1
|
Wang X, Li N, Han L, Qiao O, Chen X, Wang P, Zhang L, Hou Y, Bao F, Hao H, Saeed S, Zhang L, Li Z, Duan X, Rao S, Liu Z, Gong Y. Rescue RM/CS-AKI by blocking strategy with one-dose anti-myoglobin RabMAb. Nat Commun 2025; 16:1044. [PMID: 39865095 PMCID: PMC11770072 DOI: 10.1038/s41467-025-56353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
Rhabdomyolysis or Crush syndrome-related AKI (RM/CS-AKI) has high mortality, and there is no effective early on-site treatment method. The critical pathogenic factor of RM/CS-AKI is the excessive free myoglobin (Mb) in blood circulation. Here, based on the concept of creating a "mobile barrier", we develop an anti-Mb rabbit monoclonal antibody (RabMAb) with high specificity, affinity, stability, and broad species reactivity. A single dose of anti-Mb RabMAb injection is sufficient for emergency rescue in both homologous and heterologous RM/CS-AKI male animal models. The main goal of blocking the passage of free Mb through the glomerular filtration barrier has been achieved by using the anti-Mb RabMAb, which has a long-term stable therapeutic effect within 14 days and promotes phagocytosis of Mb. The optimal administration strategy, pharmacokinetic analysis, toxicity evaluation for anti-Mb RabMAb, and the distribution of its immune complexes in RM/CS-AKI mice are investigated. Thus, we develop effective prevention and control strategies for RM/CS-AKI.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Ning Li
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China.
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China.
- Key Laboratory for Disaster Medicine Technology, Tianjin, China.
| | - Lu Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ou Qiao
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xin Chen
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Pengtao Wang
- Department of Severe Illnese Medicine, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Lancao Zhang
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Yingjie Hou
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Fengjiao Bao
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Herui Hao
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Sania Saeed
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Li Zhang
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zizheng Li
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xiaohong Duan
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Zichuan Liu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China.
| | - Yanhua Gong
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China.
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China.
- Key Laboratory for Disaster Medicine Technology, Tianjin, China.
| |
Collapse
|
2
|
Li D, Zhang Y, Chen Y, Yang B, Chen J, Shi J, Guo X, Liu Y, Zhang L, Lv Q, Fan H. Advancing crush syndrome management: the potent role of Sodium zirconium cyclosilicate in early hyperkalemia intervention and survival enhancement in a rat model. Front Pharmacol 2024; 15:1381954. [PMID: 38803437 PMCID: PMC11128686 DOI: 10.3389/fphar.2024.1381954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background: Crush Syndrome (CS), a severe trauma resulting from prolonged muscle compression, is commonly seen in large-scale disasters such as earthquakes. It not only causes localized tissue damage but also triggers electrolyte imbalances, particularly hyperkalemia, increasing the risk of early mortality. This study aims to assess the early intervention effects of Sodium Zirconium Cyclosilicate (SZC) on hyperkalemia in rat CS model. Methods: A rat CS model was established using a self-developed multi-channel intelligent small-animal crush injury platform. Rats in the experimental groups were treated with varying doses of SZC before compression and immediately post-decompression. The efficacy of SZC was evaluated by continuous monitoring of blood potassium levels and survival rates. Serum creatinine (Cre) and blood urea nitrogen (BUN) levels were analyzed, and renal damage was assessed through histopathological examination. Results: SZC treatment significantly reduced blood potassium levels and improved survival rates in rats. Compared to the placebo group, the SZC-treated rats showed a significant decrease in blood potassium levels at 6 and 12 h post-decompression, maintaining lower levels at 24 h. Biochemical analysis indicated no significant impact of SZC on renal function, with no notable differences in Cre and BUN levels between groups. Histopathological findings revealed similar levels of renal damage in both groups. Conclusion: SZC demonstrates significant early intervention effects on hyperkalemia in a rat model of crush injury, effectively improving survival rates without adverse effects on renal function. These results provide a new strategic direction for the clinical treatment of Crush Syndrome and lay the foundation for future clinical applications.
