1
|
Heusch G, Andreadou I, Bell R, Bertero E, Botker HE, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 2023; 67:102894. [PMID: 37839355 PMCID: PMC10590874 DOI: 10.1016/j.redox.2023.102894] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Bell
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Edoardo Bertero
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties, University of Genova, Genova, Italy
| | - Hans-Erik Botker
- Department of Cardiology, Institute for Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - James Downey
- Department of Physiology, University of South Alabama, Mobile, AL, USA
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, Heart Centre, Charterhouse Square, London, United Kingdom
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, National Heart Research Institute Singapore, National Heart Centre, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, and CIBERCV, Madrid, Spain
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig -Universität, Giessen, Germany
| | - Frank Sellke
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Fabio Di Lisa
- Dipartimento di Scienze Biomediche, Università degli studi di Padova, Padova, Italy.
| |
Collapse
|
2
|
Kaljusto ML, Bautin A, Jakobsen Ø, Wilimski R, Brunborg C, Wennemo M, Karpova L, Nergaard Aas K, Arendarczyk A, Landsverk SA, Galagudza M, Næsheim T, Czub P, Gordeev M, Vaage J. Effects of ischaemic postconditioning in aortic valve replacement: a multicenter randomized controlled trial. Eur J Cardiothorac Surg 2021; 61:1144-1152. [PMID: 34849659 DOI: 10.1093/ejcts/ezab500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/16/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The effect of ischaemic postconditioning (IPost) on postcardioplegic cardiac function is not known. We hypothesized that IPost was cardioprotective in adult patients undergoing elective aortic valve replacement. METHODS In a multicentre, prospective, randomized trial, patients (n = 209) were randomized to either a standard operation (controls) or postconditioning. Immediately before the cross-clamp was released, patients in the postconditioning group underwent 3 cycles of flow/non-flow (2 min each) of normothermic blood via the antegrade cardioplegia line. The primary end point was cardiac index. Secondary end points included additional haemodynamic measurements, biomarkers of cardiomyocyte injury, renal function parameters, intra- and postoperative arrhythmias and use of inotropic agents. RESULTS There was no significant difference between the groups regarding cardiac index [mean between-group difference, 95% confidence interval (CI), 0.11 (-0.1 to 0.3), P = 0.27]. Postconditioning had no effect on other haemodynamic parametres. There was no between-group difference regarding troponin T or creatine kinase MB. Postconditioning reduced the relative risk for arrhythmias by 45% (P = 0.03) when postoperative atrial fibrillation and intraoperative ventricular fibrillation were combined. There were no differences in patients with/without diabetes, patients above/below 70 years of age or between the centres. However, after postconditioning, the cardiac index [95% CI, 0.46 (0.2-0.7), P = 0.001], cardiac output (P < 0.001), mean arterial pressure (P < 0.001) and left ventricular stroke work index (P < 0.001) were higher in males compared to females. CONCLUSIONS IPost had no overall cardioprotective effects in patients undergoing aortic valve replacement but improved postoperative cardiac performance in men compared to women.
Collapse
Affiliation(s)
- Mari-Liis Kaljusto
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Andrey Bautin
- Research Division of Anesthesiology and Intensive Care, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Øyvind Jakobsen
- Department of Thoracic and Cardiovascular Surgery, University Hospital of North Norway, Tromsø, Norway
| | - Radoslaw Wilimski
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Marte Wennemo
- Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
| | - Lyudmila Karpova
- Department of Anesthesiology, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Kathrine Nergaard Aas
- Department of Thoracic and Cardiovascular Surgery, University Hospital of North Norway, Tromsø, Norway
| | - Adam Arendarczyk
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Svein A Landsverk
- Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
| | - Mikhail Galagudza
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Torvind Næsheim
- Department of Thoracic and Cardiovascular Surgery, University Hospital of North Norway, Tromsø, Norway
| | - Pawel Czub
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Mikhail Gordeev
- Research Division of Cardiothoracic Surgery, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Jarle Vaage
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Division of Emergencies and Critical Care, Department of Research & Development, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Zhou J, Li J, Rosenbaum DM, Zhuang J, Poon C, Qin P, Rivera K, Lepore J, Willette RN, Hu E, Barone FC. The prolyl 4-hydroxylase inhibitor GSK360A decreases post-stroke brain injury and sensory, motor, and cognitive behavioral deficits. PLoS One 2017; 12:e0184049. [PMID: 28880966 PMCID: PMC5589177 DOI: 10.1371/journal.pone.0184049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022] Open
