynthetic pathways of triterpenoids in H. angustifolia, hindering its further investigation. RESULTS Here, the RNAs of different groups treated by metabolic stimulation were sequenced with an Illumina high-throughput sequencing platform, resulting in 121 gigabases of data. A total of 424,824 unigenes were obtained after the trimming and assembly of the raw data, and 22,430 unigenes were determined to be differentially expressed. In addition, three oxidosqualene cyclases (OSCs) and four Cytochrome P450 (CYP450s) were screened, of which one OSC (HaOSC1) and one CYP450 (HaCYPi3) achieved functional verification, suggesting that they could catalyze the production of lupeol and oleanolic acid, respectively. CONCLUSION In general, the transcriptomic data of H. angustifolia was first reported and analyzed to study functional genes. Three OSCs, four CYP450s and three acyltransferases were screened out as candidate genes to perform further functional verification, which demonstrated that HaOSC1 and HaCYPi3 encode for lupeol synthase and β-amyrin oxidase, which produce corresponding products of lupeol and oleanolic acid, respectively. Their successful identification revealed pivotal steps in the biosynthesis of acylated triterpenoids precursors, which laid a foundation for further study on acylated triterpenoids. Overall, these results shed light on the regulation of acylated triterpenoids biosynthesis.
Collapse
Affiliation(s)
- Yuying Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Wenli An
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Zerui Yang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Chunzhu Xie
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Shanshan Liu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Ting Zhan
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Huaigeng Pan
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Xiasheng Zheng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| |
Collapse
|
11
|
Maekawa H, Otsubo M, Sato MP, Takahashi T, Mizoguchi K, Koyamatsu D, Inaba T, Ito-Inaba Y. Establishing an efficient protoplast transient expression system for investigation of floral thermogenesis in aroids. PLANT CELL REPORTS 2022; 41:263-275. [PMID: 34704119 DOI: 10.1007/s00299-021-02806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Floral thermogenesis is an important reproductive strategy for attracting pollinators. We developed essential biological tools for studying floral thermogenesis using two species of thermogenic aroids, Symplocarpus renifolius and Alocasia odora. Aroids contain many species with intense heat-producing abilities in their inflorescences. Several genes have been proposed to be involved in thermogenesis of these species, but biological tools for gene functional analyses are lacking. In this study, we aimed to develop a protoplast-based transient expression (PTE) system for the study of thermogenic aroids. Initially, we focused on skunk cabbage (Symplocarpus renifolius) because of its ability to produce intense as well as durable heat. In this plant, leaf protoplasts were isolated from potted and shoot tip-cultured plants with high efficiency (ca. 1.0 × 105/g fresh weight), and more than half of these protoplasts were successfully transfected. Using this PTE system, we determined the protein localization of three mitochondrial energy-dissipating proteins, SrAOX, SrUCPA, and SrNDA1, fused to green fluorescent protein (GFP). These three GFP-fused proteins were localized in MitoTracker-stained mitochondria in leaf protoplasts, although the green fluorescent particles in protoplasts expressing SrUCPA-GFP were significantly enlarged. Finally, to assess whether the PTE system established in the leaves of S. renifolius is applicable for floral tissues of thermogenic aroids, inflorescences of S. renifolius and another thermogenic aroid (Alocasia odora) were used. Although protoplasts were successfully isolated from several tissues of the inflorescences, PTE systems worked well only for the protoplasts isolated from the female parts (slightly thermogenic or nonthermogenic) of A. odora inflorescences. Our developed system has a potential to be widely used in inflorescences as well as leaves in thermogenic aroids and therefore may be a useful biological tool for investigating floral thermogenesis.