Collapse
Affiliation(s)
- Duo Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yan Zhang
- Department of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Military Logistics Research Key Laboratory of Field Disease Treatment, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuansen Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Bofan Yang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Jianwen Chen
- Department of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Military Logistics Research Key Laboratory of Field Disease Treatment, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Xiaoqin Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Li Zhang
- Department of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Military Logistics Research Key Laboratory of Field Disease Treatment, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qi Lv
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
3
|
Yamaga S, Aziz M, Murao A, Brenner M, Wang P. DAMPs and radiation injury. Front Immunol 2024; 15:1353990. [PMID: 38333215 PMCID: PMC10850293 DOI: 10.3389/fimmu.2024.1353990] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The heightened risk of ionizing radiation exposure, stemming from radiation accidents and potential acts of terrorism, has spurred growing interests in devising effective countermeasures against radiation injury. High-dose ionizing radiation exposure triggers acute radiation syndrome (ARS), manifesting as hematopoietic, gastrointestinal, and neurovascular ARS. Hematopoietic ARS typically presents with neutropenia and thrombocytopenia, while gastrointestinal ARS results in intestinal mucosal injury, often culminating in lethal sepsis and gastrointestinal bleeding. This deleterious impact can be attributed to radiation-induced DNA damage and oxidative stress, leading to various forms of cell death, such as apoptosis, necrosis and ferroptosis. Damage-associated molecular patterns (DAMPs) are intrinsic molecules released by cells undergoing injury or in the process of dying, either through passive or active pathways. These molecules then interact with pattern recognition receptors, triggering inflammatory responses. Such a cascade of events ultimately results in further tissue and organ damage, contributing to the elevated mortality rate. Notably, infection and sepsis often develop in ARS cases, further increasing the release of DAMPs. Given that lethal sepsis stands as a major contributor to the mortality in ARS, DAMPs hold the potential to function as mediators, exacerbating radiation-induced organ injury and consequently worsening overall survival. This review describes the intricate mechanisms underlying radiation-induced release of DAMPs. Furthermore, it discusses the detrimental effects of DAMPs on the immune system and explores potential DAMP-targeting therapeutic strategies to alleviate radiation-induced injury.
Collapse
Affiliation(s)
- Satoshi Yamaga
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
4
|
Li N, Han L, Wang X, Qiao O, Zhang L, Gong Y. Biotherapy of experimental acute kidney injury: emerging novel therapeutic strategies. Transl Res 2023; 261:69-85. [PMID: 37329950 DOI: 10.1016/j.trsl.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Acute kidney injury (AKI) is a complex and heterogeneous disease with high incidence and mortality, posing a serious threat to human life and health. Usually, in clinical practice, AKI is caused by crush injury, nephrotoxin exposure, ischemia-reperfusion injury, or sepsis. Therefore, most AKI models for pharmacological experimentation are based on this. The current research promises to develop new biological therapies, including antibody therapy, non-antibody protein therapy, cell therapy, and RNA therapy, that could help mitigate the development of AKI. These approaches can promote renal repair and improve systemic hemodynamics after renal injury by reducing oxidative stress, inflammatory response, organelles damage, and cell death, or activating cytoprotective mechanisms. However, no candidate drugs for AKI prevention or treatment have been successfully translated from bench to bedside. This article summarizes the latest progress in AKI biotherapy, focusing on potential clinical targets and novel treatment strategies that merit further investigation in future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Lu Han
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Li Zhang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Nankai District, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| |
Collapse
|
5
|
