1
|
Fukushima T, Kobayashi S, Katoh H, Hamaguchi T, Tozuka Y, Asai Y, Tezuka S, Ueno M, Morimoto M, Furuse J, Maeda S. Comparison of carbon ion radiotherapy and transarterial chemoembolization for unresectable solitary hepatocellular carcinoma >3 cm: a propensity score-matched analysis. JOURNAL OF RADIATION RESEARCH 2025; 66:306-317. [PMID: 40356208 PMCID: PMC12100471 DOI: 10.1093/jrr/rraf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/02/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
This study aimed to compare outcomes between carbon ion radiotherapy (C-ion RT) and transarterial chemoembolization (TACE) in patients with unresectable solitary hepatocellular carcinoma (HCC) >3 cm. Fifty-eight patients who had been treated with C-ion RT (C-ion RT group) and 34 treated with TACE (TACE group) were retrospectively enrolled between January 2016 and December 2021. Propensity score matching was conducted to account for differences between the two groups. The median follow-up duration was 42.1 months for all patients. Propensity score matching successfully balanced the two groups with 29 patients matched to each group. The 3-year overall survival (OS), progression-free survival (PFS) and local control (LC) rates in the C-ion RT vs TACE groups were 75.9% vs 45.4%, 44.8% vs 16.1% and 85.2% vs 23.2%, respectively. The C-ion RT group showed better OS (hazard ratio [HR], 0.578 [95% confidence interval (CI): 0.295-1.132]; P = 0.106), PFS (HR, 0.460 [95% CI: 0.254-0.835]; P = 0.009) and LC (HR, 0.155 [95% CI: 0.062-0.390]; P < 0.001) than the TACE group. Multivariate analysis indicated that C-ion RT was significantly associated with increased PFS (HR, 0.562 [95% CI: 0.341-0.926]; P = 0.024) and LC (HR, 0.282 [95% CI: 0.150-0.528]; P < 0.001). C-ion RT provided better OS, PFS and LC than TACE in patients with solitary HCC >3 cm. This study indicated that C-ion RT is a possible alternative to TACE, which is the standard of care for patients with medium-to-large-sized HCCs.
Collapse
Affiliation(s)
- Taito Fukushima
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Satoshi Kobayashi
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Hiroyuki Katoh
- Division of Radiation Oncology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Tomomi Hamaguchi
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Yuichiro Tozuka
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Yasutsugu Asai
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Shun Tezuka
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Manabu Morimoto
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan
| | - Junji Furuse
- Department of Gastroenterology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, Kanagawa 241-8515, Japan
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|
2
|
Hoffmeister-Wittmann P, Hoegen-Saßmannshausen P, Wicklein L, Weykamp F, Seidensaal K, Springfeld C, Dill MT, Longerich T, Schirmacher P, Mehrabi A, Mathy RM, Köhler BC, Debus J, Herfarth K, Liermann J. Stereotactic body radiotherapy with carbon ions as local ablative treatment in patients with primary liver cancer. Radiat Oncol 2025; 20:23. [PMID: 39966902 PMCID: PMC11834390 DOI: 10.1186/s13014-025-02594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND AND AIMS Liver cancer is the third leading cause of cancer related death due to treatment resistance and late onset of symptoms (Rumgay in J Hepatol 77: 1598-1606, 2022). The role of external beam radiotherapy (EBRT) in treatment of unresectable liver cancer needs to be defined. The use of particle therapy such as carbon ion radiation therapy (CIRT) with high linear energy transfer (LET) could increase efficacy of EBRT while limiting the toxic effects of radiation on non-cancerous liver tissue. Promising effects of CIRT have been described in several studies during the past decades, mostly in Japan. To date, no standardized treatment protocol has been established and European data on CIRT for liver cancer is lacking. This retrospective analysis aims to investigate efficacy and safety of hypofractionated CIRT compared to photon-based stereotactic body radiation (SBRT) in primary liver cancer. METHOD Thirty-six (n = 36) and twenty (n = 20) patients with primary malignant liver tumors were treated with hypofractionated CIRT (4 fractions) and photon-based SBRT, respectively, between 2011 and 2022 and were retrospectively evaluated for survival, local control, and toxicity. RESULTS Two-year local control rate after CIRT was 92.3%. Compared to photon- based SBRT, CIRT scores with a significantly longer median distant progression free survival (3.1 versus 0.9 years). In a matched pair comparison of the two treatment regimens, the CIRT cohort demonstrated both longer 2-year overall survival (100% versus 59.6%) and longer 2-year distant PFS (75.7% versus 22.9%). No significant impairment of liver function was observed in either cohort. CONCLUSION In this retrospective analysis, patients who received CIRT presented excellent local tumor control and had better oncologic outcomes than patients who received photon-based SBRT. SBRT with carbon ions is a promising local ablative treatment option that needs further investigation in large prospective trials.
