1
|
Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwächter C, Holzapfel BM, Mayer-Wagner S, Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci 2024; 12:4875-4902. [PMID: 39190323 DOI: 10.1039/d4bm00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing prevalence of spinal disorders worldwide necessitates advanced treatments, particularly interbody fusion for severe cases that are unresponsive to non-surgical interventions. This procedure, especially 360° lumbar interbody fusion, employs an interbody cage, pedicle screw-and-rod instrumentation, and autologous bone graft (ABG) to enhance spinal stability and promote fusion. Despite significant advancements, a persistent 10% incidence of non-union continues to result in compromised patient outcomes and escalated healthcare costs. Innovations in lumbar stabilisation seek to mimic the properties of natural bone, with evolving implant materials like titanium (Ti) and polyetheretherketone (PEEK) and their composites offering new prospects. Additionally, biomimetic cages featuring precisely engineered porosities and interconnectivity have gained traction, as they enhance osteogenic differentiation, support osteogenesis, and alleviate stress-shielding. However, the limitations of ABG, such as harvesting morbidities and limited fusion capacity, have spurred the exploration of sophisticated solutions involving advanced bone graft substitutes. Currently, demineralised bone matrix and ceramics are in clinical use, forming the basis for future investigations into novel bone graft substitutes. Bioglass, a promising newcomer, is under investigation despite its observed rapid absorption and the potential for foreign body reactions in preclinical studies. Its clinical applicability remains under scrutiny, with ongoing research addressing challenges related to burst release and appropriate dosing. Conversely, the well-documented favourable osteogenic potential of growth factors remains encouraging, with current efforts focused on modulating their release dynamics to minimise complications. In this evidence-based narrative review, we provide a comprehensive overview of the evolving landscape of non-degradable spinal implants and bone graft substitutes, emphasising their applications in lumbar spinal fusion surgery. We highlight the necessity for continued research to improve clinical outcomes and enhance patient well-being.
Collapse
Affiliation(s)
- Giles Michael Cheers
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Lucas Philipp Weimer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Jörg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Christoph Thorwächter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Nitschke BM, Beltran FO, Hahn MS, Grunlan MA. Trends in bioactivity: inducing and detecting mineralization of regenerative polymeric scaffolds. J Mater Chem B 2024; 12:2720-2736. [PMID: 38410921 PMCID: PMC10935659 DOI: 10.1039/d3tb02674d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Due to limitations of biological and alloplastic grafts, regenerative engineering has emerged as a promising alternative to treat bone defects. Bioactive polymeric scaffolds are an integral part of such an approach. Bioactivity importantly induces hydroxyapatite mineralization that promotes osteoinductivity and osseointegration with surrounding bone tissue. Strategies to confer bioactivity to polymeric scaffolds utilize bioceramic fillers, coatings and surface treatments, and additives. These approaches can also favorably impact mechanical and degradation properties. A variety of fabrication methods are utilized to prepare scaffolds with requisite morphological features. The bioactivity of scaffolds may be evaluated with a broad set of techniques, including in vitro (acellular and cellular) and in vivo methods. Herein, we highlight contemporary and emerging approaches to prepare and assess scaffold bioactivity, as well as existing challenges.
Collapse
Affiliation(s)
- Brandon M Nitschke
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Felipe O Beltran
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Wang Q, Wang W, Zhang P, Zhou Z, Li T, Li J, Canavese F, Gao M. A Simplified Method for RNA Isolation from Biofabricating Hydroxyapatite Scaffolds and Identification of Appropriate Reference Genes. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00744-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Purpose
To validate a simplified RNA isolation method from biofabricating hydroxyapatite (HAp) scaffolds seeded with mesenchymal stem cells (MSCs) and to identify the appropriate reference gene.