Collapse
Affiliation(s)
- Haruhiko Maekawa
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Miyabi Otsubo
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Mitsuhiko P Sato
- Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Tomoko Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, 338-8570, Japan
| | - Koichiro Mizoguchi
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Daiki Koyamatsu
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
| |
Collapse
|
12
|
New insights in pectinase production development and industrial applications. Appl Microbiol Biotechnol 2021; 105:9069-9087. [PMID: 34846574 DOI: 10.1007/s00253-021-11705-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/06/2023]
Abstract
Pectinase, a group of pectin degrading enzymes, is one of the most influential industrial enzymes, helpful in producing a wide variety of products with good qualities. These enzymes are biocatalysts and are highly specific, non-toxic, sustainable, and eco-friendly. Consequently, both pectin and pectinase are crucially essential biomolecules with extensive applicatory perception in the biotechnological sector. The market demand and application of pectinases in new sectors are continuously increasing. However, due to the high cost of the substrate used for the growth of microbes, the production of pectinase using microorganisms is limited. Therefore, low-cost or no-cost substrates, such as various agricultural biomasses, are emphasized in producing pectinases. The importance and implications of pectinases are rising in diverse areas, including bioethanol production, extraction of DNA, and protoplast isolation from a plant. Therefore, this review briefly describes the structure of pectin, types and source of pectinases, substrates and strategies used for pectinases production, and emphasizes diverse potential applications of pectinases. The review also has included a list of pectinases producing microbes and alternative substrates for commercial production of pectinase applicable in pectinase-based industrial technology.Key points• Pectinase applications are continuously expanding.• Organic wastes can be used as low-cost sources of pectin.• Utilization of wastes helps to reduce pollution.
Collapse
|
13
|
Lu D, Liu B, Ren M, Wu C, Ma J, Shen Y. Light Deficiency Inhibits Growth by Affecting Photosynthesis Efficiency as well as JA and Ethylene Signaling in Endangered Plant Magnolia sinostellata. PLANTS (BASEL, SWITZERLAND) 2021; 10:2261. [PMID: 34834626 PMCID: PMC8618083 DOI: 10.3390/plants10112261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 12/27/2022]
Abstract
The endangered plant Magnolia sinostellata largely grows in the understory of forest and suffers light deficiency stress. It is generally recognized that the interaction between plant development and growth environment is intricate; however, the underlying molecular regulatory pathways by which light deficiency induced growth inhibition remain obscure. To understand the physiological and molecular mechanisms of plant response to shading caused light deficiency, we performed photosynthesis efficiency analysis and comparative transcriptome analysis in M. sinostellata leaves, which were subjected to shading treatments of different durations. Most of the parameters relevant to the photosynthesis systems were altered as the result of light deficiency treatment, which was also confirmed by the transcriptome analysis. Gene Ontology and KEGG pathway enrichment analyses illustrated that most of differential expression genes (DEGs) were enriched in photosynthesis-related pathways. Light deficiency may have accelerated leaf abscission by impacting the photosynthesis efficiency and hormone signaling. Further, shading could repress the expression of stress responsive transcription factors and R-genes, which confer disease resistance. This study provides valuable insight into light deficiency-induced molecular regulatory pathways in M. sinostellata and offers a theoretical basis for conservation and cultivation improvements of Magnolia and other endangered woody plants.
Collapse
Affiliation(s)
- Danying Lu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Bin Liu
- Department of Plant Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Bellaterra, Spain;
| | - Mingjie Ren
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Chao Wu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jingjing Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yamei Shen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (D.L.); (M.R.); (C.W.)
- College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| |
Collapse
|
14
|
Huang H, Kuo YW, Chuang YC, Yang YP, Huang LM, Jeng MF, Chen WH, Chen HH. Terpene Synthase-b and Terpene Synthase-e/f Genes Produce Monoterpenes for Phalaenopsis bellina Floral Scent. FRONTIERS IN PLANT SCIENCE 2021; 12:700958. [PMID: 34335666 PMCID: PMC8318001 DOI: 10.3389/fpls.2021.700958] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 05/25/2023]
Abstract
Orchids are the most species-rich plants and highly interactive with pollinators via visual or olfactory cues. Biosynthesis and emission of volatile organic compounds (VOCs) to the atmosphere facilitate the olfactory cues and ensure successful pollination. Phalaenopsis bellina is a scented orchid with monoterpenes as major VOCs, comprising linalool, geraniol, and their derivatives. Comparative transcriptomics analysis identified four terpene synthase-b (TPS-b) genes and two TPS-e/f genes with differential gene expression between scented and scentless Phalaenopsis species. Here, we confirmed their differential expression between scented and scentless Phalaenopsis orchids and excluded one TPS-b candidate. We analyzed the temporal and spatial expression and functionally characterized these TPSs. Both TPS-b and TPS-e/f genes showed an increased expression on blooming day or 3 days post-anthesis (D + 3) before the optimal emission of floral scent on D + 5, with especially high expression of PbTPS5 and PbTPS10. The TPS-b genes are expressed exclusively in reproductive organs, whereas the TPS-e/f genes are expressed in both reproductive and vegetative organs. In planta functional characterization of both PbTPS5 and PbTPS10 in tobacco and scentless Phalaenopsis plants did not produce terpenoids. Further ectopic expression in scented Phalaenopsis cultivar P. I-Hsin Venus showed that linalool was the main product, with PbTPS10 displaying 3-fold higher activity than PbTPS5. On in vitro enzyme assay with purified recombinant TPS-b proteins ectopically expressed in Escherichia coli, geraniol was the product catalyzed by PbTPS5 and PbTPS9. PbTPS3 was a linalool/(β)-cis-ocimene synthase and PbTPS4 a linalool synthase. In conclusion, both TPS-b and TPS-e/f enzymes orchestrated floral monoterpene biosynthesis in P. bellina.