Collapse
Affiliation(s)
- Paula Hoffmeister-Wittmann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
- Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Livia Wicklein
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Christoph Springfeld
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
| | - Michael T Dill
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Department of Gastroenterology, Infectious Diseases, Intoxication, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Research Group Experimental Hepatology, Inflammation and Cancer, Heidelberg, Germany
| | - Thomas Longerich
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Schirmacher
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arianeb Mehrabi
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Department of General, Visceral & Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - René Michael Mathy
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Bruno C Köhler
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| |
Collapse
|
3
|
Mattke M. Particle therapy in gastrointestinal cancer-a narrative review. J Gastrointest Oncol 2024; 15:1861-1869. [PMID: 39279975 PMCID: PMC11399865 DOI: 10.21037/jgo-23-757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 06/26/2024] [Indexed: 09/18/2024] Open
Abstract
Background and Objective Radiation therapy is one of the main pillars in the treatment of gastrointestinal (GI) cancers, especially esophageal and anorectal malignancies. The worldwide standard of care is yet an irradiation with photons. Though not commonly used, charged particles offer some physical advantages with a highly conformal dose distribution, which allows an even better sparing of organs at risk. In addition to dosimetric advantages, heavy-ion beams like carbon ions may offer an additional set of biological advantages. Because particle therapy is not standard of care, data are scarce-especially concerning the use in GI malignancies. The aim of this review is to provide a compact overview of the currently available literature. Methods PubMed and Web of Science databases were searched for publications on particle radiotherapy in GI cancer (e.g., proton therapy in esophageal cancer, carbon ion radiotherapy in pancreatic cancer). Key Content and Findings Here we present a review of the current data on particle therapy with regard to esophageal, pancreatic, hepatic and anorectal malignancies. Conclusions Data on particle therapy in GI cancer are scarce. Nevertheless, the current literature shows some promising results. Further clinical evidence, especially randomized trials, is crucial to augment the role of particle radiotherapy in GI cancer.
Collapse
Affiliation(s)
- Matthias Mattke
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Salzburg, Austria
| |
Collapse
|
4
|
Okazaki S, Shibuya K, Shiba S, Takura T, Ohno T. Cost-Effectiveness Comparison of Carbon-Ion Radiation Therapy and Transarterial Chemoembolization for Hepatocellular Carcinoma. Adv Radiat Oncol 2024; 9:101441. [PMID: 38778825 PMCID: PMC11110039 DOI: 10.1016/j.adro.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE Carbon-ion radiation therapy (CIRT) is a treatment option for patients with hepatocellular carcinoma (HCC) that results in better outcomes with fewer side effects despite its high cost. This study aimed to evaluate the cost-effectiveness of CIRT for HCC from medical and economic perspectives by comparing CIRT and transarterial chemoembolization (TACE) in patients with localized HCC who were ineligible for surgery or radiofrequency ablation. METHODS AND MATERIALS This study included 34 patients with HCC who underwent either CIRT or TACE at Gunma University between 2007 and 2016. Patient characteristics were employed to select each treatment group using the propensity score matching method. Life years were used as the outcome indicator. The CIRT technical fee was ¥3,140,000; however, a second CIRT treatment on the same organ within 2 years was performed for free. RESULTS Our study showed that CIRT was dominant over TACE, as the CIRT group had a higher life year (point estimate, 2.75 vs 2.41) and lower total cost (mean, ¥4,974,278 vs ¥5,284,524). We conducted a sensitivity analysis to validate the results because of the higher variance in medical costs in the TACE group, which demonstrated that CIRT maintained its cost effectiveness with a high acceptability rate. CONCLUSIONS CIRT is a cost-effective treatment option for localized HCC cases unsuitable for surgical resection.
Collapse
Affiliation(s)
- Shohei Okazaki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Radiology, Gunma Prefectural Cancer Center, Ota, Japan
| | - Kei Shibuya
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shintaro Shiba
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Tomoyuki Takura
- Department of Health Care Services Management, Nihon University School of Medicine, Tokyo, Japan
- Department of Healthcare Economics and Health Policy, University of Tokyo, Tokyo, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Gunma University Heavy Ion Medical Center, Showa-machi, Maebashi, Japan
| |
Collapse
|
5
|
Kim D, Kim JS. Current perspectives on radiotherapy in hepatocellular carcinoma management: a comprehensive review. JOURNAL OF LIVER CANCER 2024; 24:33-46. [PMID: 38523467 PMCID: PMC10990664 DOI: 10.17998/jlc.2024.02.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
This review examines the transformative role of external beam radiotherapy (EBRT) in managing hepatocellular carcinoma (HCC), spotlighting the progression from traditional EBRT techniques to advanced modalities like intensity-modulated radiotherapy (RT), stereotactic body RT (SBRT), and innovative particle therapy, including proton beam therapy and carbon ion RT. These advancements have significantly improved the precision and efficacy of RT, marking a paradigm shift in the multimodal management of HCC, particularly in addressing complex cases and enhancing local tumor control. The review underscores the synergistic potential of integrating RT with other treatments like transarterial chemoembolization, systemic therapies such as sorafenib, and emerging immunotherapies, illustrating enhanced survival and disease control outcomes. The efficacy of RT is addressed for challenging conditions, including advanced HCC with macrovascular invasion, and RT modalities, like SBRT, are compared against traditional treatments like radiofrequency ablation for early-stage HCC. Additionally, the review accentuates the encouraging outcomes of particle therapy in enhancing local control and survival rates, minimizing treatment-related toxicity, and advocating for continued research and clinical trials. In conclusion, the integration of RT into multimodal HCC treatment strategies, coupled with the emergence of particle therapy, is crucial for advancing oncologic management, emphasizing the need for relentless innovation and personalized treatment approaches.
