1
|
Bosch-Rué E, Zhang Q, Truskey GA, Olmos Buitrago J, M Bosch B, Pérez RA. Development of small tissue engineered blood vessels and their clinical and research applications. Biofabrication 2025; 17:032005. [PMID: 40341214 DOI: 10.1088/1758-5090/add626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 05/08/2025] [Indexed: 05/10/2025]
Abstract
Since the first tissue engineered blood vessel (TEBV) was developed, different approaches, biomaterial scaffolds and cell sources have been used to obtain an engineered vessel as much similar as native vessels in terms of structure, functionality and mechanical properties. At the same time, diverse needs to obtain a functional TEBV have emerged, such as for blood vessel replacement for cardiovascular diseases (CVDs) to be used as artery bypass, to vascularize tissue engineered constructs, or even to model vascular diseases or drug testing. In this review, after briefly describing the native structure and function of arteries, we will give an overview of different biomaterials, cells and methods that have been used during the last years for the development of small TEBV (1-6 mm diameter). The importance of perfusing the TEBV to acquire functionality and maturation will be also discussed. Finally, we will center the review on TEBV applications beyond their use as vascular graft for CVDs.
Collapse
Affiliation(s)
- Elia Bosch-Rué
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
- Bioengineering Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Qiao Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Jenifer Olmos Buitrago
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
- Bioengineering Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Begoña M Bosch
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
- Bioengineering Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Román A Pérez
- Bioengineering Institute of Technology (BIT), Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
- Bioengineering Department, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, 08195 Barcelona, Spain
| |
Collapse
|
2
|
Shih JH, Chern E. Decellularized Porcine Aorta as a Scaffold for Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells in Tissue Engineering. Stem Cell Rev Rep 2025:10.1007/s12015-025-10875-y. [PMID: 40227487 DOI: 10.1007/s12015-025-10875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Tissue engineering has been an integral part of regenerative medicine. Functional biomimetic structures were assembled by combining appropriate scaffolds with specific cells. The decellularization of animal tissue preserved the natural biochemical components and structural properties of the extracellular matrix (ECM) of specific organs, thereby providing a suitable niche for tissue-specific cell differentiation and growth. In this study, the extracellular matrix (ECM) of the porcine aorta was obtained through trypsin-based decellularization. The resulting porcine aortic ECM retained a favorable collagen composition, exhibited no cytotoxicity, and demonstrated chemophilic properties for mesenchymal stem cells. Human adipose-derived mesenchymal stem cells (hADSCs) and human induced pluripotent stem cell-derived mesenchymal stem cells (hiMSCs) were transplanted onto the decellularized porcine aortic ECM, where successful differentiation into a mature cartilage layer was observed. These findings suggested that the porcine aortic ECM could serve as a potential scaffold with tubular and linear structures for tissue engineering applications. Functional human iMSCs (induced-mesenchymal stem cells) were generated from human iPSCs (induced-pluripotent stem cells) and analyzed for differences compared to primary MSCs via RNA-seq. The hiMSCs were applied to decellularized porcine aortic ECM (extracellular matrix), demonstrating chondrogenic differentiation and confirming the usability of xenogeneic ECM.
Collapse
Affiliation(s)
- Jheng-Hong Shih
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
Luo X, Pang Z, Li J, Anh M, Kim BS, Gao G. Bioengineered human arterial equivalent and its applications from vascular graft to in vitro disease modeling. iScience 2024; 27:111215. [PMID: 39555400 PMCID: PMC11565542 DOI: 10.1016/j.isci.2024.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Arterial disorders such as atherosclerosis, thrombosis, and aneurysm pose significant health risks, necessitating advanced interventions. Despite progress in artificial blood vessels and animal models aimed at understanding pathogenesis and developing therapies, limitations in graft functionality and species discrepancies restrict their clinical and research utility. Addressing these issues, bioengineered arterial equivalents (AEs) with enhanced vascular functions have been developed, incorporating innovative technologies that improve clinical outcomes and enhance disease progression modeling. This review offers a comprehensive overview of recent advancements in bioengineered AEs, systematically summarizing the bioengineered technologies used to construct these AEs, and discussing their implications for clinical application and pathogenesis understanding. Highlighting current breakthroughs and future perspectives, this review aims to inform and inspire ongoing research in the field, potentially transforming vascular medicine and offering new avenues for preclinical and clinical advances.
