1
|
Anderson P, Dogan N, Ford JC, Padgett K, Simpson G, Stoyanova R, Abramowitz MC, Dal Pra A, Delgadillo R. Repeatability, reproducibility, and the effects of radiotherapy on radiomic features of lowfield MR-LINAC images of the prostate. Front Oncol 2025; 14:1408752. [PMID: 39902123 PMCID: PMC11788350 DOI: 10.3389/fonc.2024.1408752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
Definitive radiotherapy (RT) has been shown to be a successful method of treating prostate cancer (PCa) patients. Through radiomics, a quantitative analysis of medical images, it is possible to adapt treatment early on, which may prevent or mitigate future adverse events. During RT of PCa, low-field magnetic resonance (MR) images, taken with a LINAC onboard imaging system in a process known as magnetic resonance-guided radiotherapy (MRgRT), are used to improve treatment accuracy via superior setup compared to x-ray methods. This work investigated baseline repeatability of radiomic features (RFs) by comparing planning MR images (pMR) with first-fraction setup images (FX1) taken with onboard MRI. The changes in RFs following RT were also looked at with the use of last-fraction setup images (FX5). Earlier research has investigated the use of planning images from cone beam CT (CBCT), but to our knowledge no research has previously shown the relationship with onboard MRI. The correlation between FX1 images and 3T diagnostic MR (dT2) images was also studied. Forty-three first and second order radiomic features extracted from these images were compared by calculating Lin's concordance correlation coefficient (with Benjamini-Hochberg correction for multiple comparisons) between the modalities. FX1 and pMR images were correlated (p<0.05) for all but one RF. 12 RFs correlated between pMR and dT2 images. There was a noticeable change in correlation values for RFs when looking at FX1 and FX5 images, with only 15 correlating significantly. The change in correlation values between pMR and FX5 images was comparable to that between FX1 and FX5 images, with 33 features having a CCC value deviation of less than 0.1. These results demonstrate that RF features are repeatable across different images of the same modality without treatment intervention. This study has also shown a noticeable, reproducible change in RFs as RT goes on. Reproducibility of RFs between different modalities was not strong. This study demonstrated that we can reliably use onboard MRI to observe day-to-day feature changes as a result of RT.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rodrigo Delgadillo
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
2
|
Ma X, Zhang Q, He L, Liu X, Xiao Y, Hu J, Cai S, Cai H, Yu B. Artificial intelligence application in the diagnosis and treatment of bladder cancer: advance, challenges, and opportunities. Front Oncol 2024; 14:1487676. [PMID: 39575423 PMCID: PMC11578829 DOI: 10.3389/fonc.2024.1487676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024] Open
Abstract
Bladder cancer (BC) is a serious and common malignant tumor of the urinary system. Accurate and convenient diagnosis and treatment of BC is a major challenge for the medical community. Due to the limited medical resources, the existing diagnosis and treatment protocols for BC without the assistance of artificial intelligence (AI) still have certain shortcomings. In recent years, with the development of AI technologies such as deep learning and machine learning, the maturity of AI has made it more and more applied to the medical field, including improving the speed and accuracy of BC diagnosis and providing more powerful treatment options and recommendations related to prognosis. Advances in medical imaging technology and molecular-level research have also contributed to the further development of such AI applications. However, due to differences in the sources of training information and algorithm design issues, there is still room for improvement in terms of accuracy and transparency for the broader use of AI in clinical practice. With the popularization of digitization of clinical information and the proposal of new algorithms, artificial intelligence is expected to learn more effectively and analyze similar cases more accurately and reliably, promoting the development of precision medicine, reducing resource consumption, and speeding up diagnosis and treatment. This review focuses on the application of artificial intelligence in the diagnosis and treatment of BC, points out some of the challenges it faces, and looks forward to its future development.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Qiuchen Zhang
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lvqi He
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyang Liu
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Xiao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingwen Hu
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Shengjie Cai
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Bin Yu
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Russo L, Charles-Davies D, Bottazzi S, Sala E, Boldrini L. Radiomics for clinical decision support in radiation oncology. Clin Oncol (R Coll Radiol) 2024; 36:e269-e281. [PMID: 38548581 DOI: 10.1016/j.clon.2024.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/14/2024] [Accepted: 03/08/2024] [Indexed: 07/09/2024]
Abstract
Radiomics is a promising tool for the development of quantitative biomarkers to support clinical decision-making. It has been shown to improve the prediction of response to treatment and outcome in different settings, particularly in the field of radiation oncology by optimising the dose delivery solutions and reducing the rate of radiation-induced side effects, leading to a fully personalised approach. Despite the promising results offered by radiomics at each of these stages, standardised methodologies, reproducibility and interpretability of results are still lacking, limiting the potential clinical impact of these tools. In this review, we briefly describe the principles of radiomics and the most relevant applications of radiomics at each stage of cancer management in the framework of radiation oncology. Furthermore, the integration of radiomics into clinical decision support systems is analysed, defining the challenges and offering possible solutions for translating radiomics into a clinically applicable tool.
Collapse
Affiliation(s)
- L Russo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze Radiologiche ed Ematologiche. Università Cattolica Del Sacro Cuore, Rome, Italy.
| | - D Charles-Davies
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - S Bottazzi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - E Sala
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze Radiologiche ed Ematologiche. Università Cattolica Del Sacro Cuore, Rome, Italy
| | - L Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
4
|
Palumbo P, Martinese A, Antenucci MR, Granata V, Fusco R, De Muzio F, Brunese MC, Bicci E, Bruno A, Bruno F, Giovagnoni A, Gandolfo N, Miele V, Di Cesare E, Manetta R. Diffusion kurtosis imaging and standard diffusion imaging in the magnetic resonance imaging assessment of prostate cancer. Gland Surg 2023; 12:1806-1822. [PMID: 38229839 PMCID: PMC10788566 DOI: 10.21037/gs-23-53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 11/09/2023] [Indexed: 01/18/2024]
Abstract
Background and Objective In recent years, magnetic resonance imaging (MRI) has shown excellent results in the study of the prostate gland. MRI has indeed shown to be advantageous in the prostate cancer (PCa) detection, as in guiding targeting biopsy, improving its diagnostic yield. Although current acquisition protocols provide for multiparametric acquisition, recent evidence has shown that biparametric protocols can be non-inferior in PCa detection. Diffusion-weighted imaging (DWI) sequence, in particular, plays a key role, particularly in the peripheral zone which accounts for the larger part of the prostate. High b-values are generally recommended, although with the possibility of obtaining non-Gaussian diffusion effects, which requires a more sophisticated model for the analysis, namely through the diffusion kurtosis imaging (DKI). Purpose of this narrative review was to analyze the current applications and clinical evidence regarding the use of DKI with a main focus on PCa detection, also in comparison with DWI. Methods This narrative review synthesized the findings of literature retrieved from main researches, narrative and systematic reviews, and meta-analyses obtained from PubMed. Key Content and Findings DKI analyses the non-Gaussian water diffusivity and describe the effect of signal intensity decay related to high b-value through two main metrics (Dapp and Kapp). Differently from DWI-apparent diffusion coefficient (DWI-ADC) which reflects only water restriction outside of cells, DKI metrics are supposed to represent also the direct interaction of water molecules with cell membranes and intracellular compounds. This review describes current evidence on ADC and DKI metrics in clinical imaging, and finally collect the results derived from the main articles focused on DWI and DKI models in detecting PCa. Conclusions DKI advantages, compared to conventional ADC analysis, still remain controversial. Wider application and greater technical knowledge of DKI, however, may help in proving its intrinsic validity in the field of oncology and therefore in the study of clinically significant PCa. Finally, a deep understanding of DKI is important for radiologists to better understand what Kapp and Dapp mean in the context of different cancer and how these metrics may vary specifically in PCa imaging.
Collapse
Affiliation(s)
- Pierpaolo Palumbo
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, L’Aquila, Italy
| | - Andrea Martinese
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, L’Aquila, Italy
| | - Maria Rosaria Antenucci
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, L’Aquila, Italy
| | - Vincenza Granata
- Division of Radiology, “Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli”, Naples, Italy
| | | | - Federica De Muzio
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, Campobasso, Italy
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, Campobasso, Italy
| | - Eleonora Bicci
- Department of Emergency Radiology, University Hospital Careggi, Florence, Italy
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Ancona, Italy
| | - Federico Bruno
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, L’Aquila, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Ancona, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Genoa, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
| | - Vittorio Miele
- Department of Emergency Radiology, University Hospital Careggi, Florence, Italy
| | - Ernesto Di Cesare
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Rosa Manetta
- Radiology Unit, San Salvatore Hospital, Abruzzo Health Unit 1, L’Aquila, Italy
- Prostate Unit, San Salvatore Hospital, Abruzzo Health Unit 1, L’Aquila, Italy
| |
Collapse
|
5
|
Ye Y, Liu Z, Zhu J, Wu J, Sun K, Peng Y, Qiu J, Gong L. Development trends and knowledge framework in the application of magnetic resonance imaging in prostate cancer: a bibliometric analysis from 1984 to 2022. Quant Imaging Med Surg 2023; 13:6761-6777. [PMID: 37869318 PMCID: PMC10585509 DOI: 10.21037/qims-23-446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/07/2023] [Indexed: 10/24/2023]
Abstract
Background Prostate cancer (PCa) is the most common tumor of the male genitourinary system. With the development of imaging technology, the role of magnetic resonance imaging (MRI) in the management of PCa is increasing. The present study summarizes research on the application of MRI in the field of PCa using bibliometric analysis and predicts future research hotspots. Methods Articles regarding the application of MRI in PCa between January 1, 1984 and June 30, 2022 were selected from the Web of Science Core Collection (WoSCC) on November 6, 2022. Microsoft Excel 2016 and the Bibliometrix Biblioshiny R-package software were used for data analysis and bibliometric indicator extraction. CiteSpace (version 6.1.R3) was used to visualize literature feature clustering, including co-occurrence analysis of countries, institutions, authors, references, and burst keywords analysis. Results A total of 10,230 articles were included in the study. Turkbey was the most prolific author. The USA was the most productive country and had strong partnerships with other countries. The most productive institution was Memorial Sloan Kettering Cancer Center. Journal of Magnetic Resonance Imaging and Radiology were the most productive and highest impact factor (IF) journals in the field, respectively. Timeline views showed that "#1 multiparametric magnetic resonance imaging", "#4 pi-rads", and "#8 psma" were currently the latest research hotspots. Keywords burst analysis showed that "machine learning", "psa density", "multi parametric mri", "deep learning", and "artificial intelligence" were the most frequently used keywords in the past 3 years. Conclusions MRI has a wide range of applications in PCa. The USA is the leading country in this field, with a concentration of highly productive and high-level institutions. Meanwhile, it can be projected that "deep learning", "radiomics", and "artificial intelligence" will be research hotspots in the future.