Collapse
Affiliation(s)
- Dowook Kim
- Department of Radiation Oncology, Chungnam National University Hospital, Daejeon, Korea
| | - Jun-Sang Kim
- Department of Radiation Oncology, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
6
|
Tanaka T, Ide T, Itoh K, Kai K, Noshiro H. Laparoscopic liver resection for local recurrence after carbon‑ion radiotherapy for hepatocellular carcinoma: A case report. Oncol Lett 2024; 27:78. [PMID: 38192671 PMCID: PMC10773218 DOI: 10.3892/ol.2023.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Numerous potentially curative treatments have become available for patients with hepatocellular carcinoma (HCC) on the basis of the individual patient and tumor characteristics. Carbon-ion radiotherapy (C-ion RT) is a novel treatment option to reduce the physical burden in patients with HCC. However, the long-term outcomes and the clinical and pathological features of locoregional recurrence after initial C-ion RT are unclear. The present study reports the case of a patient who underwent a curative laparoscopic liver resection for the local recurrence of HCC after C-ion RT. A 73-year-old man was diagnosed with chronic hepatitis C and achieved a sustained virological response. During subsequent surveillance, a solitary HCC of 2.3 cm in diameter appeared in liver segment 7 (S7). While surgical resection was considered the best option, the patient chose C-ion RT as the initial HCC treatment. Although C-ion RT appeared to be successful for the primary lesion, enhanced computed tomography revealed that a hypervascular tumor had reappeared in the same area 16 months later. As HCC recurrence was suspected, several different examinations were performed. Computed tomography and magnetic resonance imaging showed that the recurrent tumor had irregular margins, and communication was suspected with the intrahepatic portal vein. A laparoscopic partial liver resection of S7 was planned. Histopathological examination of the excised specimen revealed proliferation of viable moderately to poorly differentiated HCC, with marked invasive growth and numerous portal vein infiltrations. To the best of our knowledge, this is the first report of surgery for locally recurrent HCC after C-ion RT. Oncological outcomes following C-ion RT for HCC remain unclear. Notably, there are cases of unusual recurrence with massive vascular invasion after C-ion RT. In the present case, the histological features were confirmed after C-ion RT for HCC. This case may raise concerns about the true efficacy of C-ion RT and warns against the easy choice of C-ion RT in spite of a resectable HCC.
Collapse
Affiliation(s)
- Tomokazu Tanaka
- Department of Surgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Takao Ide
- Department of Surgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Kotaro Itoh
- Department of Surgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Keita Kai
- Department of Pathology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Hirokazu Noshiro
- Department of Surgery, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| |
Collapse
|
7
|
Byun HK, Kim C, Seong J. Carbon Ion Radiotherapy in the Treatment of Hepatocellular Carcinoma. Clin Mol Hepatol 2023; 29:945-957. [PMID: 37583055 PMCID: PMC10577350 DOI: 10.3350/cmh.2023.0217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal cancer with limited treatment options and poor prognosis. Carbon ion radiotherapy (CIRT) has emerged as a promising treatment modality for HCC due to its unique physical and biological properties. CIRT uses carbon ions to target and destroy cancer cells with a high precision and efficacy. The Bragg Peak phenomenon allows precise dose delivery to the tumor while minimizing damage to healthy tissues. In addition, the high relative biological effectiveness of carbon ions can be shown against radioresistant and hypoxic tumor areas. CIRT also offers a shorter treatment schedule than conventional radiotherapy, which increases patient convenience and compliance. The clinical outcomes of CIRT for HCC have shown excellent local control rates with minimal side effects. Considering its physical and biological properties, CIRT may be a viable option for complex clinical scenarios such as patients with poor liver function, large tumors, re-irradiation cases, and tumors close to critical organs. Further research and larger studies are needed to establish definitive indications for CIRT and to compare its efficacy with that of other treatment modalities. Nevertheless, CIRT offers a potential breakthrough in HCC management, providing hope for improved therapeutic outcomes and reduced treatment-related toxicities.