Abstract
There is interest in pharmacologic preconditioning for end-organ protection by targeting the HIF system. This can be accomplished by inhibition of prolyl 4-hydroxylase (PHD). GSK360A is an orally active PHD inhibitor that has been previously shown to protect the failing heart. We hypothesized that PHD inhibition can also protect the brain from injuries and resulting behavioral deficits that can occur as a result of surgery. Thus, our goal was to investigate the effect of pre-stroke surgery brain protection using a verified GSK360A PHD inhibition paradigm on post-stroke surgery outcomes. Vehicle or an established protective dose (30 mg/kg, p.o.) of GSK360A was administered to male Sprague-Dawley rats. Initially, GSK360A pharmacokinetics and organ distribution were determined, and then PHD-HIF pharmacodynamic markers were measured (i.e., to validate the pharmacological effects of the GSK360A administration regimen). Results obtained using this validated PHD dose-regimen indicated significant improvement by GSK360A (30mg/kg); administered at 18 and 5 hours prior to transient middle cerebral artery occlusion (stroke). GSK360A exposure and plasma, kidney and brain HIF-PHD pharmacodynamics endpoints (e.g., erythropoietin; EPO and Vascular Endothelial Growth Factor; VEGF) were measured. GSK360A provided rapid exposure in plasma (7734 ng/ml), kidney (45–52% of plasma level) and brain (1–4% of plasma level), and increased kidney EPO mRNA (80-fold) and brain VEGF mRNA (2-fold). We also observed that GSK360A increased plasma EPO (300-fold) and VEGF (2-fold). Further assessments indicated that GSK360A reduced post-stroke surgery neurological deficits (47–64%), cognitive dysfunction (60–75%) and brain infarction (30%) 4 weeks later. Thus, PHD inhibition using GSK360A pretreatment produced long-term post-stroke brain protection and improved behavioral functioning. These data support PHD inhibition, specifically by GSK360A, as a potential strategy for pre-surgical use to reduce brain injury and functional decline due to surgery-related cerebral injury.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Brain Injuries/blood
- Brain Injuries/drug therapy
- Brain Injuries/etiology
- Brain Injuries/physiopathology
- Cognition Disorders/drug therapy
- Cognition Disorders/etiology
- Erythropoietin/blood
- Erythropoietin/genetics
- Glycine/administration & dosage
- Glycine/analogs & derivatives
- Glycine/pharmacokinetics
- Glycine/pharmacology
- Glycine/therapeutic use
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Infarction, Middle Cerebral Artery/blood
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Male
- Motor Activity/drug effects
- Organ Specificity/drug effects
- Prolyl Hydroxylases/metabolism
- Prolyl-Hydroxylase Inhibitors/administration & dosage
- Prolyl-Hydroxylase Inhibitors/pharmacology
- Prolyl-Hydroxylase Inhibitors/therapeutic use
- Quinolones/administration & dosage
- Quinolones/pharmacokinetics
- Quinolones/pharmacology
- Quinolones/therapeutic use
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Sensation/drug effects
- Stroke/blood
- Stroke/complications
- Stroke/physiopathology
- Vascular Endothelial Growth Factor A/blood
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- Jin Zhou
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Jie Li
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Daniel M. Rosenbaum
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
- Robert F. Furchgott Foundation, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Jian Zhuang
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Carrie Poon
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Pu Qin
- Cardiac Biology, Heart Failure Discovery Performance Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania, United States of America
| | - Katrina Rivera
- Cardiac Biology, Heart Failure Discovery Performance Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania, United States of America
| | - John Lepore
- Cardiac Biology, Heart Failure Discovery Performance Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania, United States of America
| | - Robert N. Willette
- Cardiac Biology, Heart Failure Discovery Performance Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania, United States of America
| | - Erding Hu
- Cardiac Biology, Heart Failure Discovery Performance Unit, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania, United States of America
| | - Frank C. Barone
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
- Robert F. Furchgott Foundation, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Activation of Endocannabinoid Receptor 2 as a Mechanism of Propofol Pretreatment-Induced Cardioprotection against Ischemia-Reperfusion Injury in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2186383. [PMID: 28814985 PMCID: PMC5549482 DOI: 10.1155/2017/2186383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/20/2017] [Accepted: 04/30/2017] [Indexed: 01/16/2023]