Collapse
Affiliation(s)
- Yinquan Ye
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhixuan Liu
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianghua Zhu
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialong Wu
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ke Sun
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun Peng
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jia Qiu
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lianggeng Gong
- Department of Radiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Tan D, Mohamad Salleh SA, Manan HA, Yahya N. Delta-radiomics-based models for toxicity prediction in radiotherapy: A systematic review and meta-analysis. J Med Imaging Radiat Oncol 2023; 67:564-579. [PMID: 37309680 DOI: 10.1111/1754-9485.13546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Delta-radiomics models are potentially able to improve the treatment assessment than single-time point features. The purpose of this study is to systematically synthesize the performance of delta-radiomics-based models for radiotherapy (RT)-induced toxicity. METHODS A literature search was performed following the PRISMA guidelines. Systematic searches were performed in PubMed, Scopus, Cochrane and Embase databases in October 2022. Retrospective and prospective studies on the delta-radiomics model for RT-induced toxicity were included based on predefined PICOS criteria. A random-effect meta-analysis of AUC was performed on the performance of delta-radiomics models, and a comparison with non-delta radiomics models was included. RESULTS Of the 563 articles retrieved, 13 selected studies of RT-treated patients on different types of cancer (HNC = 571, NPC = 186, NSCLC = 165, oesophagus = 106, prostate = 33, OPC = 21) were eligible for inclusion in the systematic review. Included studies show that morphological and dosimetric features may improve the predictive model performance for the selected toxicity. Four studies that reported both delta and non-delta radiomics features with AUC were included in the meta-analysis. The AUC random effects estimate for delta and non-delta radiomics models were 0.80 and 0.78 with heterogeneity, I2 of 73% and 27% respectively. CONCLUSION Delta-radiomics-based models were found to be promising predictors of predefined end points. Future studies should consider using standardized methods and radiomics features and external validation to the reviewed delta-radiomics model.
Collapse
Affiliation(s)
- Daryl Tan
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Noorazrul Yahya
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Zhao JZ, Ni R, Chow R, Rink A, Weersink R, Croke J, Raman S. Artificial intelligence applications in brachytherapy: A literature review. Brachytherapy 2023; 22:429-445. [PMID: 37248158 DOI: 10.1016/j.brachy.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE Artificial intelligence (AI) has the potential to simplify and optimize various steps of the brachytherapy workflow, and this literature review aims to provide an overview of the work done in this field. METHODS AND MATERIALS We conducted a literature search in June 2022 on PubMed, Embase, and Cochrane for papers that proposed AI applications in brachytherapy. RESULTS A total of 80 papers satisfied inclusion/exclusion criteria. These papers were categorized as follows: segmentation (24), registration and image processing (6), preplanning (13), dose prediction and treatment planning (11), applicator/catheter/needle reconstruction (16), and quality assurance (10). AI techniques ranged from classical models such as support vector machines and decision tree-based learning to newer techniques such as U-Net and deep reinforcement learning, and were applied to facilitate small steps of a process (e.g., optimizing applicator selection) or even automate the entire step of the workflow (e.g., end-to-end preplanning). Many of these algorithms demonstrated human-level performance and offer significant improvements in speed. CONCLUSIONS AI has potential to augment, automate, and/or accelerate many steps of the brachytherapy workflow. We recommend that future studies adhere to standard reporting guidelines. We also stress the importance of using larger sample sizes and reporting results using clinically interpretable measures.
Collapse
Affiliation(s)
- Jonathan Zl Zhao
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Ruiyan Ni
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ronald Chow
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Alexandra Rink
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Robert Weersink
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Jennifer Croke
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Srinivas Raman
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
8
|
Stanzione A, Ponsiglione A, Alessandrino F, Brembilla G, Imbriaco M. Beyond diagnosis: is there a role for radiomics in prostate cancer management? Eur Radiol Exp 2023; 7:13. [PMID: 36907973 PMCID: PMC10008761 DOI: 10.1186/s41747-023-00321-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 03/13/2023] Open
Abstract
The role of imaging in pretreatment staging and management of prostate cancer (PCa) is constantly evolving. In the last decade, there has been an ever-growing interest in radiomics as an image analysis approach able to extract objective quantitative features that are missed by human eye. However, most of PCa radiomics studies have been focused on cancer detection and characterisation. With this narrative review we aimed to provide a synopsis of the recently proposed potential applications of radiomics for PCa with a management-based approach, focusing on primary treatments with curative intent and active surveillance as well as highlighting on recurrent disease after primary treatment. Current evidence is encouraging, with radiomics and artificial intelligence appearing as feasible tools to aid physicians in planning PCa management. However, the lack of external independent datasets for validation and prospectively designed studies casts a shadow on the reliability and generalisability of radiomics models, delaying their translation into clinical practice.Key points• Artificial intelligence solutions have been proposed to streamline prostate cancer radiotherapy planning.• Radiomics models could improve risk assessment for radical prostatectomy patient selection.• Delta-radiomics appears promising for the management of patients under active surveillance.• Radiomics might outperform current nomograms for prostate cancer recurrence risk assessment.• Reproducibility of results, methodological and ethical issues must still be faced before clinical implementation.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.
| | | | - Giorgio Brembilla
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Sminia P, Guipaud O, Viktorsson K, Ahire V, Baatout S, Boterberg T, Cizkova J, Dostál M, Fernandez-Palomo C, Filipova A, François A, Geiger M, Hunter A, Jassim H, Edin NFJ, Jordan K, Koniarová I, Selvaraj VK, Meade AD, Milliat F, Montoro A, Politis C, Savu D, Sémont A, Tichy A, Válek V, Vogin G. Clinical Radiobiology for Radiation Oncology. RADIOBIOLOGY TEXTBOOK 2023:237-309. [DOI: 10.1007/978-3-031-18810-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
AbstractThis chapter is focused on radiobiological aspects at the molecular, cellular, and tissue level which are relevant for the clinical use of ionizing radiation (IR) in cancer therapy. For radiation oncology, it is critical to find a balance, i.e., the therapeutic window, between the probability of tumor control and the probability of side effects caused by radiation injury to the healthy tissues and organs. An overview is given about modern precision radiotherapy (RT) techniques, which allow optimal sparing of healthy tissues. Biological factors determining the width of the therapeutic window are explained. The role of the six typical radiobiological phenomena determining the response of both malignant and normal tissues in the clinic, the 6R’s, which are Reoxygenation, Redistribution, Repopulation, Repair, Radiosensitivity, and Reactivation of the immune system, is discussed. Information is provided on tumor characteristics, for example, tumor type, growth kinetics, hypoxia, aberrant molecular signaling pathways, cancer stem cells and their impact on the response to RT. The role of the tumor microenvironment and microbiota is described and the effects of radiation on the immune system including the abscopal effect phenomenon are outlined. A summary is given on tumor diagnosis, response prediction via biomarkers, genetics, and radiomics, and ways to selectively enhance the RT response in tumors. Furthermore, we describe acute and late normal tissue reactions following exposure to radiation: cellular aspects, tissue kinetics, latency periods, permanent or transient injury, and histopathology. Details are also given on the differential effect on tumor and late responding healthy tissues following fractionated and low dose rate irradiation as well as the effect of whole-body exposure.
Collapse
|
10
|
Yang Y, Zhou Y, Zhou C, Zhang X, Ma X. MRI-Based Computer-Aided Diagnostic Model to Predict Tumor Grading and Clinical Outcomes in Patients With Soft Tissue Sarcoma. J Magn Reson Imaging 2022; 56:1733-1745. [PMID: 35303756 DOI: 10.1002/jmri.28160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND MRI acts as a potential resource for exploration and interpretation to identify tumor characterization by advanced computer-aided diagnostic (CAD) methods. PURPOSE To evaluate and validate the performance of MRI-based CAD models for identifying low-grade and high-grade soft tissue sarcoma (STS) and for investigating survival prognostication. STUDY TYPE Retrospective. SUBJECTS A total of 540 patients (295 male/female: 295/245, median age: 42 years) with STSs. FIELD SEQUENCE 5-T MRI with T1 WI sequence and fat-suppressed T2 -weighted (T2 FS) sequence. ASSESSMENT Manual regions of interests (ROIs) were delineated for generation of radiomic features. Automatic segmentation and pretrained convolutional neural networks (CNNs) were performed for deep learning (DL) analysis. The last fully connected layer at the top of CNNs was removed, and the global max pooling was added to transform feature maps to numeric values. Tumor grade was determined on histological specimens. STATISTICAL TESTS The support vector machine was adopted as the classifier for all MRI-based models. The DL signature was derived from the DL-MRI model with the highest area under the curve (AUC). The significant clinical variables, tumor location and size, integrated with radiomics and DL signatures were ready for construction of clinical-MRI nomogram to identify tumor grading. The prognostic value of clinical variables and these MRI-based signatures for overall survival (OS) was evaluated via Cox proportional hazard. RESULTS The clinical-MRI differentiation nomogram represented an AUC of 0.870 in the training cohort, and an AUC of 0.855, accuracy of 79.01%, sensitivity of 79.03%, and specificity of 78.95% in the validation cohort. The prognostic model showed good performance for OS with 3-year C-index of 0.681 and 0.642 and 5-year C-index of 0.722 and 0.676 in the training and validation cohorts. DATA CONCLUSION MRI-based CAD nomogram represents effective abilities in classification of low-grade and high-grade STSs. The MRI-based prognostic model yields favorable preoperative capacities to identify long-term survivals for STSs. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Yuhan Yang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan, 610041, China
| | - Yin Zhou
- Department of Pediatric Surgery, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan, 610041, China
| | - Chen Zhou
- Department of Pediatric Surgery, West China Hospital, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan, 610041, China
| | - Xuemei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Guoxue Road 37, Chengdu, 610041, China
| | - Xuelei Ma
- Department of Biotherapy and Cancer Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Guoxue Road 37, Chengdu, 610041, China
| |
Collapse
|
11
|
Wasserstein-based texture analysis in radiomic studies. Comput Med Imaging Graph 2022; 102:102129. [PMID: 36308869 DOI: 10.1016/j.compmedimag.2022.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/11/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
The emerging field of radiomics that transforms standard-of-care images to quantifiable scalar statistics endeavors to reveal the information hidden in these macroscopic images. The concept of texture is widely used and essential in many radiomic-based studies. Practice usually reduces spatial multidimensional texture matrices, e.g., gray-level co-occurrence matrices (GLCMs), to summary scalar features. These statistical features have been demonstrated to be strongly correlated and tend to contribute redundant information; and does not account for the spatial information hidden in the multivariate texture matrices. This study proposes a novel pipeline to deal with spatial texture features in radiomic studies. A new set of textural features that preserve the spatial information inherent in GLCMs is proposed and used for classification purposes. The set of the new features uses the Wasserstein metric from optimal mass transport theory (OMT) to quantify the spatial similarity between samples within a given label class. In particular, based on a selected subset of texture GLCMs from the training cohort, we propose new representative spatial texture features, which we incorporate into a supervised image classification pipeline. The pipeline relies on the support vector machine (SVM) algorithm along with Bayesian optimization and the Wasserstein metric. The selection of the best GLCM references is considered for each classification label and is performed during the training phase of the SVM classifier using a Bayesian optimizer. We assume that sample fitness is defined based on closeness (in the sense of the Wasserstein metric) and high correlation (Spearman's rank sense) with other samples in the same class. Moreover, the newly defined spatial texture features consist of the Wasserstein distance between the optimally selected references and the remaining samples. We assessed the performance of the proposed classification pipeline in diagnosing the coronavirus disease 2019 (COVID-19) from computed tomographic (CT) images. To evaluate the proposed spatial features' added value, we compared the performance of the proposed classification pipeline with other SVM-based classifiers that account for different texture features, namely: statistical features only, optimized spatial features using Euclidean metric, non-optimized spatial features with Wasserstein metric. The proposed technique, which accounts for the optimized spatial texture feature with Wasserstein metric, shows great potential in classifying new COVID CT images that the algorithm has not seen in the training step. The MATLAB code of the proposed classification pipeline is made available. It can be used to find the best reference samples in other data cohorts, which can then be employed to build different prediction models.