Collapse
Affiliation(s)
- Hwa Kyung Byun
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Changhwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Ohtaka T, Shiba S, Shibuya K, Okazaki S, Miyasaka Y, Tomizawa K, Okamoto M, Ohno T. Long-term survivor of hepatocellular carcinoma treated with repeated carbon ion radiotherapy and transarterial chemoembolization: a case report. Clin J Gastroenterol 2022; 15:771-775. [PMID: 35679000 PMCID: PMC9334374 DOI: 10.1007/s12328-022-01642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
Abstract
Hepatocellular carcinoma (HCC) often recurs in the liver and requires multiple rounds of treatment. Thus, less-invasive multidisciplinary approaches are essential for preserving liver function, especially in elderly patients. Here, we report a case of an 86 year-old Japanese male patient with HCC who was successfully treated with repeated carbon ion radiotherapy (C-ion RT) and transarterial chemoembolization (TACE). The patient had alcoholic liver cirrhosis with a 60 mm HCC lesion and a satellite lesion in segment 6. The patient underwent initial C-ion RT but developed primary tumor recurrence (segment 6) and a new lesion (segment 2) 24 months later. The patient received TACE for each lesion, followed by an increased dose of C-ion RT for the recurrent primary tumor. Although the primary tumor lesion was well controlled, the patient subsequently developed new lesions, and TACE was repeated. The patient died of bacterial pneumonia 88 months after the initial treatment. His general condition and liver function were well preserved, and no severe adverse events were observed throughout the course of treatment. These results suggest that a less-invasive multidisciplinary approach involving repeated C-ion RT combined with TACE enables preservation of liver function, which may contribute to long-term survival in elderly patients with HCC.
Collapse
Affiliation(s)
- Takeru Ohtaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Shintaro Shiba
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kei Shibuya
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Shohei Okazaki
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yuhei Miyasaka
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kento Tomizawa
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Okamoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
9
|
Li Z, Li Q, Wang X, Li S, Chen W, Jin X, Liu X, Dai Z, Liu X, Zheng X, Li P, Zhang H, Zhang Q, Luo H, Liu R. Carbon Ion Radiotherapy Acts as the Optimal Treatment Strategy for Unresectable Liver Cancer During the Coronavirus Disease 2019 Crisis. Front Public Health 2021; 9:767617. [PMID: 34957022 PMCID: PMC8695803 DOI: 10.3389/fpubh.2021.767617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has greatly disrupted the normal treatment of patients with liver cancer and increased their risk of death. The weight of therapeutic safety was significantly amplified for decision-making to minimize the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Herein, the safety and effectiveness of carbon ion radiotherapy (CIRT) for unresectable liver cancer (ULC) were evaluated, and Chinese experiences were shared to solve the predicament of ULC treatment caused by SARS-CoV-2. Worldwide studies were collected to evaluate CIRT for ULC as the world has become a community due to the COVID-19 pandemic. We not only searched five international databases including the Cochrane Library, Web of Science, PubMed, Embase, and Scopus but also performed supplementary retrieval with other sources. Chinese experiences of fighting against COVID-19 were introduced based on the advancements of CIRT in China and a prospective clinical trial of CIRT for treating ULC. A total of 19 studies involving 813 patients with ULC were included in the systematic review. The qualitative synthetic evaluation showed that compared with transarterial chemoembolization (TACE), CIRT could achieve superior overall survival, local control, and relative hepatic protection. The systematic results indicated that non-invasive CIRT could significantly minimize harms to patients with ULC and concurrently obtain superior anti-cancer effectiveness. According to the Chinese experience, CIRT allows telemedicine within the hospital (TMIH) to keep a sufficient person-to-person physical distance in the whole process of treatment for ULC, which is significant for cutting off the transmission route of SARS-CoV-2. Additionally, CIRT could maximize the utilization rate of hospitalization and outpatient care (UHO). Collectively, CIRT for ULC patients not only allows TMIH and the maximized UHO but also has the compatible advantages of safety and effectiveness. Therefore, CIRT should be identified as the optimal strategy for treating appropriate ULC when we need to minimize the risk of SARS-CoV-2 infection and to improve the capacity of medical service in the context of the unprecedented COVID-19 crisis.
Collapse
Affiliation(s)
- Zheng Li
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Sha Li
- The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinguo Liu
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhongying Dai
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Lanzhou Heavy Ion Hospital, Lanzhou, China
| |
Collapse
|
10
|
Abousaida B, Seneviratne D, Hoppe BS, Ko SJ, Asaithamby A, Cucinotta FA, Kirwan JM, Mody K, Toskich B, Ashman JB, Hallemeier CL, Krishnan S. Carbon Ion Radiotherapy in the Management of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1169-1179. [PMID: 34595139 PMCID: PMC8478421 DOI: 10.2147/jhc.s292516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
Localized hepatocellular carcinoma (HCC) that is unresectable and non-transplantable can be treated by several liver-directed therapies. External beam radiation therapy (EBRT) is an increasingly accepted and widely utilized treatment modality in this setting. Accelerated charged particles such as proton beam therapy (PBT) and carbon ion radiation therapy (CIRT) offer technological advancements over conventional photon radiotherapy. In this review, we summarize the distinct advantages of CIRT use for HCC treatment, focusing on physical and biological attributes, and outline dosimetric and treatment planning caveats. Based on these considerations, we posit that HCC may be among the best indications for use of CIRT, as it allows for maximizing tumoricidal doses to the target volume while minimizing the dose to the organs at risk.