Collapse
Affiliation(s)
- Hsin Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Wei Kuo
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Chuang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ping Yang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Li-Min Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Fen Jeng
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Huei Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant and Microbial Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Matchett-Oates L, Mohamaden E, Spangenberg GC, Cogan NOI. Development of a robust transient expression screening system in protoplasts of Cannabis. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY - PLANT 2021. [PMID: 0 DOI: 10.1007/s11627-021-10178-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/23/2021] [Indexed: 05/20/2023]
Abstract
AbstractTransient expression systems in mesophyll protoplasts have been utilised in many plant species as an indispensable tool for gene function analysis and efficacious genome editing constructs. However, such a system has not been developed inCannabisdue to the recalcitrant nature of the plant to tissue culture as well as its illegal status for many years. In this study, young expanding leaves from asepticin vitro Cannabisexplants were used for protoplast isolation. Factorial designs were used to optimise variables in viable protoplast isolation and transient expression of GFP, with a range analyses performed to determine, and quantify, significantly impacting variables. Viable protoplast yields as high as 5.7 × 106were achieved with 2.5% (w/v) Cellulase R-10, 0.3% (w/v) Macerozyme R-10 and 0.7 M mannitol, incubated for 16 h. As indicated by the transient expression of GFP, efficiency reached 23.2% with 30 μg plasmid, 50% PEG, 1 × 106protoplasts and a transfection duration of 20 min. Application of the optimised protocol for protoplast isolation was successfully evaluated on three subsequent unrelated genotypes to highlight the robustness and broad applicability of the developed technique.
Collapse
|
16
|
Ren R, Gao J, Yin D, Li K, Lu C, Ahmad S, Wei Y, Jin J, Zhu G, Yang F. Highly Efficient Leaf Base Protoplast Isolation and Transient Expression Systems for Orchids and Other Important Monocot Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:626015. [PMID: 33659015 PMCID: PMC7917215 DOI: 10.3389/fpls.2021.626015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/25/2021] [Indexed: 05/21/2023]
Abstract
Versatile protoplast platforms greatly facilitate the development of modern botany. However, efficient protoplast-based systems are still challenging for numerous horticultural plants and crops. Orchids are globally cultivated ornamental and medicinal monocot plants, but few efficient protoplast isolation and transient expression systems have been developed. In this study, we established a highly efficient orchid protoplast isolation protocol by selecting suitable source materials and optimizing the enzymatic conditions, which required optimal D-mannitol concentrations (0.4-0.6 M) combined with optimal 1.2% cellulose and 0.6% macerozyme, 5 μM of 2-mercaptoethanol and 6 h digestion. Tissue- and organ-specific protoplasts were successfully isolated from young leaves [∼3.22 × 106/g fresh weight (FW)], flower pedicels (∼5.26 × 106/g FW), and young root tips (∼7.66 × 105/g FW) of Cymbidium orchids. This protocol recommends the leaf base tissues (the tender part of young leaves attached to the stem) as better source materials. High yielding viable protoplasts were isolated from the leaf base of Cymbidium (∼2.50 × 107/g FW), Phalaenopsis (1.83 × 107/g FW), Paphiopedilum (1.10 × 107/g FW), Dendrobium (8.21 × 106/g FW), Arundina (3.78 × 106/g FW) orchids, and other economically important monocot crops including maize (Zea mays) (3.25 × 107/g FW) and rice (Oryza sativa) (4.31 × 107/g FW), which showed marked advantages over previous mesophyll protoplast isolation protocols. Leaf base protoplasts of Cymbidium orchids were used for polyethylene glycol (PEG)-mediated transfection, and a transfection efficiency of more than 80% was achieved. This leaf base protoplast system was applied successfully to analyze the CsDELLA-mediated gibberellin signaling in Cymbidium orchids. We investigated the subcellular localization of the CsDELLA-green fluorescent protein fusion and analyzed the role of CsDELLA in the regulation of gibberellin to flowering-related genes via efficient transient overexpression and gene silencing of CsDELLA in Cymbidium protoplasts. This protoplast isolation and transient expression system is the most efficient based on the documented results to date. It can be widely used for cellular and molecular studies in orchids and other economically important monocot crops, especially for those lacking an efficient genetic transformation system in vivo.