Collapse
|
12
|
Delgadillo R, Spieler BO, Deana AM, Ford JC, Kwon D, Yang F, Studenski MT, Padgett KR, Abramowitz MC, Dal Pra A, Stoyanova R, Dogan N. Cone-beam CT delta-radiomics to predict genitourinary toxicities and international prostate symptom of prostate cancer patients: a pilot study. Sci Rep 2022; 12:20136. [PMID: 36418901 PMCID: PMC9684516 DOI: 10.1038/s41598-022-24435-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
For prostate cancer (PCa) patients treated with definitive radiotherapy (RT), acute and late RT-related genitourinary (GU) toxicities adversely impact disease-specific quality of life. Early warning of potential RT toxicities can prompt interventions that may prevent or mitigate future adverse events. During intensity modulated RT (IMRT) of PCa, daily cone-beam computed tomography (CBCT) images are used to improve treatment accuracy through image guidance. This work investigated the performance of CBCT-based delta-radiomic features (DRF) models to predict acute and sub-acute International Prostate Symptom Scores (IPSS) and Common Terminology Criteria for Adverse Events (CTCAE) version 5 GU toxicity grades for 50 PCa patients treated with definitive RT. Delta-radiomics models were built using logistic regression, random forest for feature selection, and a 1000 iteration bootstrapping leave one analysis for cross validation. To our knowledge, no prior studies of PCa have used DRF models based on daily CBCT images. AUC of 0.83 for IPSS and greater than 0.7 for CTCAE grades were achieved as early as week 1 of treatment. DRF extracted from CBCT images showed promise for the development of models predictive of RT outcomes. Future studies will include using artificial intelligence and machine learning to expand CBCT sample sizes available for radiomics analysis.
Collapse
Affiliation(s)
- Rodrigo Delgadillo
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Benjamin O. Spieler
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Anthony M. Deana
- grid.26790.3a0000 0004 1936 8606Department of Biomedical Engineering, University of Miami, Miami, FL USA
| | - John C. Ford
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Deukwoo Kwon
- grid.267308.80000 0000 9206 2401Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, Houston, TX USA
| | - Fei Yang
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Matthew T. Studenski
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Kyle R. Padgett
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Matthew C. Abramowitz
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Alan Dal Pra
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Radka Stoyanova
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| | - Nesrin Dogan
- grid.26790.3a0000 0004 1936 8606Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 USA
| |
Collapse
|
13
|
Zhang C, Heng X, Neng W, Chen H, Sun A, Li J, Wang M. Prediction of high infiltration levels in pituitary adenoma using MRI-based radiomics and machine learning. Chin Neurosurg J 2022; 8:21. [PMID: 35962442 PMCID: PMC9373412 DOI: 10.1186/s41016-022-00290-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background Infiltration is important for the surgical planning and prognosis of pituitary adenomas. Differences in preoperative diagnosis have been noted. The aim of this article is to assess the accuracy of machine learning analysis of texture-derived parameters of pituitary adenoma obtained from preoperative MRI for the prediction of high infiltration. Methods A total of 196 pituitary adenoma patients (training set: n = 176; validation set: n = 20) were enrolled in this retrospective study. In total, 4120 quantitative imaging features were extracted from CE-T1 MR images. To select the most informative features, the least absolute shrinkage and selection operator (LASSO) and variance threshold method were performed. The linear support vector machine (SVM) was used to fit the predictive model based on infiltration features. Furthermore, the receiver operating characteristic curve (ROC) was generated, and the diagnostic performance of the model was evaluated by calculating the area under the curve (AUC), accuracy, precision, recall, and F1 value. Results A variance threshold of 0.85 was used to exclude 16 features with small differences using the LASSO algorithm, and 19 optimal features were finally selected. The SVM models for predicting high infiltration yielded an AUC of 0.86 (sensitivity: 0.81, specificity 0.79) in the training set and 0.73 (sensitivity: 0.87, specificity: 0.80) in the validation set. The four evaluation indicators of the predictive model achieved good diagnostic capabilities in the training set (accuracy: 0.80, precision: 0.82, recall: 0.81, F1 score: 0.81) and independent verification set (accuracy: 0.85, precision: 0.93, recall: 0.87, F1 score: 0.90). Conclusions The radiomics model developed in this study demonstrates efficacy for the prediction of pituitary adenoma infiltration. This model could potentially aid neurosurgeons in the preoperative prediction of infiltration in PAs and contribute to the selection of ideal surgical strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s41016-022-00290-4.
Collapse
|
14
|
Fernandes MC, Yildirim O, Woo S, Vargas HA, Hricak H. The role of MRI in prostate cancer: current and future directions. MAGMA (NEW YORK, N.Y.) 2022; 35:503-521. [PMID: 35294642 PMCID: PMC9378354 DOI: 10.1007/s10334-022-01006-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/16/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
There has been an increasing role of magnetic resonance imaging (MRI) in the management of prostate cancer. MRI already plays an essential role in the detection and staging, with the introduction of functional MRI sequences. Recent advancements in radiomics and artificial intelligence are being tested to potentially improve detection, assessment of aggressiveness, and provide usefulness as a prognostic marker. MRI can improve pretreatment risk stratification and therefore selection of and follow-up of patients for active surveillance. MRI can also assist in guiding targeted biopsy, treatment planning and follow-up after treatment to assess local recurrence. MRI has gained importance in the evaluation of metastatic disease with emerging technology including whole-body MRI and integrated positron emission tomography/MRI, allowing for not only better detection but also quantification. The main goal of this article is to review the most recent advances on MRI in prostate cancer and provide insights into its potential clinical roles from the radiologist's perspective. In each of the sections, specific roles of MRI tailored to each clinical setting are discussed along with its strengths and weakness including already established material related to MRI and the introduction of recent advancements on MRI.
Collapse
Affiliation(s)
- Maria Clara Fernandes
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Onur Yildirim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Sungmin Woo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
| | - Hebert Alberto Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| |
Collapse
|
15
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
16
|
Ferro M, de Cobelli O, Musi G, del Giudice F, Carrieri G, Busetto GM, Falagario UG, Sciarra A, Maggi M, Crocetto F, Barone B, Caputo VF, Marchioni M, Lucarelli G, Imbimbo C, Mistretta FA, Luzzago S, Vartolomei MD, Cormio L, Autorino R, Tătaru OS. Radiomics in prostate cancer: an up-to-date review. Ther Adv Urol 2022; 14:17562872221109020. [PMID: 35814914 PMCID: PMC9260602 DOI: 10.1177/17562872221109020] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most common worldwide diagnosed malignancy in male population. The diagnosis, the identification of aggressive disease, and the post-treatment follow-up needs a more comprehensive and holistic approach. Radiomics is the extraction and interpretation of images phenotypes in a quantitative manner. Radiomics may give an advantage through advancements in imaging modalities and through the potential power of artificial intelligence techniques by translating those features into clinical outcome prediction. This article gives an overview on the current evidence of methodology and reviews the available literature on radiomics in PCa patients, highlighting its potential for personalized treatment and future applications.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy, via Ripamonti 435 Milano, Italy
| | - Ottavio de Cobelli
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Francesco del Giudice
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Carrieri
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | | | - Alessandro Sciarra
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Martina Maggi
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Vincenzo Francesco Caputo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, Chieti, Italy; Urology Unit, ‘SS. Annunziata’ Hospital, Chieti, Italy
- Department of Urology, ASL Abruzzo 2, Chieti, Italy
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation, Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Ciro Imbimbo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Francesco Alessandro Mistretta
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Stefano Luzzago
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Mihai Dorin Vartolomei
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Târgu Mures, Romania
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Luigi Cormio
- Urology and Renal Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Urology Unit, Bonomo Teaching Hospital, Foggia, Italy
| | | | - Octavian Sabin Tătaru
- Institution Organizing University Doctoral Studies, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Târgu Mures, Romania
| |
Collapse
|
17
|
Machine Learning: Applications and Advanced Progresses of Radiomics in Endocrine Neoplasms. JOURNAL OF ONCOLOGY 2021; 2021:8615450. [PMID: 34671399 PMCID: PMC8523238 DOI: 10.1155/2021/8615450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Endocrine neoplasms remain a great threat to human health. It is extremely important to make a clear diagnosis and timely treatment of endocrine tumors. Machine learning includes radiomics, which has long been utilized in clinical cancer research. Radiomics refers to the extraction of valuable information by analyzing a large amount of standard data with high-throughput medical images mainly including computed tomography, positron emission tomography, magnetic resonance imaging, and ultrasound. With the quantitative imaging analysis and model building, radiomics can reflect specific underlying characteristics of a disease that otherwise could not be evaluated visually. More and more promising results of radiomics in oncological practice have been seen in recent years. Radiomics may have the potential to supplement traditional imaging analysis and assist in providing precision medicine for patients. Radiomics had developed rapidly in endocrine neoplasms practice in the past decade. In this review, we would introduce the general workflow of radiomics and summarize the applications and developments of radiomics in endocrine neoplasms in recent years. The limitations of current radiomic research studies and future development directions would also be discussed.
Collapse
|
18
|
Multiparametric MRI and Radiomics in Prostate Cancer: A Review of the Current Literature. Diagnostics (Basel) 2021; 11:diagnostics11101829. [PMID: 34679527 PMCID: PMC8534893 DOI: 10.3390/diagnostics11101829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) represents the fourth most common cancer and the fifth leading cause of cancer death of men worldwide. Multiparametric MRI (mp-MRI) has high sensitivity and specificity in the detection of PCa, and it is currently the most widely used imaging technique for tumor localization and cancer staging. mp-MRI plays a key role in risk stratification of naïve patients, in active surveillance for low-risk patients, and in monitoring recurrence after definitive therapy. Radiomics is an emerging and promising tool which allows a quantitative tumor evaluation from radiological images via conversion of digital images into mineable high-dimensional data. The purpose of radiomics is to increase the features available to detect PCa, to avoid unnecessary biopsies, to define tumor aggressiveness, and to monitor post-treatment recurrence of PCa. The integration of radiomics data, including different imaging modalities (such as PET-CT) and other clinical and histopathological data, could improve the prediction of tumor aggressiveness as well as guide clinical decisions and patient management. The purpose of this review is to describe the current research applications of radiomics in PCa on MR images.