Abstract
Propofol pretreatment before reperfusion, or propofol conditioning, has been shown to be cardioprotective, while its mechanism is unclear. The current study investigated the roles of endocannabinoid signaling in propofol cardioprotection in an in vivo model of myocardial ischemia/reperfusion (I/R) injury and in in vitro primary cardiomyocyte hypoxia/reoxygenation (H/R) injury. The results showed that propofol conditioning increased both serum and cell culture media concentrations of endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) detected by LC-MS/MS. The reductions of myocardial infarct size in vivo and cardiomyocyte apoptosis and death in vitro were accompanied with attenuations of oxidative injuries manifested as decreased reactive oxygen species (ROS), malonaldehyde (MDA), and MPO (myeloperoxidase) and increased superoxide dismutase (SOD) production. These effects were mimicked by either URB597, a selective endocannabinoids degradation inhibitor, or VDM11, a selective endocannabinoids reuptake inhibitor. In vivo study further validated that the cardioprotective and antioxidative effects of propofol were reversed by selective CB2 receptor antagonist AM630 but not CB1 receptor antagonist AM251. We concluded that enhancing endogenous endocannabinoid release and subsequent activation of CB2 receptor signaling represent a major mechanism whereby propofol conditioning confers antioxidative and cardioprotective effects against myocardial I/R injury.
Collapse
|
5
|
Bagheri F, Khori V, Alizadeh AM, Khalighfard S, Khodayari S, Khodayari H. Reactive oxygen species-mediated cardiac-reperfusion injury: Mechanisms and therapies. Life Sci 2016; 165:43-55. [DOI: 10.1016/j.lfs.2016.09.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
|
6
|
Dănilă MD, Privistirescu AI, Mirica SN, Sturza A, Ordodi V, Noveanu L, Duicu OM, Muntean DM. Acute inhibition of monoamine oxidase and ischemic preconditioning in isolated rat hearts: interference with postischemic functional recovery but no effect on infarct size reduction. Can J Physiol Pharmacol 2015; 93:819-25. [PMID: 26322912 DOI: 10.1139/cjpp-2015-0103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Monoamine oxidases (MAOs) have recently emerged as important mitochondrial sources of oxidative stress in the cardiovascular system. Generation of reactive oxygen species during the brief episodes of ischemic preconditioning (IPC) is responsible for the cardioprotection at reperfusion. The aim of this study was to assess the effects of two MAO inhibitors (clorgyline and pargyline) on the IPC-related protection in isolated rat hearts. Animals subjected to 30 min global ischemia and 120 min reperfusion were assigned to the following groups: (i) Control, no additional intervention; (ii) IPC, 3 cycles of 5 min ischemia and 5 min reperfusion before the index ischemia; (iii) IPC-clorgyline, IPC protocol bracketed for 5 min with clorgyline (50 μmol/L); (iv) IPC-pargyline, IPC protocol bracketed for 5 min with pargyline (0.5 mmol/L). The postischemic functional recovery was assessed by the left ventricular developed pressure (LVDP) and the indices of contractility (+dLVP/dt max) and relaxation (-dLVP/dt max). Infarct size (IS) was quantified by TTC staining. In both genders, IPC significantly improved functional recovery that was further enhanced in the presence of either clorgyline or pargyline. IS reduction was comparable among all the preconditioned groups, regardless of the presence of MAO inhibitors. In isolated rat hearts, acute inhibition of MAOs potentiates the IPC-induced postischemic functional recovery without interfering with the anti-necrotic protection.
Collapse
Affiliation(s)
- Maria D Dănilă
- a Department of Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Timișoara, Romania.,b Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Timişoara, Romania
| | - Andreea I Privistirescu
- a Department of Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Timișoara, Romania
| | - Silvia N Mirica
- a Department of Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Timișoara, Romania
| | - Adrian Sturza
- a Department of Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Timișoara, Romania.,b Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Timişoara, Romania
| | - Valentin Ordodi
- a Department of Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Timișoara, Romania
| | - Lavinia Noveanu
- a Department of Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Timișoara, Romania.,b Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Timişoara, Romania
| | - Oana M Duicu
- a Department of Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Timișoara, Romania.,b Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Timişoara, Romania
| | - Danina M Muntean
- a Department of Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Timișoara, Romania.,b Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Timişoara, Romania
| |
Collapse
|