Collapse
Affiliation(s)
- Belal Abousaida
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | | | - Bradford S Hoppe
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Stephen J Ko
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Francis A Cucinotta
- School of Integrated Health Sciences, University of Las Vegas, Las Vegas, NV, USA
| | - Jessica M Kirwan
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Kabir Mody
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Beau Toskich
- Division of Interventional Radiology, Department of Radiology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Jonathan B Ashman
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | | | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| |
Collapse
|
11
|
Kim KS, Wu HG. Who Will Benefit from Charged-Particle Therapy? Cancer Res Treat 2021; 53:621-634. [PMID: 34176253 PMCID: PMC8291184 DOI: 10.4143/crt.2021.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Charged-particle therapy (CPT) such as proton beam therapy (PBT) and carbon-ion radiotherapy (CIRT) exhibit substantial physical and biological advantages compared to conventional photon radiotherapy. As it can reduce the amount of radiation irradiated in the normal organ, CPT has been mainly applied to pediatric cancer and radioresistent tumors in the eloquent area. Although there is a possibility of greater benefits, high set-up cost and dearth of high level of clinical evidence hinder wide applications of CPT. This review aims to present recent clinical results of PBT and CIRT in selected diseases focusing on possible indications of CPT. We also discussed how clinical studies are conducted to increase the number of patients who can benefit from CPT despite its high cost.
Collapse
Affiliation(s)
- Kyung Su Kim
- Department of Radiation Oncology, Ewha Womans University College of Medicine, Seoul,
Korea
| | - Hong-Gyun Wu
- Department of Radiation Oncology, Seoul National University Hospital, Seoul,
Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul,
Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
12
|
Zhang Q, Kong L, Liu R, Wang X. Ion therapy guideline (Version 2020). PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences & Lanzhou Heavy Ion Hospital, ••• No.509 Nanchang road, Chengguan district, Lanzhou city Lanzhou City 730000 China
| | - Lin Kong
- Shanghai Proton Heavy Ion Hospital, Shanghai China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences & Lanzhou Heavy Ion Hospital, ••• No.509 Nanchang road, Chengguan district, Lanzhou city Lanzhou City 730000 China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences & Lanzhou Heavy Ion Hospital, ••• No.509 Nanchang road, Chengguan district, Lanzhou city Lanzhou City 730000 China
| |
Collapse
|
13
|
Carbon-ion radiotherapy subsequent to balloon-occluded retrograde transvenous obliteration for hepatocellular carcinoma with hepatic encephalopathy: a multidisciplinary approach. Clin J Gastroenterol 2021; 14:852-857. [PMID: 33811604 PMCID: PMC8154810 DOI: 10.1007/s12328-021-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/19/2021] [Indexed: 11/04/2022]
Abstract
Radical treatments of hepatocellular carcinoma (HCC) with hepatic encephalopathy (HE) can be often difficult due to poor liver function or disturbance of consciousness. An effective treatment requires a combinatorial approach incorporating a treatment for HE and radical therapy for HCC that does not compromise liver function. Here, we report a case of a 78-year-old Japanese male with HCC and HE caused by splenorenal shunt. Serum ammonia levels were high. He was not suitable for surgery, percutaneous radiofrequency ablation, or transarterial chemoembolization due to the location of the tumor and poor liver function, which included HE. Thus, he underwent BRTO, with an immediate improvement in both HE and serum ammonia levels. After BRTO, he received C-ion RT as a radical treatment for HCC. After treatment, HCC was well controlled; however, at 35 months post-initiation of C-ion RT, he developed local recurrence without a further reduction in liver function status. Therefore, we repeated C-ion RT. The patient remains alive at 3 months post-treatment, with no evidence of local recurrence, distant metastasis, or toxicity. Although this is a single case report, it suggests that a combinatorial treatment consisting of BRTO and C-ion RT may increase survival rates of patients with HCC and HE.