Collapse
|
19
|
Mata LA, Retamero JA, Gupta RT, García Figueras R, Luna A. Artificial Intelligence-assisted Prostate Cancer Diagnosis: Radiologic-Pathologic Correlation. Radiographics 2021; 41:1676-1697. [PMID: 34597215 DOI: 10.1148/rg.2021210020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The classic prostate cancer (PCa) diagnostic pathway that is based on prostate-specific antigen (PSA) levels and the findings of digital rectal examination followed by systematic biopsy has shown multiple limitations. The use of multiparametric MRI (mpMRI) is now widely accepted in men with clinical suspicion for PCa. In addition, clinical information, PSA density, risk calculators, and genomic and other "omics" biomarkers are being used to improve risk stratification. On the basis of mpMRI and MRI-targeted biopsies (MRI-TBx), new diagnostic pathways have been established, aiming to improve the limitations of the classic diagnostic approach. However, these pathways still show limitations associated with mpMRI and MRI-TBx. Definitive PCa diagnosis is made on the basis of histopathologic Gleason grading, which has demonstrated an excellent correlation with clinical outcomes. However, Gleason grading is done subjectively by pathologists and involves poor reproducibility, and PCa may have a heterogeneous distribution of histologic patterns. Thus, important discrepancies persist between biopsy tumor grading and final whole-organ pathologic assessment after radical prostatectomy. PCa offers a unique opportunity to establish a real radiologic-pathologic correlation, as whole-mount radical prostatectomy specimens permit a complete spatial relationship with mpMRI. Artificial intelligence is increasingly being applied to radiologic and pathologic images to improve clinical accuracy and efficiency in PCa diagnosis. This review delineates current PCa diagnostic pathways, with a focus on the role of mpMRI, MRI-TBx, and pathologic analysis. An overview of the expected improvements in PCa diagnosis derived from the use of artificial intelligence, integrated radiologic-pathologic systems, and decision support tools for multidisciplinary teams is provided. An invited commentary by Purysko is available online. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Lidia Alcalá Mata
- From the Department of Radiology, Clínica Las Nieves, HT Médica, Calle Carmelo Torres Núm 2, 23007 Jaén, Spain (L.A.M., A.L.); Paige.AI, New York, NY (J.A.R.); Department of Radiology, Duke University Medical Center, Durham, NC (R.T.G.); and Department of Radiology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain (R.G.F.)
| | - Juan Antonio Retamero
- From the Department of Radiology, Clínica Las Nieves, HT Médica, Calle Carmelo Torres Núm 2, 23007 Jaén, Spain (L.A.M., A.L.); Paige.AI, New York, NY (J.A.R.); Department of Radiology, Duke University Medical Center, Durham, NC (R.T.G.); and Department of Radiology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain (R.G.F.)
| | - Rajan T Gupta
- From the Department of Radiology, Clínica Las Nieves, HT Médica, Calle Carmelo Torres Núm 2, 23007 Jaén, Spain (L.A.M., A.L.); Paige.AI, New York, NY (J.A.R.); Department of Radiology, Duke University Medical Center, Durham, NC (R.T.G.); and Department of Radiology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain (R.G.F.)
| | - Roberto García Figueras
- From the Department of Radiology, Clínica Las Nieves, HT Médica, Calle Carmelo Torres Núm 2, 23007 Jaén, Spain (L.A.M., A.L.); Paige.AI, New York, NY (J.A.R.); Department of Radiology, Duke University Medical Center, Durham, NC (R.T.G.); and Department of Radiology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain (R.G.F.)
| | - Antonio Luna
- From the Department of Radiology, Clínica Las Nieves, HT Médica, Calle Carmelo Torres Núm 2, 23007 Jaén, Spain (L.A.M., A.L.); Paige.AI, New York, NY (J.A.R.); Department of Radiology, Duke University Medical Center, Durham, NC (R.T.G.); and Department of Radiology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain (R.G.F.)
| |
Collapse
|
20
|
Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci 2021; 22:ijms22189971. [PMID: 34576134 PMCID: PMC8465891 DOI: 10.3390/ijms22189971] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Radiomics and genomics represent two of the most promising fields of cancer research, designed to improve the risk stratification and disease management of patients with prostate cancer (PCa). Radiomics involves a conversion of imaging derivate quantitative features using manual or automated algorithms, enhancing existing data through mathematical analysis. This could increase the clinical value in PCa management. To extract features from imaging methods such as magnetic resonance imaging (MRI), the empiric nature of the analysis using machine learning and artificial intelligence could help make the best clinical decisions. Genomics information can be explained or decoded by radiomics. The development of methodologies can create more-efficient predictive models and can better characterize the molecular features of PCa. Additionally, the identification of new imaging biomarkers can overcome the known heterogeneity of PCa, by non-invasive radiological assessment of the whole specific organ. In the future, the validation of recent findings, in large, randomized cohorts of PCa patients, can establish the role of radiogenomics. Briefly, we aimed to review the current literature of highly quantitative and qualitative results from well-designed studies for the diagnoses, treatment, and follow-up of prostate cancer, based on radiomics, genomics and radiogenomics research.
Collapse
|
21
|
Sakai K. [2. Radiomics of MRI]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:866-875. [PMID: 34421076 DOI: 10.6009/jjrt.2021_jsrt_77.8.866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Koji Sakai
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
22
|
Sun R, Lerousseau M, Henry T, Carré A, Leroy A, Estienne T, Niyoteka S, Bockel S, Rouyar A, Alvarez Andres É, Benzazon N, Battistella E, Classe M, Robert C, Scoazec JY, Deutsch É. [Artificial intelligence, radiomics and pathomics to predict response and survival of patients treated with radiations]. Cancer Radiother 2021; 25:630-637. [PMID: 34284970 DOI: 10.1016/j.canrad.2021.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022]
Abstract
Artificial intelligence approaches in medicine are more and more used and are extremely promising due to the growing number of data produced and the variety of data they allow to exploit. Thus, the computational analysis of medical images in particular, radiological (radiomics), or anatomopathological (pathomics), has shown many very interesting results for the prediction of the prognosis and the response of cancer patients. Radiotherapy is a discipline that particularly benefits from these new approaches based on computer science and imaging. This review will present the main principles of an artificial intelligence approach and in particular machine learning, the principles of a radiomic and pathomic approach and the potential of their use for the prediction of the prognosis of patients treated with radiotherapy.
Collapse
Affiliation(s)
- R Sun
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France; Département de radiothérapie, Gustave-Roussy Cancer Campus, 94800 Villejuif, France; Faculté de médecine, université Paris-Sud Paris-Saclay, 94270 Kremlin-Bicêtre, France.
| | - M Lerousseau
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France
| | - T Henry
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France; Département de médecine nucléaire, Gustave-Roussy Cancer Campus, 94800 Villejuif, France
| | - A Carré
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France
| | - A Leroy
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France; TheraPanacea, Paris, France
| | - T Estienne
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France
| | - S Niyoteka
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France
| | - S Bockel
- Département de radiothérapie, Gustave-Roussy Cancer Campus, 94800 Villejuif, France; Faculté de médecine, université Paris-Sud Paris-Saclay, 94270 Kremlin-Bicêtre, France
| | - A Rouyar
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France
| | - É Alvarez Andres
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France; TheraPanacea, Paris, France
| | - N Benzazon
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France
| | - E Battistella
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France
| | | | - C Robert
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France; Département de radiothérapie, Gustave-Roussy Cancer Campus, 94800 Villejuif, France; Faculté de médecine, université Paris-Sud Paris-Saclay, 94270 Kremlin-Bicêtre, France
| | - J Y Scoazec
- Faculté de médecine, université Paris-Sud Paris-Saclay, 94270 Kremlin-Bicêtre, France; Département de biologie et pathologie médicales, Gustave-Roussy Cancer Campus, 94800 Villejuif, France
| | - É Deutsch
- Université Paris-Saclay, institut Gustave-Roussy, Inserm, Radiothérapie moléculaire et innovation thérapeutique, 94800 Villejuif, France; Département de radiothérapie, Gustave-Roussy Cancer Campus, 94800 Villejuif, France; Faculté de médecine, université Paris-Sud Paris-Saclay, 94270 Kremlin-Bicêtre, France
| |
Collapse
|
23
|
Delgadillo R, Spieler BO, Ford JC, Kwon D, Yang F, Studenski M, Padgett KR, Abramowitz MC, Dal Pra A, Stoyanova R, Pollack A, Dogan N. Repeatability of CBCT radiomic features and their correlation with CT radiomic features for prostate cancer. Med Phys 2021; 48:2386-2399. [PMID: 33598943 DOI: 10.1002/mp.14787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/09/2020] [Accepted: 02/09/2021] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Radiomic features of cone-beam CT (CBCT) images have potential as biomarkers to predict treatment response and prognosis for patients of prostate cancer. Previous studies of radiomic feature analysis for prostate cancer were assessed in a variety of imaging modalities, including MRI, PET, and CT, but usually limited to a pretreatment setting. However, CBCT images may provide an opportunity to capture early morphological changes to the tumor during treatment that could lead to timely treatment adaptation. This work investigated the quality of CBCT-based radiomic features and their relationship with reconstruction methods applied to the CBCT projections and the preprocessing methods used in feature extraction. Moreover, CBCT features were correlated with planning CT (pCT) features to further assess the viability of CBCT radiomic features. METHODS The quality of 42 CBCT-based radiomic features was assessed according to their repeatability and reproducibility. Repeatability was quantified by correlating radiomic features between 20 CBCT scans that also had repeated scans within 15 minutes. Reproducibility was quantified by correlating radiomic features between the planning CT (pCT) and the first fraction CBCT for 20 patients. Concordance correlation coefficients (CCC) of radiomic features were used to estimate the repeatability and reproducibility of radiomic features. The same patient dataset was assessed using different reconstruction methods applied to the CBCT projections. CBCT images were generated using 18 reconstruction methods using iterative (iCBCT) and standard (sCBCT) reconstructions, three convolution filters, and five noise suppression filters. Eighteen preprocessing settings were also considered. RESULTS Overall, CBCT radiomic features were more repeatable than reproducible. Five radiomic features are repeatable in > 97% of the reconstruction and preprocessing methods, and come from the gray-level size zone matrix (GLSZM), neighborhood gray-tone difference matrix (NGTDM), and gray-level-run length matrix (GLRLM) radiomic feature classes. These radiomic features were reproducible in > 9.8% of the reconstruction and preprocessing methods. Noise suppression and convolution filter smoothing increased radiomic features repeatability, but decreased reproducibility. The top-repeatable iCBCT method (iCBCT-Sharp-VeryHigh) is more repeatable than the top-repeatable sCBCT method (sCBCT-Smooth) in 64% of the radiomic features. CONCLUSION Methods for reconstruction and preprocessing that improve CBCT radiomic feature repeatability often decrease reproducibility. The best approach may be to use methods that strike a balance repeatability and reproducibility such as iCBCT-Sharp-VeryLow-1-Lloyd-256 that has 17 repeatable and eight reproducible radiomic features. Previous radiomic studies that only used pCT radiomic features have generated prognostic models of prostate cancer outcome. Since our study indicates that CBCT radiomic features correlated well with a subset of pCT radiomic features, one may expect CBCT radiomics to also generate prognostic models for prostate cancer.
Collapse
Affiliation(s)
- Rodrigo Delgadillo
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Benjamin O Spieler
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John C Ford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Deukwoo Kwon
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fei Yang
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthew Studenski
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kyle R Padgett
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthew C Abramowitz
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alan Dal Pra
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Radka Stoyanova
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nesrin Dogan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
24
|
Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management-Current Trends and Future Perspectives. Diagnostics (Basel) 2021; 11:diagnostics11020354. [PMID: 33672608 PMCID: PMC7924061 DOI: 10.3390/diagnostics11020354] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Artificial intelligence (AI) is the field of computer science that aims to build smart devices performing tasks that currently require human intelligence. Through machine learning (ML), the deep learning (DL) model is teaching computers to learn by example, something that human beings are doing naturally. AI is revolutionizing healthcare. Digital pathology is becoming highly assisted by AI to help researchers in analyzing larger data sets and providing faster and more accurate diagnoses of prostate cancer lesions. When applied to diagnostic imaging, AI has shown excellent accuracy in the detection of prostate lesions as well as in the prediction of patient outcomes in terms of survival and treatment response. The enormous quantity of data coming from the prostate tumor genome requires fast, reliable and accurate computing power provided by machine learning algorithms. Radiotherapy is an essential part of the treatment of prostate cancer and it is often difficult to predict its toxicity for the patients. Artificial intelligence could have a future potential role in predicting how a patient will react to the therapy side effects. These technologies could provide doctors with better insights on how to plan radiotherapy treatment. The extension of the capabilities of surgical robots for more autonomous tasks will allow them to use information from the surgical field, recognize issues and implement the proper actions without the need for human intervention.