Zanussi JT, Zhao J, Wei WQ, Karakoc G, Chung CP, Feng Q, Olsen NJ, Stein CM, Kawai VK. Clinical diagnoses associated with a positive antinuclear antibody test in patients with and without autoimmune disease. BMC Rheumatol 2023; 7:24. [PMID: 37550754 PMCID: PMC10405518 DOI: 10.1186/s41927-023-00349-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Antinuclear antibodies (ANA) are antibodies present in several autoimmune disorders. However, a large proportion of the general population (20%) also have a positive test; very few of these individuals will develop an autoimmune disease, and the clinical impact of a positive ANA in them is not known. Thus, we test the hypothesis that ANA + test reflects a state of immune dysregulation that alters risk for some clinical disorders in individuals without an autoimmune disease. METHODS We performed high throughput association analyses in a case-control study using real world data from the de-identified electronic health record (EHR) system from Vanderbilt University Medical Center. The study population included individuals with an ANA titer ≥ 1:80 at any time (ANA +) and those with negative results (ANA-). The cohort was stratified into sub-cohorts of individuals with and without an autoimmune disease. A phenome-wide association study (PheWAS) adjusted by sex, year of birth, race, and length of follow-up was performed in the study cohort and in the sub-cohorts. As secondary analyses, only clinical diagnoses after ANA testing were included in the analyses. RESULTS The cohort included 70,043 individuals: 49,546 without and 20,497 with an autoimmune disease, 26,579 were ANA + and 43,464 ANA-. In the study cohort and the sub-cohort with autoimmune disease, ANA + was associated (P ≤ 5 × 10-5) with 88 and 136 clinical diagnoses respectively, including lupus (OR ≥ 5.4, P ≤ 7.8 × 10-202) and other autoimmune diseases and complications. In the sub-cohort without autoimmune diseases, ANA + was associated with increased risk of Raynaud's syndrome (OR ≥ 2.1) and alveolar/perialveolar-related pneumopathies (OR ≥ 1.4) and decreased risk of hepatitis C, tobacco use disorders, mood disorders, convulsions, fever of unknown origin, and substance abuse disorders (OR ≤ 0.8). Analyses including only diagnoses after ANA testing yielded similar results. CONCLUSION A positive ANA test, in addition to known associations with autoimmune diseases, Raynaud's phenomenon, and idiopathic fibrosing alveolitis related disorders, is associated with decreased prevalence of several non-autoimmune diseases.
Collapse
Affiliation(s)
- Jacy T Zanussi
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gul Karakoc
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cecilia P Chung
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Division of Rheumatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System - Nashville Campus, Nashville, TN, USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nancy J Olsen
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - C Michael Stein
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Vivian K Kawai
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
6
|
Zhang BF, Song W, Wang J, Wen PF, Zhang YM. Anti-high-mobility group box-1 (HMGB1) mediates the apoptosis of alveolar epithelial cells (AEC) by receptor of advanced glycation end-products (RAGE)/c-Jun N-terminal kinase (JNK) pathway in the rats of crush injuries. J Orthop Surg Res 2022; 17:20. [PMID: 35033142 PMCID: PMC8760810 DOI: 10.1186/s13018-021-02903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/30/2021] [Indexed: 11/10/2022] Open
Abstract
Objectives The lung injury is often secondary to severe trauma. In the model of crush syndrome, there may be secondary lung injury. We hypothesize that high-mobility group box 1 (HMGB1), released from muscle tissue, mediates the apoptosis of alveolar epithelial cells (AEC) via HMGB1/Receptor of advanced glycation end-products (RAGE)/c-Jun N-terminal kinase (JNK) pathway. The study aimed to investigate how HMGB1 mediated the apoptosis of AEC in the rat model. Methods Seventy-five SD male rats were randomly divided into five groups: CS, CS + vehicle, CS + Ethyl pyruvate (EP), CS + FPS-ZM1 group, and CS + SP600125 groups. When the rats CS model were completed after 24 h, the rats were sacrificed. We collected the serum and the whole lung tissues. Inflammatory cytokines were measured in serum samples. Western blot and RT-qPCR were used to quantify the protein and mRNA. Lastly, apoptotic cells were detected by TUNEL. We used SPSS 25.0 for statistical analyses. Results Nine rats died during the experiments. Dead rats were excluded from further analysis. Compared to the CS group, levels of HMGB1 and inflammatory cytokines in serum were downregulated in CS + EP, CS + FPS-ZM1, and CS + SP600125 groups. Western blot and RT-qPCR analysis revealed a significant downregulation of HMGB1, RAGE, and phosphorylated-JNK in CS + EP, CS + FPS-ZM1, and CS + SP600125 groups, compared with the CS groups, excluding total-JNK mRNA. Apoptosis of AEC was used TUNEL to assess. We found the TUNEL-positive cells were downregulated in CS + EP, CS + FPS-ZM1, and CS + SP600125 groups. Conclusion The remote lung injury begins early after crush injuries. The HMGB1/RAGE/JNK signaling axis is an attractive target to abrogate the apoptosis of AEC after crush injuries.