Collapse
|
14
|
Impact of Carbon Ion Radiotherapy on Inoperable Bone Sarcoma. Cancers (Basel) 2021; 13:cancers13051099. [PMID: 33806515 PMCID: PMC7961536 DOI: 10.3390/cancers13051099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary The standard treatment for bone sarcoma is surgery with or without additional chemotherapy; however, complete resection of the tumor might not be possible in patients with locally advanced lesions. Management of patients with bone sarcoma who are unsuitable for surgery is challenging. Carbon ion radiotherapy (C-ion RT) was initiated in 1994 for treating various cancers in Japan and is being considered to be an effective treatment for unresectable bone sarcoma. However, there is a limited number of reports on the clinical outcomes of C-ion RT for bone sarcoma. Here, we aimed to analyze the clinical outcomes and prognostic factors among patients with unresectable bone sarcoma who were treated with C-ion RT. We found that C-ion RT had favorable overall survival and local control with low toxicity rates compared to surgery. Therefore, our results suggest a potential role for C-ion RT in the radical treatment of inoperable bone sarcoma. Abstract Management of patients with bone sarcoma who are unsuitable for surgery is challenging. We aimed to analyze the clinical outcomes among such patients who were treated with carbon ion radiotherapy (C-ion RT). We reviewed the medical records of the patients treated with C-ion RT between April 2011 and February 2019 and analyzed the data of 53 patients. Toxicities were classified using the National Cancer Institute’s Common Terminology Criteria for Adverse Events (Version 4.0). The median follow-up duration for all patients was 36.9 months. Histologically, 32 patients had chordoma, 9 had chondrosarcoma, 8 had osteosarcoma, 3 had undifferentiated pleomorphic sarcoma, and 1 had sclerosing epithelioid fibrosarcoma. The estimated 3-year overall survival (OS), local control (LC), and progression-free survival (PFS) rates were 79.7%, 88.6%, and 68.9%, respectively. No patients developed grade 3 or higher acute toxicities. Three patients developed both grade 3 radiation dermatitis and osteomyelitis, one developed both grade 3 radiation dermatitis and soft tissue infection, and one developed rectum-sacrum-cutaneous fistula. C-ion RT showed favorable clinical outcomes in terms of OS, LC, and PFS and low rates of toxicity in bone sarcoma patients. These results suggest a potential role for C-ion RT in the management of this population.
Collapse
|
15
|
Okazaki S, Shibuya K, Shiba S, Okamoto M, Miyasaka Y, Osu N, Kawashima M, Kakizaki S, Araki K, Shirabe K, Ohno T. Carbon ion radiotherapy for patients with hepatocellular carcinoma in the caudate lobe carbon ion radiotherapy for hepatocellular carcinoma in caudate lobe. Hepatol Res 2021; 51:303-312. [PMID: 33350034 DOI: 10.1111/hepr.13606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022]
Abstract
AIM The treatment of hepatocellular carcinoma in the caudate lobe (HCCCL) is technically challenging. We aimed to investigate the efficacy and toxicity of carbon ion radiotherapy (C-ion RT) for HCCCL. METHODS Patients with HCCCL treated with C-ion RT at our hospital between January 2011 and December 2018 were evaluated. The total dose was 52.8 or 60 Gy (relative biological effectiveness) in four or 12 fractions depending on the distance between the tumor and the gastrointestinal tract. The survival outcome, the presence or absence of recurrence (local recurrence, intrahepatic recurrence outside the irradiation field, or extrahepatic recurrence), and acute/late adverse events were evaluated. RESULTS Nine patients were included. The median tumor size was 3.4 cm, and the median follow-up duration was 18.3 months for all patients. No patient developed local recurrence during follow-up. Five patients subsequently developed intrahepatic recurrence outside the irradiation field and two had extrahepatic metastasis. Five patients died of hepatocellular carcinoma. No acute adverse events of grade ≥2 were observed. Two patients experienced grade 2 or 3 late adverse events, including obstructive jaundice, hepatic encephalopathy, ascites, and edema. CONCLUSION Carbon ion radiotherapy for HCCCL achieved excellent local control with acceptable adverse events and can thus be a curative treatment option for HCCCL.
Collapse
Affiliation(s)
- Shohei Okazaki
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Kei Shibuya
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shintaro Shiba
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Masahiko Okamoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Naoto Osu
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | - Satoru Kakizaki
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Department of Clinical Research, National Hospital Organization Takasaki General Medical Center, Takasaki, Gunma, Japan
| | - Kenichiro Araki
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ken Shirabe
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| |
Collapse
|
16
|
Takakusagi S, Takagi H, Shibuya K, Kosone T, Sato K, Kakizaki S, Ohno T, Uraoka T. Two elder cases of hepatocellular carcinoma adjacent to intrahepatic vessels successfully treated by carbon ion radiotherapy. Clin J Gastroenterol 2020; 13:920-926. [PMID: 32529487 DOI: 10.1007/s12328-020-01151-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023]
Abstract
The treatment for hepatocellular carcinoma (HCC) adjacent to the portal vein and/or bile duct requires considerable caution to avoid the complications, such as hepatic infarction and obstructive jaundice. Carbon ion radiotherapy (CIRT) has been attempted for HCC and has become accepted as a promising modality for minimizing hepatic damage with good local tumor control. We experienced two elder cases of HCC adjacent to intrahepatic vessels successfully treated by CIRT. Case 1, a 75-year-old man, was treated by CIRT for a 2-cm HCC near the porta hepatis adjacent to the right first portal branch. The treatment was sufficiently effective, and no vascular damage was demonstrated after CIRT. The liver function transiently deteriorated after CIRT, but recovered quickly. Alpha-fetoprotein transiently increased after the treatment and decreased thereafter. Tumor stain persisted for 3 months after CIRT, so a liver tumor biopsy was performed. However, no viable carcinoma cells were detected. There was no local recurrence or complications for 17 months. Case 2, 76-year-old male HCC patient, showed dilation of the peripheral bile duct in the left lobe, suggesting tumor invasion to the duct. The tumor was hypovascular and was found to be well-differentiated HCC by a tumor biopsy. He was treated with CIRT, because he had a history of cerebral infarction and was being administered an antiplatelet agent daily. He achieved complete remission, and no adverse events were observed after the treatment for 3 years.