Collapse
|
25
|
Magnetic Resonance Imaging Based Radiomic Models of Prostate Cancer: A Narrative Review. Cancers (Basel) 2021; 13:cancers13030552. [PMID: 33535569 PMCID: PMC7867056 DOI: 10.3390/cancers13030552] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The increasing interest in implementing artificial intelligence in radiomic models has occurred alongside advancement in the tools used for computer-aided diagnosis. Such tools typically apply both statistical and machine learning methodologies to assess the various modalities used in medical image analysis. Specific to prostate cancer, the radiomics pipeline has multiple facets that are amenable to improvement. This review discusses the steps of a magnetic resonance imaging based radiomics pipeline. Present successes, existing opportunities for refinement, and the most pertinent pending steps leading to clinical validation are highlighted. Abstract The management of prostate cancer (PCa) is dependent on biomarkers of biological aggression. This includes an invasive biopsy to facilitate a histopathological assessment of the tumor’s grade. This review explores the technical processes of applying magnetic resonance imaging based radiomic models to the evaluation of PCa. By exploring how a deep radiomics approach further optimizes the prediction of a PCa’s grade group, it will be clear how this integration of artificial intelligence mitigates existing major technological challenges faced by a traditional radiomic model: image acquisition, small data sets, image processing, labeling/segmentation, informative features, predicting molecular features and incorporating predictive models. Other potential impacts of artificial intelligence on the personalized treatment of PCa will also be discussed. The role of deep radiomics analysis-a deep texture analysis, which extracts features from convolutional neural networks layers, will be highlighted. Existing clinical work and upcoming clinical trials will be reviewed, directing investigators to pertinent future directions in the field. For future progress to result in clinical translation, the field will likely require multi-institutional collaboration in producing prospectively populated and expertly labeled imaging libraries.
Collapse
|
26
|
Leech M, Osman S, Jain S, Marignol L. Mini review: Personalization of the radiation therapy management of prostate cancer using MRI-based radiomics. Cancer Lett 2020; 498:210-216. [PMID: 33160001 DOI: 10.1016/j.canlet.2020.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
Decisions on how to treat prostate cancer with radiation therapy are guideline-based but as such guidelines have been developed for populations of patients, this invariably leads to overly aggressive treatment in some patients and insufficient treatment in others. Heterogeneity within prostate tumors and in metastatic sites, even within the same patient, is believed to be a major cause of treatment failure. Radiomics biomarkers, more commonly referred to as radiomics 'features", provide readily available, cost-effective, non-invasive tools for screening, detecting tumors and serial monitoring of patients, including assessments of response to therapy and identification of therapeutic complications. Radiomics offers the potential to analyse whole tumors in 3D, as well as sub-regions or 'habitats' within tumors. Combining quantitative information from imaging with pathology, demographic details and other biomarkers will pave the way for personalised treatment selection and monitoring in prostate cancer. The aim of this review is to consider if MRI-based radiomics can bridge the gap between population-based management and personalised management of prostate cancer.
Collapse
Affiliation(s)
- Michelle Leech
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, School of Medicine, Trinity St. James's Cancer Institute, Trinity College, Dublin, Ireland.
| | - Sarah Osman
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, United Kingdom
| | - Suneil Jain
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Lisburn Road, Belfast, BT9 7AE, United Kingdom
| | - Laure Marignol
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, School of Medicine, Trinity St. James's Cancer Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
27
|
Schick U, Lucia F, Bourbonne V, Dissaux G, Pradier O, Jaouen V, Tixier F, Visvikis D, Hatt M. Use of radiomics in the radiation oncology setting: Where do we stand and what do we need? Cancer Radiother 2020; 24:755-761. [DOI: 10.1016/j.canrad.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
|
28
|
Li Y, Eresen A, Shangguan J, Yang J, Benson AB, Yaghmai V, Zhang Z. Preoperative prediction of perineural invasion and KRAS mutation in colon cancer using machine learning. J Cancer Res Clin Oncol 2020; 146:3165-3174. [PMID: 32779023 DOI: 10.1007/s00432-020-03354-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Preoperative prediction of perineural invasion (PNI) and Kirsten RAS (KRAS) mutation in colon cancer is critical for treatment planning and patient management. We developed machine learning models for diagnosis of PNI and KRAS mutation in colon cancer patients by interpreting preoperative CT. METHODS This retrospective study included 207 patients who received surgical resection in our institution. The underlying tumor characteristics were described by analyzing CT image texture quantitatively. The key radiomics features were determined with similarity analysis followed by RELIEFF method among 306 CT imaging features. Eight kernel-based support vector machines classifiers were constructed using individual (II, III, or IV) or multi-stage (II + III + IV) patient cohorts for predicting PNI and KRAS mutation. The model performances were evaluated using accuracy, receiver operating curve, and decision curve analyses. RESULTS Multi-stage classifiers obtained AUC of 0.793 and 0.862 for detecting PNI and KRAS mutation for test cohort. Moreover, individual-stage classifiers demonstrated significantly improved diagnostic performance at all stages (IIAUC: [0.86; 0.99], IIIAUC: [0.99; 0.99], and IVAUC: [1.00; 1.00], respectively, for PNI and KRAS mutation in test cohort). Besides, stage II tumor is better described with coarse texture features while more detailed features are required for better characterization of advanced-stage tumors (III and IV) for diagnoses of PNI or KRAS mutation. CONCLUSION Machine learning models developed using preoperative CT data can predict PNI and KRAS mutation in colon cancer patients with satisfactory performance. Individual-stage models better-characterized the relationship between CT features and PNI or KRAS mutation than multi-stage models and demonstrated good prediction scores.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, Chicago, IL, 60611, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, Chicago, IL, 60611, USA.
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, Chicago, IL, 60611, USA
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, Chicago, IL, 60611, USA
| | - Al B Benson
- Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Vahid Yaghmai
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, Chicago, IL, 60611, USA.,Robert Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Department of Radiological Sciences, University of California, Orange, Irvine, CA, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, Chicago, IL, 60611, USA.,Robert Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
29
|
Sheng K. Artificial intelligence in radiotherapy: a technological review. Front Med 2020; 14:431-449. [PMID: 32728877 DOI: 10.1007/s11684-020-0761-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
Radiation therapy (RT) is widely used to treat cancer. Technological advances in RT have occurred in the past 30 years. These advances, such as three-dimensional image guidance, intensity modulation, and robotics, created challenges and opportunities for the next breakthrough, in which artificial intelligence (AI) will possibly play important roles. AI will replace certain repetitive and labor-intensive tasks and improve the accuracy and consistency of others, particularly those with increased complexity because of technological advances. The improvement in efficiency and consistency is important to manage the increasing cancer patient burden to the society. Furthermore, AI may provide new functionalities that facilitate satisfactory RT. The functionalities include superior images for real-time intervention and adaptive and personalized RT. AI may effectively synthesize and analyze big data for such purposes. This review describes the RT workflow and identifies areas, including imaging, treatment planning, quality assurance, and outcome prediction, that benefit from AI. This review primarily focuses on deep-learning techniques, although conventional machine-learning techniques are also mentioned.
Collapse
Affiliation(s)
- Ke Sheng
- Department of Radiation Oncology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
30
|
Alvarez-Jimenez C, Antunes JT, Talasila N, Bera K, Brady JT, Gollamudi J, Marderstein E, Kalady MF, Purysko A, Willis JE, Stein S, Friedman K, Paspulati R, Delaney CP, Romero E, Madabhushi A, Viswanath SE. Radiomic Texture and Shape Descriptors of the Rectal Environment on Post-Chemoradiation T2-Weighted MRI are Associated with Pathologic Tumor Stage Regression in Rectal Cancers: A Retrospective, Multi-Institution Study. Cancers (Basel) 2020; 12:cancers12082027. [PMID: 32722082 PMCID: PMC7463898 DOI: 10.3390/cancers12082027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: The relatively poor expert restaging accuracy of MRI in rectal cancer after neoadjuvant chemoradiation may be due to the difficulties in visual assessment of residual tumor on post-treatment MRI. In order to capture underlying tissue alterations and morphologic changes in rectal structures occurring due to the treatment, we hypothesized that radiomics texture and shape descriptors of the rectal environment (e.g., wall, lumen) on post-chemoradiation T2-weighted (T2w) MRI may be associated with tumor regression after neoadjuvant chemoradiation therapy (nCRT). (2) Methods: A total of 94 rectal cancer patients were retrospectively identified from three collaborating institutions, for whom a 1.5 or 3T T2w MRI was available after nCRT and prior to surgical resection. The rectal wall and the lumen were annotated by an expert radiologist on all MRIs, based on which 191 texture descriptors and 198 shape descriptors were extracted for each patient. (3) Results: Top-ranked features associated with pathologic tumor-stage regression were identified via cross-validation on a discovery set (n = 52, 1 institution) and evaluated via discriminant analysis in hold-out validation (n = 42, 2 institutions). The best performing features for distinguishing low (ypT0-2) and high (ypT3-4) pathologic tumor stages after nCRT comprised directional gradient texture expression and morphologic shape differences in the entire rectal wall and lumen. Not only were these radiomic features found to be resilient to variations in magnetic field strength and expert segmentations, a quadratic discriminant model combining them yielded consistent performance across multiple institutions (hold-out AUC of 0.73). (4) Conclusions: Radiomic texture and shape descriptors of the rectal wall from post-treatment T2w MRIs may be associated with low and high pathologic tumor stage after neoadjuvant chemoradiation therapy and generalized across variations between scanners and institutions.
Collapse
Affiliation(s)
- Charlems Alvarez-Jimenez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (C.A.-J.); (J.T.A.); (K.B.); (K.F.); (A.M.)
- Computer Imaging and Medical Application Laboratory, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Jacob T. Antunes
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (C.A.-J.); (J.T.A.); (K.B.); (K.F.); (A.M.)
| | - Nitya Talasila
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (C.A.-J.); (J.T.A.); (K.B.); (K.F.); (A.M.)
| | - Justin T. Brady
- Department of General Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (J.T.B.); (S.S.)
| | - Jayakrishna Gollamudi
- Department of Abdominal Imaging, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - Eric Marderstein
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
| | - Matthew F. Kalady
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH 44106, USA; (M.F.K.); (C.P.D.)
| | - Andrei Purysko
- Section of Abdominal Imaging and Nuclear Radiology Department, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Joseph E. Willis
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - Sharon Stein
- Department of General Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (J.T.B.); (S.S.)
| | - Kenneth Friedman
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (C.A.-J.); (J.T.A.); (K.B.); (K.F.); (A.M.)
| | - Rajmohan Paspulati
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - Conor P. Delaney
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH 44106, USA; (M.F.K.); (C.P.D.)
| | - Eduardo Romero
- Computer Imaging and Medical Application Laboratory, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (C.A.-J.); (J.T.A.); (K.B.); (K.F.); (A.M.)
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
| | - Satish E. Viswanath
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (C.A.-J.); (J.T.A.); (K.B.); (K.F.); (A.M.)
- Correspondence:
| |
Collapse
|
31
|
Dercle L, Henry T, Carré A, Paragios N, Deutsch E, Robert C. Reinventing radiation therapy with machine learning and imaging bio-markers (radiomics): State-of-the-art, challenges and perspectives. Methods 2020; 188:44-60. [PMID: 32697964 DOI: 10.1016/j.ymeth.2020.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy is a pivotal cancer treatment that has significantly progressed over the last decade due to numerous technological breakthroughs. Imaging is now playing a critical role on deployment of the clinical workflow, both for treatment planning and treatment delivery. Machine-learning analysis of predefined features extracted from medical images, i.e. radiomics, has emerged as a promising clinical tool for a wide range of clinical problems addressing drug development, clinical diagnosis, treatment selection and implementation as well as prognosis. Radiomics denotes a paradigm shift redefining medical images as a quantitative asset for data-driven precision medicine. The adoption of machine-learning in a clinical setting and in particular of radiomics features requires the selection of robust, representative and clinically interpretable biomarkers that are properly evaluated on a representative clinical data set. To be clinically relevant, radiomics must not only improve patients' management with great accuracy but also be reproducible and generalizable. Hence, this review explores the existing literature and exposes its potential technical caveats, such as the lack of quality control, standardization, sufficient sample size, type of data collection, and external validation. Based upon the analysis of 165 original research studies based on PET, CT-scan, and MRI, this review provides an overview of new concepts, and hypotheses generating findings that should be validated. In particular, it describes evolving research trends to enhance several clinical tasks such as prognostication, treatment planning, response assessment, prediction of recurrence/relapse, and prediction of toxicity. Perspectives regarding the implementation of an AI-based radiotherapy workflow are presented.