Collapse
Affiliation(s)
- Bin-Fei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, Shaanxi Province, 710054, People's Republic of China
| | - Wei Song
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, Shaanxi Province, 710054, People's Republic of China
| | - Jun Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, Shaanxi Province, 710054, People's Republic of China
| | - Peng-Fei Wen
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, Shaanxi Province, 710054, People's Republic of China
| | - Yu-Min Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 555 Youyi East Road, Beilin District, Xi'an, Shaanxi Province, 710054, People's Republic of China.
| |
Collapse
|
7
|
de Liyis BG, Tandy SG, Endira JF, Putri KA, Utami DKI. Anti-high mobility group box protein 1 monoclonal antibody downregulating P-glycoprotein as novel epilepsy therapeutics. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022; 58:121. [PMID: 36310854 PMCID: PMC9589779 DOI: 10.1186/s41983-022-00557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Epilepsy, a neurological illness, is characterized by recurrent uncontrolled seizures. There are many treatments of options that can be used as the therapy of epilepsy. However, anti-seizure medications as the primary treatment choice for epilepsy show many possible adverse effects and even pharmacoresistance to the therapy. High Mobility Group Box 1 (HMGB1) as an initiator and amplifier of the neuroinflammation is responsible for the onset and progression of epilepsy by overexpressing P-glycoprotein on the blood brain barrier. HMGB1 proteins then activate TLR4 in neurons and astrocytes, in which proinflammatory cytokines are produced. Anti-HMGB1 mAb works by blocking the HMGB1, reducing inflammatory activity in the brain that may affect epileptogenesis. Through the process, anti-HMGB1 mAb reduces the TLR4 activity and other receptors that may involve in promote signal of epilepsy such as RAGE. Several studies have shown that anti-HMGB1 has the potential to inhibit the increase in serum HMGB1 in plasma and brain tissue. Further research is needed to identify the mechanism of the inhibiting of overexpression of P-glycoprotein through anti-HMGB1 mAb.