Collapse
Affiliation(s)
- Rui Ren
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dongmei Yin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Kai Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sagheer Ahmad
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
17
|
Hu Y, Song D, Gao L, Ajayo BS, Wang Y, Huang H, Zhang J, Liu H, Liu Y, Yu G, Liu Y, Li Y, Huang Y. Optimization of isolation and transfection conditions of maize endosperm protoplasts. PLANT METHODS 2020; 16:96. [PMID: 32670388 PMCID: PMC7346502 DOI: 10.1186/s13007-020-00636-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/30/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Endosperm-trait related genes are associated with grain yield or quality in maize. There are vast numbers of these genes whose functions and regulations are still unknown. The biolistic system, which is often used for transient gene expression, is expensive and involves complex protocol. Besides, it cannot be used for simultaneous analysis of multiple genes. Moreover, the biolistic system has little physiological relevance when compared to cell-specific based system. Plant protoplasts are efficient cell-based systems which allow quick and simultaneous transient analysis of multiple genes. Typically, PEG-calcium mediated transfection of protoplast is simple and cost-effective. Notably, starch granules in cereal endosperm may diminish protoplast yield and integrity, if the isolation and transfection conditions are not accurately measured. Prior to this study, no PEG-calcium mediated endosperm protoplast system has been reported for cereal crop, perhaps, because endosperm cells accumulate starch grains. RESULTS Here, we showed the uniqueness of maize endosperm-protoplast system (EPS) in conducting endosperm cell-based experiments. By using response surface designs, we established optimized conditions for the isolation and PEG-calcium mediated transfection of maize endosperm protoplasts. The optimized conditions of 1% cellulase, 0.75% macerozyme and 0.4 M mannitol enzymolysis solution for 6 h showed that more than 80% protoplasts remained viable after re-suspension in 1 ml MMG. The EPS was used to express GFP protein, analyze the subcellular location of ZmBT1, characterize the interaction of O2 and PBF1 by bimolecular fluorescent complementation (BiFC), and simultaneously analyze the regulation of ZmBt1 expression by ZmMYB14. CONCLUSIONS The described optimized conditions proved efficient for reasonable yield of viable protoplasts from maize endosperm, and utility of the protoplast in rapid analysis of endosperm-trait related genes. The development of the optimized protoplast isolation and transfection conditions, allow the exploitation of the functional advantages of protoplast system over biolistic system in conducting endosperm-based studies (particularly, in transient analysis of genes and gene regulation networks, associated with the accumulation of endosperm storage products). Such analyses will be invaluable in characterizing endosperm-trait related genes whose functions have not been identified. Thus, the EPS will benefit the research of cereal grain yield and quality improvement.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Dalin Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lei Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Babatope Samuel Ajayo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yongbin Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Huanhuan Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014 China
| | - Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya’an, 625014 China
| | - Yinghong Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Guowu Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yongjian Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yangping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yubi Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
18
|
Ren R, Gao J, Lu C, Wei Y, Jin J, Wong SM, Zhu G, Yang F. Highly Efficient Protoplast Isolation and Transient Expression System for Functional Characterization of Flowering Related Genes in Cymbidium Orchids. Int J Mol Sci 2020; 21:ijms21072264. [PMID: 32218171 PMCID: PMC7177621 DOI: 10.3390/ijms21072264] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