Methods
Ten MSCs-HAp composites were used for RNA isolation by methods based on simplified homogenization steps and column-based purification procedures, while the remaining RNA (n = 13) was extracted by traditional single-step isolation methods. The differences between the two procedures regarding the operation time, RNA quantity and quality were evaluated. Quantitative real-time PCR (qRT-PCR) analysis was performed to identify the appropriate reference gene.
Results
The simplified method showed significant superiority in operation time (P < 0.001), RNA concentration (P < 0.001), A260/280 ratio (P = 0.005) and A260/230 ratio (P < 0.001). The average integrity number and 28 s/18 s ratio of RNA yielded by the simplified method were 9.1 ± 0.2 and 1.3 ± 0.1, respectively. The qRT-PCR analysis results indicated that the cycle threshold (Ct) values of GAPDH were significantly higher than those of the remaining 2 reference genes (ACTB and RPL13A) in the RNA samples obtained by the simplified and traditional methods (P < 0.05). The standard deviations of the ΔCt value (the difference between the Ct value and the minimum) of ACTB were higher than those of GAPDH or RPL13A, regardless of the RNA isolation method.
Conclusion
The simplified method could extract intact RNA from biofabricating MSCs-HAp scaffolds and was superior to the traditional single-step procedure in operation time, RNA quantity and quality. GAPDH was identified as the most appropriate reference gene in MSCs-HAp scaffold composites due to its high quantity and good stability.
Collapse
|
4
|
Vahabzadeh S, Robertson S, Bose S. Beta-phase Stabilization and Increased Osteogenic Differentiation of Stem Cells by Solid-State Synthesized Magnesium Tricalcium Phosphate. JOURNAL OF MATERIALS RESEARCH 2021; 36:3041-3049. [PMID: 35757291 PMCID: PMC9231631 DOI: 10.1557/s43578-021-00311-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/13/2021] [Indexed: 06/15/2023]
Abstract
In this study, magnesium and strontium-doped β-tricalcium phosphates were synthesized to understand dopant impact on substrate chemistry and morphology, and proliferation and osteogenic differentiation of mesenchymal stem cells. Under solid-state synthesis, magnesium doping stabilized the β-phase in tricalcium phosphate, with 22% less α-phase content than control. Strontium doping increased α-phase formation by 17%, and also resulted in greater surface porosity, leading to greater crystal precipitation in vitro. Magnesium also significantly enhanced the proliferation of stem cells (P < 0.05) and differentiation into osteoblasts with increased alkaline phosphatase production (P < 0.05) at all time points. These results indicated that magnesium stabilizes β-tricalcium phosphate in vitro and enhanced early and late-time-point osteoconduction and osteoinduction of mesenchymal stem cells.
Collapse
Affiliation(s)
| | | | - Susmita Bose
- Corresponding author , Phone: (509) 335-7461, Fax: (509) 335-4662
| |
Collapse
|
5
|
Feng H, Zhang Q, Zhao Y, Zhao L, Shan B. Leptin acts on mesenchymal stem cells to promote chemoresistance in osteosarcoma cells. Aging (Albany NY) 2020; 12:6340-6351. [PMID: 32289750 PMCID: PMC7185129 DOI: 10.18632/aging.103027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/27/2020] [Indexed: 04/17/2023]
Abstract
Leptin signaling influences osteoblastogenesis and modulates the fate of mesenchymal stem cells (MSCs) during bone and cartilage regeneration. Although MSCs abound in the osteosarcoma (OS) microenvironment, and leptin exhibits pro-tumorigenic properties, leptin's influence on OS progression and chemoresistant signaling in MSCs remains unclear. Using cell viability and apoptosis assays, we showed that medium conditioned by leptin-treated human MSCs promotes cisplatin resistance in cultured human OS cells. Moreover, GFP-LC3 expression and chloroquine treatment experiments showed that this effect is mediated by stimulation of autophagy in OS cells. TGF-β expression in MSCs was upregulated by leptin and suppressed by leptin receptor knockdown. Silencing TGF-β in MSCs also abolished OS cell chemoresistance induced by leptin-conditioned medium. Cisplatin resistance was also induced when leptin-conditioned MSCs were co-injected with MG-63 OS cells to generate subcutaneous xenografts in nude mice. Finally, we observed a significant correlation between autophagy-associated gene expression in OS clinical samples and patient prognosis. We conclude that leptin upregulates TGF-β in MSCs, which promotes autophagy-mediated chemoresistance in OS cells.