Collapse
Affiliation(s)
- Bryan Gervais de Liyis
- grid.412828.50000 0001 0692 6937Faculty of Medicine, Udayana University, Bali, Indonesia
| | - Sevinna Geshie Tandy
- grid.412828.50000 0001 0692 6937Faculty of Medicine, Udayana University, Bali, Indonesia
| | - Joana Fourta Endira
- grid.412828.50000 0001 0692 6937Faculty of Medicine, Udayana University, Bali, Indonesia
| | - Komang Andjani Putri
- grid.412828.50000 0001 0692 6937Faculty of Medicine, Udayana University, Bali, Indonesia
| | - Desak Ketut Indrasari Utami
- grid.412828.50000 0001 0692 6937Department of Neurology, Faculty of Medicine, Udayana University, Bali, Indonesia
| |
Collapse
|
8
|
Wang PT, Li N, Wang XY, Chen JL, Geng CH, Liu ZQ, Fan HJ, Lv Q, Hou SK, Gong YH. RIG-I, a novel DAMPs sensor for myoglobin activates NF-κB/caspase-3 signaling in CS-AKI model. Mil Med Res 2021; 8:37. [PMID: 34148549 PMCID: PMC8215750 DOI: 10.1186/s40779-021-00333-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/10/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is the main life-threatening complication of crush syndrome (CS), and myoglobin is accepted as the main pathogenic factor. The pattern recognition receptor retinoicacid-inducible gene I (RIG-I) has been reported to exert anti-viral effects function in the innate immune response. However, it is not clear whether RIG-I plays a role in CS-AKI. The present research was carried out to explore the role of RIG-I in CS-AKI. METHODS Sprague-Dawley rats were randomly divided into two groups: the sham and CS groups (n = 12). After administration of anesthesia, the double hind limbs of rats in the CS group were put under a pressure of 3 kg for 16 h to mimic crush conditions. The rats in both groups were denied access to food and water. Rats were sacrificed at 12 h or 36 h after pressure was relieved. The successful establishment of the CS-AKI model was confirmed by serum biochemical analysis and renal histological examination. In addition, RNA sequencing was performed on rat kidney tissue to identify molecular pathways involved in CS-AKI. Furthermore, NRK-52E cells were treated with 200 μmol/L ferrous myoglobin to mimic CS-AKI at the cellular level. The cells and cell supernatant samples were collected at 6 h or 24 h. Small interfering RNAs (siRNA) was used to knock down RIG-I expression. The relative expression levels of molecules involved in the RIG-I pathway in rat kidney or cells samples were measured by quantitative Real-time PCR (qPCR), Western blotting analysis, and immunohistochemistry (IHC) staining. Tumor necrosis factor-α (TNF-α) was detected by ELISA. Co-Immunoprecipitation (Co-IP) assays were used to detect the interaction between RIG-I and myoglobin. RESULTS RNA sequencing of CS-AKI rat kidney tissue revealed that the different expression of RIG-I signaling pathway. qPCR, Western blotting, and IHC assays showed that RIG-I, nuclear factor kappa-B (NF-κB) P65, p-P65, and the apoptotic marker caspase-3 and cleaved caspase-3 were up-regulated in the CS group (P < 0.05). However, the levels of interferon regulatory factor 3 (IRF3), p-IRF3 and the antiviral factor interferon-beta (IFN-β) showed no significant changes between the sham and CS groups. Co-IP assays showed the interaction between RIG-I and myoglobin in the kidneys of the CS group. Depletion of RIG-I could alleviate the myoglobin induced expression of apoptosis-associated molecules via the NF-κB/caspase-3 axis. CONCLUSION RIG-I is a novel damage-associated molecular patterns (DAMPs) sensor for myoglobin and participates in the NF-κB/caspase-3 signaling pathway in CS-AKI. In the development of CS-AKI, specific intervention in the RIG-I pathway might be a potential therapeutic strategy for CS-AKI.
Collapse
Affiliation(s)
- Peng-Tao Wang
- General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China
| | - Xin-Yue Wang
- Institute of Disaster Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Jia-Le Chen
- Institute of Disaster Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Chen-Hao Geng
- Institute of Disaster Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Zi-Quan Liu
- Institute of Disaster Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China
| | - Hao-Jun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China
| | - Qi Lv
- Institute of Disaster Medicine, Tianjin University, Tianjin, 300072, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China
| | - Shi-Ke Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin, 300072, China. .,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China. .,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.
| | - Yan-Hua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin, 300072, China. .,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China. .,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 325000, China.