Collapse
Affiliation(s)
- Satoshi Takakusagi
- Department of Gastroenterology and Hepatology, Kusunoki Hospital, 607-22 Fujioka, Fujioka, Gunma, 375-0024, Japan
| | - Hitoshi Takagi
- Department of Gastroenterology and Hepatology, Kusunoki Hospital, 607-22 Fujioka, Fujioka, Gunma, 375-0024, Japan.
| | - Kei Shibuya
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takashi Kosone
- Department of Gastroenterology and Hepatology, Kusunoki Hospital, 607-22 Fujioka, Fujioka, Gunma, 375-0024, Japan
| | - Ken Sato
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Satoru Kakizaki
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Toshio Uraoka
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
17
|
Shiba S, Parajuli RK, Sakai M, Oike T, Ohno T, Nakano T. Use of a Si/CdTe Compton Camera for In vivo Real-Time Monitoring of Annihilation Gamma Rays Generated by Carbon Ion Beam Irradiation. Front Oncol 2020; 10:635. [PMID: 32509570 PMCID: PMC7248380 DOI: 10.3389/fonc.2020.00635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/06/2020] [Indexed: 01/03/2023] Open
Abstract
The application of annihilation gamma-ray monitoring to the adaptive therapy of carbon ion radiotherapy (C-ion RT) requires identification of the peak intensity position and confirmation of activated elements with annihilation gamma-rays generated at the C-ion-irradiated site from those transported to unirradiated sites. Real-time monitoring of C-ion-induced annihilation gamma-rays was implemented using a Compton camera in a mouse model. An adult C57BL/6 mouse was anesthetized, and C-ion beams were directed into the abdomen at 1 × 109 particles/s for 20 s. The 511 keV annihilation gamma-rays, generated by the interaction between the irradiated C-ion beam and the target mouse, were detected using a silicon/cadmium telluride (Si/CdTe) Compton camera for 20 min immediately after irradiation. The irradiated site and the peak intensity position of 511 keV gamma emissions due to C-ion beam irradiation on a mouse were observed at the abdomen of the mouse by developing Compton images. Moreover, the positron emitter transport was observed by evaluating the range of gamma-ray emission after the C-ion beam irradiation on the mouse. Our data suggest that by confirming the peak intensity and beam range of C-ion RT with Si/CdTe-based Compton camera, it would be possible to reduce the intra-fractional and inter-fractional dose distribution degradation. Therefore, the results of this study would contribute to the future development of adaptive therapy with C-ion RT for humans.
Collapse
Affiliation(s)
- Shintaro Shiba
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Raj Kumar Parajuli
- Gunma University Heavy Ion Medical Center, Maebashi, Japan.,Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Inage, Japan
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Inage, Japan
| |
Collapse
|
18
|
Duque AS, Corradini S, Kamp F, Seidensticker M, Streitparth F, Kurz C, Walter F, Parodi K, Verhaegen F, Ricke J, Belka C, Fonseca GP, Landry G. The dosimetric impact of replacing the TG-43 algorithm by model based dose calculation for liver brachytherapy. Radiat Oncol 2020; 15:60. [PMID: 32151255 PMCID: PMC7063719 DOI: 10.1186/s13014-020-01492-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To compare treatment plans for interstitial high dose rate (HDR) liver brachytherapy with 192Ir calculated according to current-standard TG-43U1 protocol with model-based dose calculation following TG-186 protocol. METHODS We retrospectively evaluated dose volume histogram (DVH) parameters for liver, organs at risk (OARs) and clinical target volumes (CTVs) of 20 patient cases diagnosed with hepatocellular carcinoma (HCC) or metastatic colorectal cancer (mCRC). Dose calculations on a homogeneous water geometry (TG-43U1 surrogate) and on a computed tomography (CT) based geometry (TG-186) were performed using Monte Carlo (MC) simulations. The CTs were segmented based on a combination of assigning TG-186 recommended tissues to fixed Hounsfield Unit (HU) ranges and using organ contours delineated by physicians. For the liver, V5Gy and V10Gy were analysed, and for OARs the dose to 1 cubic centimeter (D1cc). Target coverage was assessed by calculating V150, V100, V95 and V90 as well as D95 and D90. For every DVH parameter, median, minimum and maximum values of the deviations of TG-186 from TG-43U1 were analysed. RESULTS TG-186-calculated dose was found to be on average lower than dose calculated with TG-43U1. The deviation of highest magnitude for liver parameters was -6.2% of the total liver volume. For OARs, the deviations were all smaller than or equal to -0.5 Gy. Target coverage deviations were as high as -1.5% of the total CTV volume and -3.5% of the prescribed dose. CONCLUSIONS In this study we found that TG-43U1 overestimates dose to liver tissue compared to TG-186. This finding may be of clinical importance for cases where dose to the whole liver is the limiting factor.