Collapse
Affiliation(s)
- Helin Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
- Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang 050017, Hebei, China
- Hebei Province Xingtai People’s Hospital Postdoctoral Workstation, Xingtai 054031, Hebei, China
| | - Qianqian Zhang
- Department of Gynecology, Hebei Medical University Second Affiliated Hospital, Shijiazhuang 050000, Hebei, China
| | - Yi Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Lili Zhao
- Hebei Province Xingtai People’s Hospital Postdoctoral Workstation, Xingtai 054031, Hebei, China
| | - Baoen Shan
- Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang 050017, Hebei, China
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| |
Collapse
|
6
|
Matta C, Szűcs-Somogyi C, Kon E, Robinson D, Neufeld T, Altschuler N, Berta A, Hangody L, Veréb Z, Zákány R. Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells is enhanced by an aragonite scaffold. Differentiation 2019; 107:24-34. [PMID: 31152959 DOI: 10.1016/j.diff.2019.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/29/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022]
Abstract
Bone graft substitutes and bone void fillers are predominantly used to treat bone defects and bone fusion in orthopaedic surgery. Some aragonite-based scaffolds of coralline exoskeleton origin exhibit osteoconductive properties and are described as useful bone repair scaffolds. The purpose of this study was to evaluate the in vitro osteogenic potential of the bone phase of a novel aragonite-based bi-phasic osteochondral scaffold (Agili-C™, CartiHeal Ltd.) using adult human bone marrow-derived mesenchymal stem cells (MSCs). Analyses were performed at several time intervals: 3, 7, 14, 21, 28 and 42 days post-seeding. Osteogenic differentiation was assessed by morphological characterisation using light microscopy after Alizarin red and von Kossa staining, and scanning electron microscopy. The transcript levels of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), bone gamma-carboxyglutamate (BGLAP), osteonectin (SPARC) and osteopontin (SPP1) were determined by quantitative PCR. Proliferation was assessed by a thymidine incorporation assay and proliferating cell nuclear antigen (PCNA) immunocytochemistry. Our results demonstrate that the bone phase of the bi-phasic aragonite-based scaffold supports osteogenic differentiation and enhanced proliferation of bone marrow-derived MSCs at both the molecular and histological levels. The scaffold was colonized by differentiating MSCs, suggesting its suitability for incorporation into bone voids to accelerate bone healing, remodelling and regeneration. The mechanism of osteogenic differentiation involves scaffold surface modification with de novo production of calcium phosphate deposits, as revealed by energy dispersive spectroscopy (EDS) analyses. This novel coral-based scaffold may promote the rapid formation of high quality bone during the repair of osteochondral lesions.
Collapse
Affiliation(s)
- Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4032, Hungary.
| | - Csilla Szűcs-Somogyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4032, Hungary.
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Rozzano, Milan, 20090, Italy; Humanitas Clinical and Research Center, Via Alessandro Manzoni 56, Rozzano, Milan, 20089, Italy.
| | - Dror Robinson
- Orthopaedic Research & Foot and Ankle Unit, Rabin Medical Center, 39 Jabotinski St, Petah Tikva, 49100, Israel.
| | - Tova Neufeld
- CartiHeal 2009 Ltd, Atir Yeda 17, Kfar Saba, 4464313, Israel.
| | - Nir Altschuler
- CartiHeal 2009 Ltd, Atir Yeda 17, Kfar Saba, 4464313, Israel.
| | - Agnes Berta
- Orthopaedic and Trauma Department, Uzsoki Hospital, Uzsoki ut 29, Budapest, 1145, Hungary.
| | - László Hangody
- Orthopaedic and Trauma Department, Uzsoki Hospital, Uzsoki ut 29, Budapest, 1145, Hungary.