| |
Collapse
|
9
|
Li N, Wang X, Wang P, Fan H, Hou S, Gong Y. Emerging medical therapies in crush syndrome - progress report from basic sciences and potential future avenues. Ren Fail 2021; 42:656-666. [PMID: 32662306 PMCID: PMC7470165 DOI: 10.1080/0886022x.2020.1792928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Crush injury is a disease that is commonly found in victims of earthquakes, debris flows, mine disasters, explosions, terrorist attacks, local wars, and other accidents. The complications that arise due to the crush injury inflicted on victims give rise to crush syndrome (CS). If not treated in time, the mortality rate of CS is very high. The most important measure that can be taken to reduce mortality in such situations is to immediately start treatment. However, the traditional treatment methods such as fluid resuscitation, diuresis, and hemodialysis are not feasible enough to be carried out at the disaster scene. So there is a need for developing new treatments that are efficient and convenient. Because it is difficult to diagnose in the disaster area and reach the treatment equipment and treat on time. It has become a new research needs to be directed into identifying new medical treatment targets and methods using the etiology and pathophysiological mechanisms of CS. In recent years, a large number of new anti-oxidant and anti-inflammatory drug therapies have been shown to be highly efficacious in CS rat/mouse models. Some of them are expected to become specific drugs for the emergency treatment of a large number of patients who may develop CS in the aftermath of earthquakes, wars, and other disasters in the future. Hence, we have reviewed the latest research on the medical therapy of CS as a source for anyone wishing to pursue research in this direction.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xinyue Wang
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Pengtao Wang
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.,General Hospital of Tianjin Medical University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Shike Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
10
|
Relja B, Land WG. Damage-associated molecular patterns in trauma. Eur J Trauma Emerg Surg 2020; 46:751-775. [PMID: 31612270 PMCID: PMC7427761 DOI: 10.1007/s00068-019-01235-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
In 1994, the "danger model" argued that adaptive immune responses are driven rather by molecules released upon tissue damage than by the recognition of "strange" molecules. Thus, an alternative to the "self versus non-self recognition model" has been provided. The model, which suggests that the immune system discriminates dangerous from safe molecules, has established the basis for the future designation of damage-associated molecular patterns (DAMPs), a term that was coined by Walter G. Land, Seong, and Matzinger. The pathological importance of DAMPs is barely somewhere else evident as in the posttraumatic or post-surgical inflammation and regeneration. Since DAMPs have been identified to trigger specific immune responses and inflammation, which is not necessarily detrimental but also regenerative, it still remains difficult to describe their "friend or foe" role in the posttraumatic immunogenicity and healing process. DAMPs can be used as biomarkers to indicate and/or to monitor a disease or injury severity, but they also may serve as clinically applicable parameters for optimized indication of the timing for, i.e., secondary surgeries. While experimental studies allow the detection of these biomarkers on different levels including cellular, tissue, and circulatory milieu, this is not always easily transferable to the human situation. Thus, in this review, we focus on the recent literature dealing with the pathophysiological importance of DAMPs after traumatic injury. Since dysregulated inflammation in traumatized patients always implies disturbed resolution of inflammation, so-called model of suppressing/inhibiting inducible DAMPs (SAMPs) will be very briefly introduced. Thus, an update on this topic in the field of trauma will be provided.
Collapse
Affiliation(s)
- Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590, Frankfurt, Germany.
| | - Walter Gottlieb Land
- Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, University of Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
β1-Blocker improves survival and ventricular remodelling in rats with lethal crush injury. Eur J Trauma Emerg Surg 2020; 48:455-470. [PMID: 32488449 DOI: 10.1007/s00068-020-01408-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Crush injury/crush syndrome (CI/CS) is the second most common cause of death during earthquakes. Most studies of CI/CS have mainly focused on kidney injury after decompression. Few studies have focused on myocardial injury caused by crush injury and its potential mechanisms. METHODS We first verified cardiomyocyte injury during compression in rats with a crush injury. The survival rate, electrocardiographic results, histological results, catecholamine changes and cardiac β1-AR expression were evaluated. Next, we explored the effects of pretreatment with a selective β1-blocker (bisoprolol) with or without fluid resuscitation on rats with a crush injury. In addition to evaluating the survival rates, biochemical and histological analyses and echocardiographic measurements were also performed. RESULTS Reduced heart rates, elevated ST segments, and tall-peaked T waves were observed in the rats with a crush injury. The changes in the myocardial enzymes and pathological results demonstrated that myocardial damage occurred during compression in rats with a crush injury. The levels of the catecholamine norepinephrine in both the serum and myocardial tissue were elevated during compression. Pretreatment with a selective β1-blocker combined with fluid resuscitation significantly improved the survival rates of the rats with lethal crush injury. The myocardial enzymes and pathological results showed that the combined therapy decreased myocardial damage. The echocardiography measurements showed that the rats that received the combined therapy exhibited decreased left ventricular mass (LVM), left ventricular volume at end-systole (LVVs) and left ventricular internal diameter (LVID) compared with the rats with a crush injury. CONCLUSIONS Our findings demonstrated the presence of myocardial injury in the early stage of compression in rats with a crush injury. Pretreatment with a β1-blocker (bisoprolol) with fluid resuscitation significantly reduced mortality, decreased myocardial tissue damage, and improved ventricular remodelling in rats with a lethal crush injury.