Collapse
Affiliation(s)
- Xi Luo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zherui Pang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology, Zhuhai 519088, China
| | - Minjun Anh
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
4
|
Nguyen TC, Nguyen TL, Nguyen XH, Bui KC, Pham TA, Do LD, Tran NT, Nguyen TL, Hoang NTM, Do XH. Fresh Human Umbilical Cord Arteries as a Potential Source for Small-Diameter Vascular Grafts. ACS Biomater Sci Eng 2024; 10:7120-7131. [PMID: 39378361 DOI: 10.1021/acsbiomaterials.4c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The demand for small-diameter vascular grafts has been globally increased but still lacks optimal solutions in this category. This study evaluated the feasibility of utilizing human pretreated fresh and nondecellularized umbilical cord arteries (hUCAs) as vascular grafts without needing any immunosuppression process. A mixed lymphocyte reaction assay revealed that hUCAs did not induce lymphocyte proliferation or cytokine production. To assess the in vivo inflammatory response, hUCAs were buried in fatty tissue under the skin of the abdominal wall in the left and right iliac fossas of rats. The average sizes of the implanted hUCAs remained consistent at 30 days post implantation. To evaluate xenogeneic transplantation, hUCAs were grafted to the abdominal aorta below the kidney of Wister rats. Remarkably, all rats exhibited positive revascularization and perfusion, maintaining blood pressure values of around 110/70 mmHg. Doppler ultrasound consistently indicated good circulation, with the three separate echogenic layers corresponding to the three arterial wall layers throughout the assessment period. Grafted rats exhibited normal motor behavior, accompanied by positive responses to thermal and pain stimulation. Blood biochemical values and whole blood cell counts showed no significant differences between pre and post-transplantation. Histological analysis of the grafts revealed no calcification or thrombosis, and a mild chronic inflammatory response was presented. In conclusion, hUCAs maintained their structural and functional properties after transplantation in rats without immunosuppression. This highlights their potential as a source for allogeneic, readily accessible, small-diameter vascular grafts.
Collapse
Affiliation(s)
- Trung-Chuc Nguyen
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi 10000, Vietnam
| | - Toan Linh Nguyen
- Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi 10000, Vietnam
| | - Xuan-Hung Nguyen
- Vinmec Hi-Tech Center, Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
- College of Health Sciences, VinUniversity, Hanoi 10000, Vietnam
| | - Khac-Cuong Bui
- Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi 10000, Vietnam
| | - Tuan-Anh Pham
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi 10000, Vietnam
| | - Linh Dieu Do
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi 10000, Vietnam
| | - Nghia Trung Tran
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi 10000, Vietnam
| | - Thanh-Liem Nguyen
- Vinmec Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
| | - Nhung Thi My Hoang
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi 10000, Vietnam
| | - Xuan-Hai Do
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi 10000, Vietnam
| |
Collapse
|
5
|
Hernandez-Sanchez D, Comtois-Bona M, Muñoz M, Ruel M, Suuronen EJ, Alarcon EI. Manufacturing and validation of small-diameter vascular grafts: A mini review. iScience 2024; 27:109845. [PMID: 38799581 PMCID: PMC11126982 DOI: 10.1016/j.isci.2024.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
The field of small-diameter vascular grafts remains a challenge for biomaterials scientists. While decades of research have brought us much closer to developing biomimetic materials for regenerating tissues and organs, the physiological challenges involved in manufacturing small conduits that can transport blood while not inducing an immune response or promoting blood clots continue to limit progress in this area. In this short review, we present some of the most recent methods and advancements made by researchers working in the field of small-diameter vascular grafts. We also discuss some of the most critical aspects biomaterials scientists should consider when developing lab-made small-diameter vascular grafts.
Collapse
Affiliation(s)
- Deyanira Hernandez-Sanchez
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Maxime Comtois-Bona
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marcelo Muñoz
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marc Ruel
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Erik J. Suuronen
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Emilio I. Alarcon
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada
| |
Collapse
|
6
|
Ding H, Hou X, Gao Z, Guo Y, Liao B, Wan J. Challenges and Strategies for Endothelializing Decellularized Small-Diameter Tissue-Engineered Vessel Grafts. Adv Healthc Mater 2024; 13:e2304432. [PMID: 38462702 DOI: 10.1002/adhm.202304432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Indexed: 03/12/2024]
Abstract
Vascular diseases are the leading cause of ischemic necrosis in tissues and organs, necessitating using vascular grafts to restore blood supply. Currently, small vessels for coronary artery bypass grafts are unavailable in clinical settings. Decellularized small-diameter tissue-engineered vessel grafts (SD-TEVGs) hold significant potential. However, they face challenges, as simple implantation of decellularized SD-TEVGs in animals leads to thrombosis and calcification due to incomplete endothelialization. Consequently, research and development focus has shifted toward enhancing the endothelialization process of decellularized SD-TEVGs. This paper reviews preclinical studies involving decellularized SD-TEVGs, highlighting different strategies and their advantages and disadvantages for achieving rapid endothelialization of these vascular grafts. Methods are analyzed to improve the process while addressing potential shortcomings. This paper aims to contribute to the future commercial viability of decellularized SD-TEVGs.