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Research Laboratory, Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, Koranyi fasor 6, Szeged, 6720, Hungary.
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4032, Hungary.
| |
Collapse
|
7
|
Luciani P, Fibbi B, Mazzanti B, Deledda C, Ballerini L, Aldinucci A, Benvenuti S, Saccardi R, Peri A. The effects of Exendin-4 on bone marrow-derived mesenchymal cells. Endocrine 2018; 60:423-434. [PMID: 29094257 DOI: 10.1007/s12020-017-1430-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/16/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE GLP-1 receptor agonists are antidiabetic drugs currently used in the therapy of type 2 diabetes. Despite several in vitro and in vivo animal studies suggesting a beneficial effect of GLP-1 analogues on bone, in humans their skeletal effects are not clear and clinical studies report conflicting results. METHODS We differentiated human mesenchymal stromal cells (hMSC) toward the adipogenic and the osteoblastic lineages, analysing the effect of Exendin-4 (EXE) before, during and after specific differentiations. RESULTS We showed EXE ability to act selectively on a sub-population of hMSC characterised by a more stem potential, shifting them from G1 to S/M phase of cell cycle. We observed that EXE pre-treatment promotes both adipogenic and osteoblastic differentiations, possibly determined by an increased number of uncommitted progenitors. In fully differentiated cells, EXE affects mature adipocytes by increasing lipolysis, otherwise not altering osteoblasts metabolic activity. Moreover, the increased expression of osteoprotegerin, a modulator of the RANK/RANKL system, observed during osteogenic induction in presence of EXE, could negatively modulate osteoclastogenesis. CONCLUSIONS Our data suggest a complex action of EXE on bone, targeting the proliferation of mesenchymal progenitors, the metabolism of mature adipocytes and the modulation of osteoclastogenesis. Thus, an overall positive effect of this molecule on bone quality might be hypothesised.
Collapse
Affiliation(s)
- Paola Luciani
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Benedetta Fibbi
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Benedetta Mazzanti
- Haematology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cristiana Deledda
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Lara Ballerini
- Haematology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Susanna Benvenuti
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Riccardo Saccardi
- Haematology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Peri
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| |
Collapse
|
8
|
Duarte RM, Varanda P, Reis RL, Duarte ARC, Correia-Pinto J. Biomaterials and Bioactive Agents in Spinal Fusion. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:540-551. [DOI: 10.1089/ten.teb.2017.0072] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui M. Duarte
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Pedro Varanda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Rui L. Reis
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Ana Rita C. Duarte
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Jorge Correia-Pinto
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Pediatric Surgery Department, Hospital de Braga, Braga, Portugal
| |
Collapse
|
9
|
Murakami S, Miyaji H, Nishida E, Kawamoto K, Miyata S, Takita H, Akasaka T, Fugetsu B, Iwanaga T, Hongo H, Amizuka N, Sugaya T, Kawanami M. Dose effects of beta-tricalcium phosphate nanoparticles on biocompatibility and bone conductive ability of three-dimensional collagen scaffolds. Dent Mater J 2017; 36:573-583. [PMID: 28450672 DOI: 10.4012/dmj.2016-295] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Three-dimensional collagen scaffolds coated with beta-tricalcium phosphate (β-TCP) nanoparticles reportedly exhibit good bioactivity and biodegradability. Dose effects of β-TCP nanoparticles on biocompatibility and bone forming ability were then examined. Collagen scaffold was applied with 1, 5, 10, and 25 wt% β-TCP nanoparticle dispersion and designated TCP1, TCP5, TCP10, and TCP25, respectively. Compressive strength, calcium ion release and enzyme resistance of scaffolds with β-TCP nanoparticles applied increased with β-TCP dose. TCP5 showed excellent cell-ingrowth behavior in rat subcutaneous tissue. When TCP10 was applied, osteoblastic cell proliferation and rat cranial bone augmentation were greater than for any other scaffold. The bone area of TCP10 was 7.7-fold greater than that of non-treated scaffold. In contrast, TCP25 consistently exhibited adverse biological effects. These results suggest that the application dose of β-TCP nanoparticles affects the scaffold bioproperties; consequently, the bone conductive ability of TCP10 was remarkable.