Protoplast systems have been proven powerful tools in modern plant biology. However, successful preparation of abundant viable protoplasts remains a challenge for Cymbidium orchids. Herein, we established an efficient protoplast isolation protocol from orchid petals through optimization of enzymatic conditions. It requires optimal D-mannitol concentration (0.5 M), enzyme concentration (1.2 % (w/v) cellulose and 0.6 % (w/v) macerozyme) and digestion time (6 h). With this protocol, the highest yield (3.50 × 107/g fresh weight of orchid tissue) and viability (94.21%) of protoplasts were obtained from flower petals of Cymbidium. In addition, we achieved high transfection efficiency (80%) through the optimization of factors affecting polyethylene glycol (PEG)-mediated protoplast transfection including incubation time, final PEG4000 concentration and plasmid DNA amount. This highly efficient protoplast-based transient expression system (PTES) was further used for protein subcellular localization, bimolecular fluorescence complementation (BiFC) assay and gene regulation studies of flowering related genes in Cymbidium orchids. Taken together, our protoplast isolation and transfection protocol is highly efficient, stable and time-saving. It can be used for gene function and molecular analyses in orchids and other economically important monocot crops.
Collapse
Affiliation(s)
- Rui Ren
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.R.); (J.G.); (C.L.); (Y.W.); (J.J.)
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.R.); (J.G.); (C.L.); (Y.W.); (J.J.)
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.R.); (J.G.); (C.L.); (Y.W.); (J.J.)
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.R.); (J.G.); (C.L.); (Y.W.); (J.J.)
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.R.); (J.G.); (C.L.); (Y.W.); (J.J.)
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore;
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215000, China
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.R.); (J.G.); (C.L.); (Y.W.); (J.J.)
- Correspondence: (G.Z.); (F.Y.)
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (R.R.); (J.G.); (C.L.); (Y.W.); (J.J.)
- Correspondence: (G.Z.); (F.Y.)
| |
Collapse
|
19
|
Lai Q, Wang Y, Zhou Q, Zhao Z. Isolation and Purification of Mesophyll Protoplasts from Ginkgo biloba L. CYTOLOGIA 2020. [DOI: 10.1508/cytologia.85.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Qing Lai
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University
| | - Yanlai Wang
- Comprehensive Laboratory of Forestry Technology, Northwest A&F University
| | - Qianyi Zhou
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University
| | - Zhong Zhao
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University
| |
Collapse
|
20
|
Gao L, Shen G, Zhang L, Qi J, Zhang C, Ma C, Li J, Wang L, Malook SU, Wu J. An efficient system composed of maize protoplast transfection and HPLC-MS for studying the biosynthesis and regulation of maize benzoxazinoids. PLANT METHODS 2019; 15:144. [PMID: 31798670 PMCID: PMC6882228 DOI: 10.1186/s13007-019-0529-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/18/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Insect herbivory poses a major threat to maize. Benzoxazinoids are important anti-insect secondary metabolites in maize, whose biosynthetic pathway has been extensively studied. However, yet little is known about how benzoxazinoids are regulated in maize, partly due to lack of mutant resources and recalcitrance to genetic transformation. Transient systems based on mesophyll- or cultured cell-derived protoplasts have been exploited in several plant species and have become a powerful tool for rapid or high-throughput assays of gene functions. Nevertheless, these systems have not been exploited to study the regulation of secondary metabolites. RESULTS A protocol for isolation of protoplasts from etiolated maize seedlings and efficient transfection was optimized. Furthermore, a 10-min-run-time and highly sensitive HPLC-MS method was established to rapidly detect and quantify maize benzoxazinoids. Coupling maize protoplast transfection and HPLC-MS, we screened a few genes potentially regulating benzoxazinoid biosynthesis using overexpression or silencing by artificial microRNA technology. CONCLUSIONS Combining the power of maize protoplast transfection and HPLC-MS analysis, this method allows rapid screening for the regulatory and biosynthetic genes of maize benzoxazinoids in protoplasts, before the candidates are selected for in planta functional analyses. This method can also be applied to study the biosynthesis and regulation of other secondary metabolites in maize and secondary metabolites in other plant species, including those not amenable to transformation.