Collapse
Affiliation(s)
- Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, USA
| | - Theophraste Henry
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alexandre Carré
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Eric Deutsch
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Charlotte Robert
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
32
|
Wagner MW, Bilbily A, Beheshti M, Shammas A, Vali R. Artificial intelligence and radiomics in pediatric molecular imaging. Methods 2020; 188:37-43. [PMID: 32544594 DOI: 10.1016/j.ymeth.2020.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
In the past decade, a new approach for quantitative analysis of medical images and prognostic modelling has emerged. Defined as the extraction and analysis of a large number of quantitative parameters from medical images, radiomics is an evolving field in precision medicine with the ultimate goal of the discovery of new imaging biomarkers for disease. Radiomics has already shown promising results in extracting diagnostic, prognostic, and molecular information latent in medical images. After acquisition of the medical images as part of the standard of care, a region of interest is defined often via a manual or semi-automatic approach. An algorithm then extracts and computes quantitative radiomics parameters from the region of interest. Whereas radiomics captures quantitative values of shape and texture based on predefined mathematical terms, neural networks have recently been used to directly learn and identify predictive features from medical images. Thereby, neural networks largely forego the need for so called "hand-engineered" features, which appears to result in significantly improved performance and reliability. Opportunities for radiomics and neural networks in pediatric nuclear medicine/radiology/molecular imaging are broad and can be thought of in three categories: automating well-defined administrative or clinical tasks, augmenting broader administrative or clinical tasks, and unlocking new methods of generating value. Specific applications include intelligent order sets, automated protocoling, improved image acquisition, computer aided triage and detection of abnormalities, next generation voice dictation systems, biomarker development, and therapy planning.
Collapse
Affiliation(s)
- Matthias W Wagner
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Alexander Bilbily
- Department of Diagnostic Imaging, Division of Nuclear Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Mohsen Beheshti
- Department of Nuclear Medicine, University Hospital, RWTH University, Aachen, Germany; Department of Nuclear Medicine & Endocrinology, Paracelsus Medical University, Salzburg, Austria
| | - Amer Shammas
- Department of Diagnostic Imaging, Division of Nuclear Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Reza Vali
- Department of Diagnostic Imaging, Division of Nuclear Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
33
|
Stanzione A, Gambardella M, Cuocolo R, Ponsiglione A, Romeo V, Imbriaco M. Prostate MRI radiomics: A systematic review and radiomic quality score assessment. Eur J Radiol 2020; 129:109095. [PMID: 32531722 DOI: 10.1016/j.ejrad.2020.109095] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiomics have the potential to further increase the value of MRI in prostate cancer management. However, implementation in clinical practice is still far and concerns have been raised regarding the methodological quality of radiomic studies. Therefore, we aimed to systematically review the literature to assess the quality of prostate MRI radiomic studies using the radiomics quality score (RQS). METHODS Multiple medical literature archives (PubMed, Web of Science and EMBASE) were searched to retrieve original investigations focused on prostate MRI radiomic approaches up to the end of June 2019. Three researchers independently assessed each paper using the RQS. Data from the most experienced researcher were used for descriptive analysis. Inter-rater reproducibility was assessed using the intraclass correlation coefficient (ICC) on the total RQS score. RESULTS 73 studies were included in the analysis. Overall, the average RQS total score was 7.93 ± 5.13 on a maximum of 36 points, with a final average percentage of 23 ± 13%. Among the most critical items, the lack of feature robustness testing strategies and external validation datasets. The ICC resulted poor to moderate, with an average value of 0.57 and 95% Confidence Intervals between 0.44 and 0.69. CONCLUSIONS Current studies on prostate MRI radiomics still lack the quality required to allow their introduction in clinical practice.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Michele Gambardella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Renato Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
34
|
Zhong QZ, Long LH, Liu A, Li CM, Xiu X, Hou XY, Wu QH, Gao H, Xu YG, Zhao T, Wang D, Lin HL, Sha XY, Wang WH, Chen M, Li GF. Radiomics of Multiparametric MRI to Predict Biochemical Recurrence of Localized Prostate Cancer After Radiation Therapy. Front Oncol 2020; 10:731. [PMID: 32477949 PMCID: PMC7235325 DOI: 10.3389/fonc.2020.00731] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background: To identify multiparametric magnetic resonance imaging (mp-MRI)-based radiomics features as prognostic factors in patients with localized prostate cancer after radiotherapy. Methods:From 2011 to 2016, a total of 91 consecutive patients with T1-4N0M0 prostate cancer were identified and divided into two cohorts for an adaptive boosting (Adaboost) model (training cohort: n = 73; test cohort: n = 18). All patients were treated with neoadjuvant endocrine therapy followed by radiotherapy. The optimal feature set, identified through an Inception-Resnet v2 network, consisted of a combination of T1, T2, and diffusion-weighted imaging (DWI) MR series. Through a Wilcoxon sign rank test, a total of 45 distinct signatures were extracted from 1,536 radiomics features and used in our Adaboost model. Results:Among 91 patients, 29 (32%) were classified as biochemical recurrence (BCR) and 62 (68%) as non-BCR. Once trained, the model demonstrated a predictive classification accuracy of 50.0 and 86.1% respectively for BCR and non-BCR groups on our test samples. The overall classification accuracy of the test cohort was 74.1%. The highest classification accuracy was 77.8% between three-fold cross-validation. The areas under the curve (AUC) of receiver operating characteristic curve (ROC) indices for the training and test cohorts were 0.99 and 0.73, respectively. Conclusion:The potential of multiparametric MRI-based radiomics to predict the BCR of localized prostate cancer patients was demonstrated in this manuscript. This analysis provided additional prognostic factors based on routine MR images and holds the potential to contribute to precision medicine and inform treatment management.
Collapse
Affiliation(s)
- Qiu-Zi Zhong
- Department of Radiation Oncology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Liu-Hua Long
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education / Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - An Liu
- Department of Radiation Oncology, City of Hope Medical Center, Duarte, CA, United States
| | - Chun-Mei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Xia Xiu
- Department of Radiation Oncology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Xiu-Yu Hou
- Department of Radiation Oncology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Qin-Hong Wu
- Department of Radiation Oncology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Hong Gao
- Department of Radiation Oncology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Yong-Gang Xu
- Department of Radiation Oncology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Ting Zhao
- Department of Radiation Oncology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Dan Wang
- Department of Radiation Oncology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Hai-Lei Lin
- Department of Radiation Oncology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Xiang-Yan Sha
- Department of Radiation Oncology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Wei-Hu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education / Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Gao-Feng Li
- Department of Radiation Oncology, National Center of Gerontology, Beijing Hospital, Beijing, China
| |
Collapse
|
35
|
Zhang W, Mao N, Wang Y, Xie H, Duan S, Zhang X, Wang B. A Radiomics nomogram for predicting bone metastasis in newly diagnosed prostate cancer patients. Eur J Radiol 2020; 128:109020. [PMID: 32371181 DOI: 10.1016/j.ejrad.2020.109020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/25/2020] [Accepted: 04/13/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE To establish and validate a radiomics nomogram for predicting bone metastasis (BM) in patients with newly diagnosed prostate cancer (PCa). METHOD One-hundred and sixteen patients (training cohort: n = 81; validation cohort: n = 35) who underwent prostate MR imaging and confirmed by pathology with newly diagnosed PCa from January 2014 to January 2019 were enrolled. Radiomic features were extracted from diffusion-weighted, axial T2-weighted fat suppression, and dynamic contrast-enhanced T1-weighted MRI of each patient. Dimension reduction, feature selection, and radiomics feature construction were performed using the least absolute shrinkage and selection operator (LASSO) regression. Combined with independent clinical risk factors, a multivariate logistic regression model was used to establish a radiomics nomogram. Nomogram calibration and discrimination were evaluated in training cohort and verified in the validation cohort. Finally, the clinical usefulness of the nomogram was estimated through decision curve analysis (DCA). RESULTS Radiomics signature consisting of 12 selected features was significantly correlated with bone status (P < 0.001 for both training and validation sets). The radiomics nomogram combined a radiomics signature from multiparametric MR images with independent clinic risk factors. The model showed good discrimination and calibration in the training cohort (AUC 0.93, 95% CI, 0.86 to 0.99) and the validation cohort (AUC 0.92, 95% CI, 0.84 to 0.99). DCA also demonstrated the clinical use of the radiomics model. CONCLUSION The radiomics nomogram, which incorporates the multiparametric MRI-based radiomics signature and clinical risk factors, can be conveniently used to promote individualized prediction of BM in patients with newly diagnosed PCa.
Collapse
Affiliation(s)
- Wenjie Zhang
- School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, 264000, PR China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China
| | - Yongsheng Wang
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China
| | | | - Xuexi Zhang
- GE Healthcare, China, Shanghai, 200000, PR China
| | - Bin Wang
- School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, 264000, PR China.
| |
Collapse
|
36
|
Vaugier L, Ferrer L, Mengue L, Jouglar E. Radiomics for radiation oncologists: are we ready to go? BJR Open 2020; 2:20190046. [PMID: 33178967 PMCID: PMC7594896 DOI: 10.1259/bjro.20190046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Radiomics have emerged as an exciting field of research over the past few years, with very wide potential applications in personalised and precision medicine of the future. Radiomics-based approaches are still however limited in daily clinical practice in oncology. This review focus on how radiomics could be incorporated into the radiation therapy pipeline, and globally help the radiation oncologist, from the tumour diagnosis to follow-up after treatment. Radiomics could impact on all steps of the treatment pipeline, once the limitations in terms of robustness and reproducibility are overcome. Major ongoing efforts should be made to collect and share data in the most standardised manner possible.
Collapse
Affiliation(s)
- Loïg Vaugier
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes - Saint Herblain, France
| | - Ludovic Ferrer
- Department of Medical Physics, Institut de Cancérologie de l'Ouest, Nantes - Saint Herblain, France
| | - Laurence Mengue
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes - Saint Herblain, France
| | - Emmanuel Jouglar
- Department of Radiation Oncology, Institut de Cancérologie de l'Ouest, Nantes - Saint Herblain, France
| |
Collapse
|
37
|
Qiu Q, Duan J, Yin Y. Radiomics in radiotherapy: Applications and future challenges. PRECISION RADIATION ONCOLOGY 2020. [DOI: 10.1002/pro6.1087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Qingtao Qiu
- Department of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical Sciences Jinan PR China
| | - Jinghao Duan
- Department of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical Sciences Jinan PR China
| | - Yong Yin
- Department of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical Sciences Jinan PR China
| |
Collapse
|
38
|
Effects of MRI image normalization techniques in prostate cancer radiomics. Phys Med 2020; 71:7-13. [PMID: 32086149 DOI: 10.1016/j.ejmp.2020.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
The variance in intensities of MRI scans is a fundamental impediment for quantitative MRI analysis. Intensity values are not only highly dependent on acquisition parameters, but also on the subject and body region being scanned. This warrants the need for image normalization techniques to ensure that intensity values are consistent within tissues across different subjects and visits. Many intensity normalization methods have been developed and proven successful for the analysis of brain pathologies, but evaluation of these methods for images of the prostate region is lagging. In this paper, we compare four different normalization methods on 49 T2-w scans of prostate cancer patients: 1) the well-established histogram normalization, 2) the generalized scale normalization, 3) an extension of generalized scale normalization called generalized ball-scale normalization, and 4) a custom normalization based on healthy prostate tissue intensities. The methods are compared qualitatively and quantitatively in terms of behaviors of intensity distributions as well as impact on radiomic features. Our findings suggest that normalization based on prior knowledge of the healthy prostate tissue intensities may be the most effective way of acquiring the desired properties of normalized images. In addition, the histogram normalization method outperform the generalized scale and generalized ball-scale methods which have proven superior for other body regions.