Collapse
Affiliation(s)
- Shusuke Murakami
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine
| | - Erika Nishida
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine
| | - Kohei Kawamoto
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine
| | - Saori Miyata
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine
| | - Hiroko Takita
- Support Section for Education and Research, Hokkaido University Graduate School of Dental Medicine
| | - Tsukasa Akasaka
- Department of Dental Materials and Engineering, Hokkaido University Graduate School of Dental Medicine
| | - Bunshi Fugetsu
- Nano-Agri Lab, Policy Alternatives Research Institute, The University of Tokyo
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine
| | - Hiromi Hongo
- Department of Developmental Biology of Hard Tissue, Hokkaido University Graduate School of Dental Medicine
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Hokkaido University Graduate School of Dental Medicine
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine
| | - Masamitsu Kawanami
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine
| |
Collapse
|
10
|
Mesenchymal Stem Cells for the Treatment of Spinal Arthrodesis: From Preclinical Research to Clinical Scenario. Stem Cells Int 2017; 2017:3537094. [PMID: 28286524 PMCID: PMC5327761 DOI: 10.1155/2017/3537094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023] Open
Abstract
The use of spinal fusion procedures has rapidly augmented over the last decades and although autogenous bone graft is the “gold standard” for these procedures, alternatives to its use have been investigated over many years. A number of emerging strategies as well as tissue engineering with mesenchymal stem cells (MSCs) have been planned to enhance spinal fusion rate. This descriptive systematic literature review summarizes the in vivo studies, dealing with the use of MSCs in spinal arthrodesis surgery and the state of the art in clinical applications. The review has yielded promising evidence supporting the use of MSCs as a cell-based therapy in spinal fusion procedures, thus representing a suitable biological approach able to reduce the high cost of osteoinductive factors as well as the high dose needed to induce bone formation. Nevertheless, despite the fact that MSCs therapy is an interesting and important opportunity of research, in this review it was detected that there are still doubts about the optimal cell concentration and delivery method as well as the ideal implantation techniques and the type of scaffolds for cell delivery. Thus, further inquiry is necessary to carefully evaluate the clinical safety and efficacy of MSCs use in spine fusion.
Collapse
|
11
|
Bondarava M, Cattaneo C, Ren B, Thasler WE, Jansson V, Müller PE, Betz OB. Osseous differentiation of human fat tissue grafts: From tissue engineering to tissue differentiation. Sci Rep 2017; 7:39712. [PMID: 28054585 PMCID: PMC5213995 DOI: 10.1038/srep39712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/25/2016] [Indexed: 12/27/2022] Open
Abstract
Conventional bone tissue engineering approaches require isolation and in vitro propagation of autologous cells, followed by seeding on a variety of scaffolds. Those protracted procedures impede the clinical applications. Here we report the transdifferentiation of human fat tissue fragments retrieved from subcutaneous fat into tissue with bone characteristics in vitro without prior cell isolation and propagation. 3D collagen-I cultures of human fat tissue were cultivated either in growth medium or in osteogenic medium (OM) with or without addition of Bone Morphogenetic Proteins (BMPs) BMP-2, BMP-7 or BMP-9. Ca2+ depositions were observed after two weeks of osteogenic induction which visibly increased when either type of BMP was added. mRNA levels of alkaline phosphatase (ALP) and osteocalcin (OCN) increased when cultured in OM alone but addition of BMP-2, BMP-7 or BMP-9 caused significantly higher expression levels of ALP and OCN. Immunofluorescent staining for OCN, osteopontin and sclerostin supported the observed real-time-PCR data. BMP-9 was the most effective osteogenic inducer in this system. Our findings reveal that tissue regeneration can be remarkably simplified by omitting prior cell isolation and propagation, therefore removing significant obstacles on the way to clinical applications of much needed regeneration treatments.