Collapse
|
12
|
Faria LC, Andrade AMF, Trant CGMC, Lima AS, Machado PAB, Porto RD, Andrade MVM. Circulating levels of High‐mobility group box 1 protein and nucleosomes are associated with outcomes after liver transplant. Clin Transplant 2020; 34:e13869. [DOI: 10.1111/ctr.13869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/08/2020] [Accepted: 03/29/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Luciana C. Faria
- Departamento de Clínica Médica Faculdade de Medicina Universidade Federal de Minas Gerais Belo Horizonte Brasil
- Grupo de Transplante de Órgãos Instituto Alfa de Gastroenterologia Hospital das Clínicas Universidade Federal de Minas Gerais Belo Horizonte Brasil
| | - Antônio Márcio F. Andrade
- Grupo de Transplante de Órgãos Instituto Alfa de Gastroenterologia Hospital das Clínicas Universidade Federal de Minas Gerais Belo Horizonte Brasil
| | - Cyntia G. M. C. Trant
- Laboratório de Fisiopatologia Cirúrgica Faculdade de Medicina Universidade Federal de Minas Gerais Belo Horizonte Brasil
| | - Agnaldo S. Lima
- Grupo de Transplante de Órgãos Instituto Alfa de Gastroenterologia Hospital das Clínicas Universidade Federal de Minas Gerais Belo Horizonte Brasil
- Departamento de Cirurgia Faculdade de Medicina Universidade Federal de Minas Gerais Belo Horizonte Brasil
| | - Pedro A. B. Machado
- Faculdade de Medicina Universidade Federal de Minas Gerais Belo Horizonte Brasil
| | - Rodrigo D. Porto
- Faculdade de Medicina Universidade Federal de Minas Gerais Belo Horizonte Brasil
| | - Marcus Vinícius M. Andrade
- Departamento de Clínica Médica Faculdade de Medicina Universidade Federal de Minas Gerais Belo Horizonte Brasil
- Laboratório de Fisiopatologia Cirúrgica Faculdade de Medicina Universidade Federal de Minas Gerais Belo Horizonte Brasil
| |
Collapse
|
13
|
Abstract
This review summarizes a short list of currently discussed trauma-induced danger-associated molecular patterns (DAMP). Due to the bivalent character and often pleiotropic effects of a DAMP, it is difficult to describe its "friend or foe" role in post-traumatic inflammation and regeneration, both systemically as well locally in tissues. DAMP can be used as biomarkers to indicate or monitor disease or injury severity, but also may serve as clinically applicable parameters for better indication and timing of surgery. Due to the inflammatory processes at the local tissue level or the systemic level, the precise role of DAMP is not always clear to define. While in vitro and experimental studies allow for the detection of these biomarkers at the different levels of an organism-cellular, tissue, circulation-this is not always easily transferable to the human setting. Increased knowledge exploring the dual role of DAMP after trauma, and concentrating on their nuclear functions, transcriptional targets, release mechanisms, cellular sources, multiple functions, their interactions and potential therapeutic targeting is warranted.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany.
| | - Katharina Mörs
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany
| |
Collapse
|