Collapse
Affiliation(s)
- Anna Sophie Duque
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching, 85748, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany
| | - Max Seidensticker
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Marchioninistraße 15, Munich, 81377, Germany
| | - Florian Streitparth
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Marchioninistraße 15, Munich, 81377, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching, 85748, Germany
| | - Franziska Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching, 85748, Germany
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Dr. Tanslaan 12, Maastricht, 6229 ET, The Netherlands
| | - Jens Ricke
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Marchioninistraße 15, Munich, 81377, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (MAASTRO clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Dr. Tanslaan 12, Maastricht, 6229 ET, The Netherlands
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany. .,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching, 85748, Germany.
| |
Collapse
|
19
|
Malouff TD, Mahajan A, Krishnan S, Beltran C, Seneviratne DS, Trifiletti DM. Carbon Ion Therapy: A Modern Review of an Emerging Technology. Front Oncol 2020; 10:82. [PMID: 32117737 PMCID: PMC7010911 DOI: 10.3389/fonc.2020.00082] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is one of the most widely used therapies for malignancies. The therapeutic use of heavy ions, such as carbon, has gained significant interest due to advantageous physical and radiobiologic properties compared to photon based therapy. By taking advantage of these unique properties, carbon ion radiotherapy may allow dose escalation to tumors while reducing radiation dose to adjacent normal tissues. There are currently 13 centers treating with carbon ion radiotherapy, with many of these centers publishing promising safety and efficacy data from the first cohorts of patients treated. To date, carbon ion radiotherapy has been studied for almost every type of malignancy, including intracranial malignancies, head and neck malignancies, primary and metastatic lung cancers, tumors of the gastrointestinal tract, prostate and genitourinary cancers, sarcomas, cutaneous malignancies, breast cancer, gynecologic malignancies, and pediatric cancers. Additionally, carbon ion radiotherapy has been studied extensively in the setting of recurrent disease. We aim to provide a comprehensive review of the studies of each of these disease sites, with a focus on the current trials using carbon ion radiotherapy.
Collapse
|
20
|
Ren Y, Cao Y, Ma H, Kan X, Zhou C, Liu J, Shi Q, Feng G, Xiong B, Zheng C. Improved clinical outcome using transarterial chemoembolization combined with radiofrequency ablation for patients in Barcelona clinic liver cancer stage A or B hepatocellular carcinoma regardless of tumor size: results of a single-center retrospective case control study. BMC Cancer 2019; 19:983. [PMID: 31640620 PMCID: PMC6805486 DOI: 10.1186/s12885-019-6237-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
Background To determine the safety and efficacy of transarterial chemoembolization (TACE) combined with radiofrequency ablation (hereafter, TACE-RFA) in treating Barcelona Clinic Liver Cancer (BCLC) Stage A or B (hereafter, BCLC A/B) hepatocellular carcinoma (HCC) patients, and to explore the range of tumor sizes suitable for combination therapy. Methods This retrospective study assessed the consecutive medical records of HCC patients with BCLC A/B who received TACE-RFA or TACE from September 2009 to September 2018. Progression-free survival (PFS), overall survival (OS), therapeutic response, and complications were compared between the two groups. Results Among 2447 patients who received TACE-RFA or TACE, 399 eligible patients were enrolled in our study, including 128 patients in the TACE-RFA group and 271 patients in the TACE group. Compared with the TACE group, the PFS and OS rates of 1,3,5,8 years in the TACE-RFA group were significantly better, with higher objective tumor regression rate and better disease control rate. RFA treatment did not increase the risk of death in patients with HCC, and both liver subcapsular hematoma and bile duct injury were improved by symptomatic treatment. Serum α-fetoprotein level and treatment method were important independent prognostic factors for OS, whereas albumin, hepatitis B and treatment method were important independent prognostic factors for PFS. Subgroup analysis showed that patients in the TACE-RFA group always showed better OS and PFS. Conclusions TACE-RFA had an advantage over TACE alone in prolonging PFS and improving OS in HCC patients with BCLC A/B, and can benefit patients regardless of tumor size.
Collapse
Affiliation(s)
- Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yanyan Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chen Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qin Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Gansheng Feng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|