Collapse
|
39
|
Abstract
Artificial intelligence (AI) - the ability of a machine to perform cognitive tasks to achieve a particular goal based on provided data - is revolutionizing and reshaping our health-care systems. The current availability of ever-increasing computational power, highly developed pattern recognition algorithms and advanced image processing software working at very high speeds has led to the emergence of computer-based systems that are trained to perform complex tasks in bioinformatics, medical imaging and medical robotics. Accessibility to 'big data' enables the 'cognitive' computer to scan billions of bits of unstructured information, extract the relevant information and recognize complex patterns with increasing confidence. Computer-based decision-support systems based on machine learning (ML) have the potential to revolutionize medicine by performing complex tasks that are currently assigned to specialists to improve diagnostic accuracy, increase efficiency of throughputs, improve clinical workflow, decrease human resource costs and improve treatment choices. These characteristics could be especially helpful in the management of prostate cancer, with growing applications in diagnostic imaging, surgical interventions, skills training and assessment, digital pathology and genomics. Medicine must adapt to this changing world, and urologists, oncologists, radiologists and pathologists, as high-volume users of imaging and pathology, need to understand this burgeoning science and acknowledge that the development of highly accurate AI-based decision-support applications of ML will require collaboration between data scientists, computer researchers and engineers.
Collapse
|
40
|
|
41
|
Peeken JC, Wiestler B, Combs SE. Image-Guided Radiooncology: The Potential of Radiomics in Clinical Application. Recent Results Cancer Res 2020; 216:773-794. [PMID: 32594406 DOI: 10.1007/978-3-030-42618-7_24] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medical imaging plays an imminent role in today's radiation oncology workflow. Predominantly based on semantic image analysis, malignant tumors are diagnosed, staged, and therapy decisions are made. The field of "radiomics" promises to extract complementary, objective information from medical images. In radiomics, predefined quantitative features including intensity statistics, texture, shape, or filtering techniques are combined into statistical or machine learning models to predict clinical or biological outcomes. Alternatively, deep neural networks can directly analyze medical images and provide predictions. A large number of research studies could demonstrate that radiomics prediction models may provide significant benefits in the radiation oncology workflow including diagnostics, tumor characterization, target volume segmentation, prognostic stratification, and prediction of therapy response or treatment-related toxicities. This chapter provides an overview of techniques within the radiomics toolbox, potential clinical application, and current limitations. A literature overview of four selected malignant entities including non-small cell lung cancer, head and neck squamous cell carcinomas, soft tissue sarcomas, and gliomas is given.
Collapse
Affiliation(s)
- Jan C Peeken
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany.
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Deutsches Konsortium Für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany.
| | - Benedikt Wiestler
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich (TUM), Ismaninger Straße 22, 81675, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Deutsches Konsortium Für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
42
|
Zhang X, Zhong L, Zhang B, Zhang L, Du H, Lu L, Zhang S, Yang W, Feng Q. The effects of volume of interest delineation on MRI-based radiomics analysis: evaluation with two disease groups. Cancer Imaging 2019; 19:89. [PMID: 31864421 PMCID: PMC6925418 DOI: 10.1186/s40644-019-0276-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Manual delineation of volume of interest (VOI) is widely used in current radiomics analysis, suffering from high variability. The tolerance of delineation differences and possible influence on each step of radiomics analysis are not clear, requiring quantitative assessment. The purpose of our study was to investigate the effects of delineation of VOIs on radiomics analysis for the preoperative prediction of metastasis in nasopharyngeal carcinoma (NPC) and sentinel lymph node (SLN) metastasis in breast cancer. METHODS This study retrospectively enrolled two datasets (NPC group: 238 cases; SLN group: 146 cases). Three operations, namely, erosion, smoothing, and dilation, were implemented on the VOIs accurately delineated by radiologists to generate diverse VOI variations. Then, we extracted 2068 radiomics features and evaluated the effects of VOI differences on feature values by the intra-class correlation coefficient (ICC). Feature selection was conducted by Maximum Relevance Minimum Redundancy combined with 0.632+ bootstrap algorithms. The prediction performance of radiomics models with random forest classifier were tested on an independent validation cohort by the area under the receive operating characteristic curve (AUC). RESULTS The larger the VOIs changed, the fewer features with high ICCs. Under any variation, SLN group showed fewer features with ICC ≥ 0.9 compared with NPC group. Not more than 15% top-predictive features identical to the accurate VOIs were observed across feature selection. The differences of AUCs of models derived from VOIs across smoothing or dilation with 3 pixels were not statistically significant compared with the accurate VOIs (p > 0.05) except for T2-weighted fat suppression images (smoothing: 0.845 vs. 0.725, p = 0.001; dilation: 0.800 vs. 0.725, p = 0.042). Dilation with 5 and 7 pixels contributed to remarkable AUCs in SLN group but the opposite in NPC group. The radiomics models did not perform well when tested by data from other delineations. CONCLUSIONS Differences in delineation of VOIs affected radiomics analysis, related to specific disease and MRI sequences. Differences from smooth delineation or expansion with 3 pixels width around the tumors or lesions were acceptable. The delineation for radiomics analysis should follow a predefined and unified standard.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Biomedical Engineering, Southern Medical University, No.1023 Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Liming Zhong
- School of Biomedical Engineering, Southern Medical University, No.1023 Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital, Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Lu Zhang
- Department of Radiology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, No. 106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Haiyan Du
- School of Biomedical Engineering, Southern Medical University, No.1023 Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Lijun Lu
- School of Biomedical Engineering, Southern Medical University, No.1023 Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital, Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China.
| | - Wei Yang
- School of Biomedical Engineering, Southern Medical University, No.1023 Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China.
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, No.1023 Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| |
Collapse
|
43
|
Kiser KJ, Smith BD, Wang J, Fuller CD. "Après Mois, Le Déluge": Preparing for the Coming Data Flood in the MRI-Guided Radiotherapy Era. Front Oncol 2019; 9:983. [PMID: 31632914 PMCID: PMC6779062 DOI: 10.3389/fonc.2019.00983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Magnetic resonance imaging provides a sea of quantitative and semi-quantitative data. While radiation oncologists already navigate a pool of clinical (semantic) and imaging data, the tide will swell with the advent of hybrid MRI/linear accelerator devices and increasing interest in MRI-guided radiotherapy (MRIgRT), including adaptive MRIgRT. The variety of MR sequences (of greater complexity than the single parameter Hounsfield unit of CT scanning routinely used in radiotherapy), the workflow of adaptive fractionation, and the sheer quantity of daily images acquired are challenges for scaling this technology. Biomedical informatics, which is the science of information in biomedicine, can provide helpful insights for this looming transition. Funneling MRIgRT data into clinically meaningful information streams requires committing to the flow of inter-institutional data accessibility and interoperability initiatives, standardizing MRIgRT dosimetry methods, streamlining MR linear accelerator workflow, and standardizing MRI acquisition and post-processing. This review will attempt to conceptually ford these topics using clinical informatics approaches as a theoretical bridge.
Collapse
Affiliation(s)
- Kendall J Kiser
- John P. and Kathrine G. McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States.,School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States.,Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Benjamin D Smith
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jihong Wang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Clifton D Fuller
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
44
|
Peeken JC, Spraker MB, Knebel C, Dapper H, Pfeiffer D, Devecka M, Thamer A, Shouman MA, Ott A, von Eisenhart-Rothe R, Nüsslin F, Mayr NA, Nyflot MJ, Combs SE. Tumor grading of soft tissue sarcomas using MRI-based radiomics. EBioMedicine 2019; 48:332-340. [PMID: 31522983 PMCID: PMC6838361 DOI: 10.1016/j.ebiom.2019.08.059] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/13/2019] [Accepted: 08/24/2019] [Indexed: 12/13/2022] Open
Abstract
Background Treatment decisions for multimodal therapy in soft tissue sarcoma (STS) patients greatly depend on the differentiation between low-grade and high-grade tumors. We developed MRI-based radiomics grading models for the differentiation between low-grade (G1) and high-grade (G2/G3) STS. Methods The study was registered at ClinicalTrials.gov (number NCT03798795). Contrast-enhanced T1-weighted fat saturated (T1FSGd), fat-saturated T2-weighted (T2FS) MRI sequences, and tumor grading following the French Federation of Cancer Centers Sarcoma Group obtained from pre-therapeutic biopsies were gathered from two independent retrospective patient cohorts. Volumes of interest were manually segmented. After preprocessing, 1394 radiomics features were extracted from each sequence. Features unstable in 21 independent multiple-segmentations were excluded. Least absolute shrinkage and selection operator models were developed using nested cross-validation on a training patient cohort (122 patients). The influence of ComBatHarmonization was assessed for correction of batch effects. Findings Three radiomic models based on T2FS, T1FSGd and a combined model achieved predictive performances with an area under the receiver operator characteristic curve (AUC) of 0.78, 0.69, and 0.76 on the independent validation set (103 patients), respectively. The T2FS-based model showed the best reproducibility. The radiomics model involving T1FSGd-based features achieved significant patient stratification. Combining the T2FS radiomic model into a nomogram with clinical staging improved prognostic performance and the clinical net benefit above clinical staging alone. Interpretation MRI-based radiomics tumor grading models effectively classify low-grade and high-grade soft tissue sarcomas. Fund The authors received support by the medical faculty of the Technical University of Munich and the German Cancer Consortium.
Collapse
Affiliation(s)
- Jan C Peeken
- Department of Radiation Oncology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany; Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany.
| | - Matthew B Spraker
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific St, Box 356043, Seattle, WA 98195, United States of America
| | - Carolin Knebel
- Department of Orthopaedic Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 München, Germany
| | - Hendrik Dapper
- Department of Radiation Oncology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
| | - Daniela Pfeiffer
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
| | - Michal Devecka
- Department of Radiation Oncology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
| | - Ahmed Thamer
- Department of Radiation Oncology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
| | - Mohamed A Shouman
- Department of Radiation Oncology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
| | - Armin Ott
- Institute of Medical Informatics, Statistics and Epidemiology, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
| | - Rüdiger von Eisenhart-Rothe
- Department of Orthopaedic Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 München, Germany
| | - Fridtjof Nüsslin
- Department of Radiation Oncology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
| | - Nina A Mayr
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific St, Box 356043, Seattle, WA 98195, United States of America
| | - Matthew J Nyflot
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific St, Box 356043, Seattle, WA 98195, United States of America; Department of Radiology, University of Washington, Seattle, WA, United States of America
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany; Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Germany
| |
Collapse
|
45
|
Gao Y, Liu Y, Wang Y, Shi Z, Yu J. A Universal Intensity Standardization Method Based on a Many-to-One Weak-Paired Cycle Generative Adversarial Network for Magnetic Resonance Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2059-2069. [PMID: 30676951 DOI: 10.1109/tmi.2019.2894692] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In magnetic resonance imaging (MRI), different imaging settings lead to various intensity distributions for a specific imaging object, which brings huge diversity to data-driven medical applications. To standardize the intensity distribution of magnetic resonance (MR) images from multiple centers and multiple machines using one model, a cycle generative adversarial network (CycleGAN)-based framework is proposed. It utilizes a unified forward generative adversarial network (GAN) path and multiple independent backward GAN paths to transform images in different groups into a single reference one. To preserve image details and prevent resolution loss, two jump connections are applied in the CycleGAN generators. A weak-pair strategy is designed to fully utilize the prior knowledge of the organ structure and promote the performance of the GANs. The experiments were conducted on a T2-FLAIR image database with 8192 slices from 489 patients. The database was obtained from four hospitals and five MRI scanners and was divided into nine groups with different imaging parameters. Compared with the representative algorithms, the peak signal-to-noise ratio, the histogram correlation, and the structural similarity were increased by 3.7%, 5.1%, and 0.1% on average, respectively; the gradient magnitude similarity deviation, the mean square error, and the average disparity were reduced by 19.0%, 15.7%, and 9.9% on average, respectively. Experiments also showed the robustness of the proposed model with a different training set configuration and effectiveness of the proposed framework over the original CycleGAN. Therefore, the MR images with different imaging settings could be efficiently standardized by the proposed method, which would benefit various data-driven applications.