Collapse
Affiliation(s)
- Maryna Bondarava
- University Hospital of Munich (LMU), Campus Grosshadern, Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, Munich, DE, Germany
| | - Chiara Cattaneo
- University Hospital of Munich (LMU), Campus Grosshadern, Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, Munich, DE, Germany
| | - Bin Ren
- University Hospital of Munich (LMU), Campus Grosshadern, Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, Munich, DE, Germany
| | - Wolfgang E Thasler
- University Hospital of Munich (LMU), Biobank under the administration of the Human Tissue and Cell Research (HTCR) Foundation, Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Munich, DE, Germany
| | - Volkmar Jansson
- University Hospital of Munich (LMU), Campus Grosshadern, Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, Munich, DE, Germany
| | - Peter E Müller
- University Hospital of Munich (LMU), Campus Grosshadern, Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, Munich, DE, Germany
| | - Oliver B Betz
- University Hospital of Munich (LMU), Campus Grosshadern, Department of Orthopedic Surgery, Physical Medicine and Rehabilitation, Munich, DE, Germany
| |
Collapse
|
12
|
Eltorai AEM, Susai CJ, Daniels AH. Mesenchymal stromal cells in spinal fusion: Current and future applications. J Orthop 2016; 14:1-3. [PMID: 27821993 DOI: 10.1016/j.jor.2016.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/13/2016] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been a promising area of study for regenerative medicine. These cells can be harvested from bone marrow, adipose tissue, and other areas allowing for autologous transplantation of these cells into the area of degeneration or injury. With the proper signals, these cells may be able to regenerate healthy tissue. Recent studies have yielded promising evidence supporting translational mesenchymal stromal cell applications particularly in spinal fusion surgery.
Collapse
Affiliation(s)
- Adam E M Eltorai
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Cynthia J Susai
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alan H Daniels
- Division of Spine Surgery, Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
13
|
Uskoković V, Wu VM. Calcium Phosphate as a Key Material for Socially Responsible Tissue Engineering. MATERIALS 2016; 9. [PMID: 27347359 PMCID: PMC4917371 DOI: 10.3390/ma9060434] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review we demonstrate that such compositional simplifications are meaningful when it comes to the design of a solution for osteomyelitis, a disease that is in its natural, non-postoperative form particularly prevalent in the underdeveloped parts of the world wherein poverty, poor sanitary conditions, and chronically compromised defense lines of the immune system are the norm. We show that calcium phosphate nanoparticles, which are inexpensive to make, could be chemically designed to possess the same functionality as a hypothetic mixture additionally composed of: (a) a bone growth factor; (b) an antibiotic for prophylactic or anti-infective purposes; (c) a bisphosphonate as an antiresorptive compound; (d) a viral vector to enable the intracellular delivery of therapeutics; (e) a luminescent dye; (f) a radiographic component; (g) an imaging contrast agent; (h) a magnetic domain; and (i) polymers as viscous components enabling the injectability of the material and acting as carriers for the sustained release of a drug. In particular, calcium phosphates could: (a) produce tunable drug release profiles; (b) take the form of viscous and injectable, self-setting pastes; (c) be naturally osteo-inductive and inhibitory for osteoclastogenesis; (d) intracellularly deliver bioactive compounds; (e) accommodate an array of functional ions; (f) be processed into macroporous constructs for tissue engineering; and (g) be naturally antimicrobial. All in all, we see in calcium phosphates the presence of a protean nature whose therapeutic potentials have been barely tapped into.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA;
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
- Correspondence: or ; Tel.: +1-415-412-0233
| | - Victoria M. Wu
- Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA;
| |
Collapse
|