Collapse
Affiliation(s)
- Lei Gao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
- School of Biological Science, Yunnan University, Kunming, 650091 China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Lingdan Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Saif Ul Malook
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| |
Collapse
|
21
|
Priyadarshani SVGN, Hu B, Li W, Ali H, Jia H, Zhao L, Ojolo SP, Azam SM, Xiong J, Yan M, ur Rahman Z, Wu Q, Qin Y. Simple protoplast isolation system for gene expression and protein interaction studies in pineapple ( Ananas comosus L.). PLANT METHODS 2018; 14:95. [PMID: 30386413 PMCID: PMC6205801 DOI: 10.1186/s13007-018-0365-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/22/2018] [Indexed: 05/22/2023]
Abstract
Background An efficient transformation protocol is a primary requisite to study and utilize the genetic potential of any plant species. A quick transformation system is also crucial for the functional analysis of genes along with the study of proteins and their interactions in vivo. Presently, however, quick and effective transformation systems are still lacking for many plant species including pineapple. This has limited the full exploration of the genetic repository of pineapple as well as the study of its genes, protein localization and protein interactions. Results To address the above limitations, we have developed an efficient system for protoplast isolation and subcellular localization of desired proteins using pineapple plants derived from tissue culture. A cocktail of 1.5% (W/V) Cellulase R-10 and 0.5% (W/V) Macerozyme R-10 resulted in 51% viable protoplasts with 3 h digestion. Compared to previously reported protocols, our protoplast isolation method is markedly faster (saving 4.5 h), requires only a small quantity of tissue sample (1 g of leaves) and has high yield (6.5 × 105). The quality of the isolated protoplasts was verified using organelle localization in protoplasts with different organelle markers. Additionally, colocalization analysis of two pineapple Mg2+ transporter genes in pineapple protoplasts was consistent with the results in a tobacco transient expression system, confirming that the protoplast isolation method can be used to study subcellular localization. Further findings showed that the system is also suitable for protein-protein interaction studies. Conclusion Based on our findings, the presently described method is an efficient and effective strategy for pineapple protoplast isolation and transformation; it is convenient and time saving and provides a greater platform for transformation studies.
Collapse
Affiliation(s)
- S. V. G. N. Priyadarshani
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Crop Sciences, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Bingyan Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Crop Sciences, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Weimin Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Crop Sciences, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Hina Ali
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Crop Sciences, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Haifeng Jia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Crop Sciences, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Lihua Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Crop Sciences, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Simon Peter Ojolo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Crop Sciences, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Syed Muhammad Azam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Crop Sciences, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Junjie Xiong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Crop Sciences, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Moakai Yan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Crop Sciences, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Zia ur Rahman
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Crop Sciences, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| | - Qingsong Wu
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091 Guangdong Province China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Crop Sciences, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian Province China
| |
Collapse
|
22
|
Lin HY, Chen JC, Fang SC. A Protoplast Transient Expression System to Enable Molecular, Cellular, and Functional Studies in Phalaenopsis orchids. FRONTIERS IN PLANT SCIENCE 2018; 9:843. [PMID: 29988409 PMCID: PMC6024019 DOI: 10.3389/fpls.2018.00843] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/30/2018] [Indexed: 05/24/2023]
Abstract
The enigmatic nature of the specialized developmental programs of orchids has fascinated plant biologists for centuries. The recent releases of orchid genomes indicate that orchids possess new gene families and family expansions and contractions to regulate a diverse suite of developmental processes. However, the extremely long orchid life cycle and lack of molecular toolkit have hampered the advancement of orchid biology research. To overcome the technical difficulties and establish a platform for rapid gene regulation studies, in this study, we developed an efficient protoplast isolation and transient expression system for Phalaenopsis aphrodite. This protocol was successfully applied to protein subcellular localization and protein-protein interaction studies. Moreover, it was confirmed to be useful in delineating the PaE2F/PaDP-dependent cell cycle pathway and studying auxin response. In summary, the established orchid protoplast transient expression system provides a means to functionally characterize orchid genes at the molecular level allowing assessment of transcriptome responses to transgene expression and widening the scope of molecular studies in orchids.
Collapse
Affiliation(s)
- Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|