Collapse
|
46
|
Yin P, Mao N, Wang S, Sun C, Hong N. Clinical-radiomics nomograms for pre-operative differentiation of sacral chordoma and sacral giant cell tumor based on 3D computed tomography and multiparametric magnetic resonance imaging. Br J Radiol 2019; 92:20190155. [PMID: 31276426 DOI: 10.1259/bjr.20190155] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To develop and validate clinical-radiomics nomograms based on three-dimensional CT and multiparametric MRI (mpMRI) for pre-operative differentiation of sacral chordoma (SC) and sacral giant cell tumor (SGCT). METHODS A total of 83 SC and 54 SGCT patients diagnosed through surgical pathology were retrospectively analyzed. We built six models based on CT, CT enhancement (CTE), T1 weighted, T2 weighted, diffusion-weighted imaging (DWI), and contrast-enhanced T1 weighted features, two radiomics nomograms and two clinical-radiomics nomograms combined radiomics mixed features with clinical data. The area under the receiver operating characteristic curve (AUC) and accuracy (ACC) analysis were used to assess the performance of the models. RESULTS SC and SGCT presented significant differences in terms of age, sex, and tumor location (tage = 9.00, χ2sex = 10.86, χ2location = 26.20; p < 0.01). For individual scan, the radiomics model based on diffusion-weighted imaging features yielded the highest AUC of 0.889 and ACC of 0.885, followed by CT (AUC = 0.857; ACC = 0.846) and CT enhancement (AUC = 0.833; ACC = 0.769). For the combined features, the radiomics model based on mixed CT features exhibited a better AUC of 0.942 and ACC of 0.880, whereas mixed MRI features achieved a lower performance than the individual scan. The clinical-radiomics nomogram based on combined CT features achieved the highest AUC of 0.948 and ACC of 0.920. CONCLUSIONS The radiomics model based on CT and multiparametricMRI present a certain predictive value in distinguishing SC and SGCT, which can be used for auxiliary diagnosis before operation. The clinical-radiomics nomograms performed better than radiomics nomograms. ADVANCES IN KNOWLEDGE Clinical-radiomics nomograms based on CT and mpMRI features can be used for preoperative differentiation of SC and SGCT.
Collapse
Affiliation(s)
- Ping Yin
- 1Department of Radiology, Peking University People's Hospital, 11 Xizhimen Nandajie, Xicheng District, Beijing, 100044, PR China
| | - Ning Mao
- 2Department of Radiology, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, Shandong 264000, PR China
| | - Sicong Wang
- 3GE Healthcare Life Sciences, Beijing 100176, China
| | - Chao Sun
- 1Department of Radiology, Peking University People's Hospital, 11 Xizhimen Nandajie, Xicheng District, Beijing, 100044, PR China
| | - Nan Hong
- 1Department of Radiology, Peking University People's Hospital, 11 Xizhimen Nandajie, Xicheng District, Beijing, 100044, PR China
| |
Collapse
|
47
|
Osman SOS, Leijenaar RTH, Cole AJ, Lyons CA, Hounsell AR, Prise KM, O'Sullivan JM, Lambin P, McGarry CK, Jain S. Computed Tomography-based Radiomics for Risk Stratification in Prostate Cancer. Int J Radiat Oncol Biol Phys 2019; 105:448-456. [PMID: 31254658 DOI: 10.1016/j.ijrobp.2019.06.2504] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/14/2019] [Accepted: 06/14/2019] [Indexed: 01/29/2023]
Abstract
PURPOSE To explore the role of Computed tomography (CT)-based radiomics features in prostate cancer risk stratification. METHODS AND MATERIALS The study population consisted of 506 patients with prostate cancer collected from a clinically annotated database. After applying exclusion criteria, 342 patients were included in the final analysis. CT-based radiomics features were extracted from planning CT scans for prostate gland-only structure, and machine learning was used to train models for Gleason score (GS) and risk group (RG) classifications. Repeated cross-validation was used. The discriminatory performance of the developed models was assessed using receiver operating characteristic area under the curve (AUC) analysis. RESULTS Classifiers using CT-based radiomics features distinguished between GS ≤ 6 versus GS ≥ 7 with AUC = 0.90 and GS 7(3 + 4) versus GS 7(4 + 3) with AUC = 0.98. Developed classifiers also showed excellent performance in distinguishing low versus high RG (AUC = 0.96) and low versus intermediate RG (AUC = 1.00), but poorer performance was observed for GS 7 versus GS > 7 (AUC = 0.69). An overall modest performance was observed for validation on holdout data sets with the highest AUC of 0.75 for classifiers of low versus high RG and an AUC of 0.70 for GS 7 versus GS > 7. CONCLUSIONS Our results show that radiomics features from routinely acquired planning CT scans could provide insights into prostate cancer aggressiveness in a noninvasive manner. Assessing models on training data sets, the classifiers were especially accurate in discerning high-risk from low-risk patients and in classifying GS 7 versus GS > 7 and GS 7(3 + 4) versus G7(4 + 3); however, classifiers were less adept at distinguishing high RG versus intermediate RG. External validation and prospective studies are warranted to verify the presented findings. These findings could potentially guide targeted radiation therapy strategies in radical intent radiation therapy for prostate cancer.
Collapse
Affiliation(s)
- Sarah O S Osman
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom.
| | - Ralph T H Leijenaar
- The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Aidan J Cole
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Ciara A Lyons
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Alan R Hounsell
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Kevin M Prise
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Joe M O'Sullivan
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Philippe Lambin
- The D-Lab: Decision Support for Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Conor K McGarry
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Suneil Jain
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom; Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom
| |
Collapse
|
48
|
Abstract
Radiomics and radiogenomics are attractive research topics in prostate cancer. Radiomics mainly focuses on extraction of quantitative information from medical imaging, whereas radiogenomics aims to correlate these imaging features to genomic data. The purpose of this review is to provide a brief overview summarizing recent progress in the application of radiomics-based approaches in prostate cancer and to discuss the potential role of radiogenomics in prostate cancer.
Collapse
|
49
|
Gardin I, Grégoire V, Gibon D, Kirisli H, Pasquier D, Thariat J, Vera P. Radiomics: Principles and radiotherapy applications. Crit Rev Oncol Hematol 2019; 138:44-50. [PMID: 31092384 DOI: 10.1016/j.critrevonc.2019.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/26/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
Radiomics is defined as the extraction of a large quantity of quantitative image features. The different radiomic indexes that have been proposed in the literature are described as well as the various factors that have an impact on the robustness of these indexes. We will see that several hundred quantitative features can be extracted per lesion and imaging modality. The ever-growing number of features studied raises the question of the statistical method of analysis used. This review addresses the research supporting the clinical use of radiomics in oncology in the staging of disease, discrimination between healthy and pathological tissues, the identification of genetic features, the prediction of patient survival, the response to treatment, the recurrence after radiotherapy and chemoradiotherapy and the side effects. Based on the existing literature, it remains difficult to identify features that should be used for current clinical practice.
Collapse
Affiliation(s)
- I Gardin
- Department of Nuclear Medicine, Centre Henri-Becquerel, France; LITIS EA4108, Normandie University, Rouen, France.
| | - V Grégoire
- Department of Radiation Oncology, Centre Léon Bérard, France
| | - D Gibon
- Research and Innovation Department, AQUILAB, Loos Les Lille, France
| | - H Kirisli
- Research and Innovation Department, AQUILAB, Loos Les Lille, France
| | - D Pasquier
- Department of Radiation Oncology, Centre Oscar Lambret, CRIStAL UMR CNRS 9189, Lille University, Lille, France
| | - J Thariat
- Radiotherapy Department, Centre François Baclesse, Caen, France
| | - P Vera
- Department of Nuclear Medicine, Centre Henri-Becquerel, France; LITIS EA4108, Normandie University, Rouen, France
| |
Collapse
|
50
|
Bousabarah K, Temming S, Hoevels M, Borggrefe J, Baus WW, Ruess D, Visser-Vandewalle V, Ruge M, Kocher M, Treuer H. Radiomic analysis of planning computed tomograms for predicting radiation-induced lung injury and outcome in lung cancer patients treated with robotic stereotactic body radiation therapy. Strahlenther Onkol 2019; 195:830-842. [PMID: 30874846 DOI: 10.1007/s00066-019-01452-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/02/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To predict radiation-induced lung injury and outcome in non-small cell lung cancer (NSCLC) patients treated with robotic stereotactic body radiation therapy (SBRT) from radiomic features of the primary tumor. METHODS In all, 110 patients with primary stage I/IIa NSCLC were analyzed for local control (LC), disease-free survival (DFS), overall survival (OS) and development of local lung injury up to fibrosis (LF). First-order (histogram), second-order (GLCM, Gray Level Co-occurrence Matrix) and shape-related radiomic features were determined from the unprocessed or filtered planning CT images of the gross tumor volume (GTV), subjected to LASSO (Least Absolute Shrinkage and Selection Operator) regularization and used to construct continuous and dichotomous risk scores for each endpoint. RESULTS Continuous scores comprising 1-5 histogram or GLCM features had a significant (p = 0.0001-0.032) impact on all endpoints that was preserved in a multifactorial Cox regression analysis comprising additional clinical and dosimetric factors. At 36 months, LC did not differ between the dichotomous risk groups (93% vs. 85%, HR 0.892, 95%CI 0.222-3.590), while DFS (45% vs. 17%, p < 0.05, HR 0.457, 95%CI 0.240-0.868) and OS (80% vs. 37%, p < 0.001, HR 0.190, 95%CI 0.065-0.556) were significantly lower in the high-risk groups. Also, the frequency of LF differed significantly between the two risk groups (63% vs. 20% at 24 months, p < 0.001, HR 0.158, 95%CI 0.054-0.458). CONCLUSION Radiomic analysis of the gross tumor volume may help to predict DFS and OS and the development of local lung fibrosis in early stage NSCLC patients treated with stereotactic radiotherapy.
Collapse
Affiliation(s)
- Khaled Bousabarah
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Susanne Temming
- Department of Radiation Oncology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Mauritius Hoevels
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jan Borggrefe
- Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Wolfgang W Baus
- Department of Radiation Oncology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Daniel Ruess
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Maximilian Ruge
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Martin Kocher
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Department of Radiation Oncology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Harald Treuer
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| |
Collapse
|