Collapse
Affiliation(s)
- Heng Ding
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiaojie Hou
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhen Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100069, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
7
|
Jeong HJ, Nam H, Kim JS, Cho S, Park HH, Cho YS, Jeon H, Jang J, Lee SJ. Dragging 3D printing technique controls pore sizes of tissue engineered blood vessels to induce spontaneous cellular assembly. Bioact Mater 2024; 31:590-602. [PMID: 37876874 PMCID: PMC10593581 DOI: 10.1016/j.bioactmat.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/23/2023] [Accepted: 07/24/2023] [Indexed: 10/26/2023] Open
Abstract
To date, several off-the-shelf products such as artificial blood vessel grafts have been reported and clinically tested for small diameter vessel (SDV) replacement. However, conventional artificial blood vessel grafts lack endothelium and, thus, are not ideal for SDV transplantation as they can cause thrombosis. In addition, a successful artificial blood vessel graft for SDV must have sufficient mechanical properties to withstand various external stresses. Here, we developed a spontaneous cellular assembly SDV (S-SDV) that develops without additional intervention. By improving the dragging 3D printing technique, SDV constructs with free-form, multilayers and controllable pore size can be fabricated at once. Then, The S-SDV filled in the natural polymer bioink containing human umbilical vein endothelial cells (HUVECs) and human aorta smooth muscle cells (HAoSMCs). The endothelium can be induced by migration and self-assembly of endothelial cells through pores of the SDV construct. The antiplatelet adhesion of the formed endothelium on the luminal surface was also confirmed. In addition, this S-SDV had sufficient mechanical properties (burst pressure, suture retention, leakage test) for transplantation. We believe that the S-SDV could address the challenges of conventional SDVs: notably, endothelial formation and mechanical properties. In particular, the S-SDV can be designed simply as a free-form structure with a desired pore size. Since endothelial formation through the pore is easy even in free-form constructs, it is expected to be useful for endothelial formation in vascular structures with branch or curve shapes, and in other tubular tissues such as the esophagus.
Collapse
Affiliation(s)
- Hun-Jin Jeong
- Department of Mechanical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
- Regenerative Engineering Laboratory, Columbia University, 630W 168th ST, New York, 10032, USA
| | - Hyoryung Nam
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 37673, Pohang, Gyeongbuk, Republic of Korea
| | - Jae-Seok Kim
- Department of Mechanical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| | - Sungkeon Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, 37673, Pohang, Gyeongbuk, Republic of Korea
| | - Hyun-Ha Park
- Department of Mechanical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| | - Young-Sam Cho
- Department of Mechanical and Design Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| | - Hyungkook Jeon
- Department of Manufacturing Systems and Design Engineering, Seoul National University of Science and Technology, 01811, Seoul, Republic of Korea
| | - Jinah Jang
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 37673, Pohang, Gyeongbuk, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 37673, Pohang, Gyeongbuk, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673, Pohang, Gyeongbuk, Republic of Korea
- Institute of Convergence Science, Yonsei University, 03722, Seoul, Republic of Korea
| | - Seung-Jae Lee
- Department of Mechanical and Design Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| |
Collapse
|
8
|
Wang XL, Li J, Bian YQ, Li JQ, Li XY. [Influence of pH value on tube formation of human dermal microvascular endothelial cells and its molecular mechanism]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:662-670. [PMID: 37805696 DOI: 10.3760/cma.j.cn501225-20220930-00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Objective: To explore the influence of pH value on tube formation of human dermal microvascular endothelial cells (HDMECs) and study its molecular mechanism, so as to provide theoretical basis for the study of promoting angiogenesis in the process of wound healing. Methods: The experimental study methods were applied. HDMECs of 4 or 5 passages in the logarithmic growth phase were collected for experiments. Culture mediums with pH values of 6.4, 6.6, 6.8, 7.0, 7.2, 7.4, 7.6, and 7.8 were prepared, and the cells were adaptively cultured (the same culture method below) for 24 h before further experiments being carried out. After another 36 h of culture, the relative fluorescence value of cytoplasmic pH value was measured by flow cytometry, and the correlation analysis between the relative fluorescence value of cytoplasmic pH value and the medium pH value was carried out. After another 1.5, 2.5, 3.5, 4.5, and 5.5 days of culture, the cell proliferation activity was detected with cell counting kit 8. OrisTM cell migration detection kit was used to detect the remaining area of cell migration at 0 (immediately), 24, and 48 h after removing the cell seeding stopper. Three-dimensional stromal gel cell tube formation experiment was carried out to detect the lumen diameter of tube formed by cells after another 48 h of culture. The protein expressions of phosphorylation sites 473 and 308 of protein kinase B (Akt) were detected by Western blotting after another 48 h of culture. The sample number was 3. Data were statistically analyzed with Pearson correlation analysis, one-way analysis of variance, analysis of variance for factorial design, analysis of variance for repeated measurement, and Bonferroni correction. Results: After another 36 h of culture, the relative fluorescence values of cytoplasmic pH value of cells cultured in pH 6.8-7.8 mediums were significantly higher than the level in pH 6.4 medium (P<0.05); compared with those in pH 6.6-7.0 mediums, the relative fluorescence values of cytoplasmic pH value of cells cultured in pH 7.4-7.8 mediums were significantly increased (P<0.05), and the relative fluorescence value of cytoplasmic pH value of cells cultured in pH 6.6 medium was significantly lower than that in pH 7.0 or 7.2 mediun (with P values all <0.05); the relative fluorescence values of cytoplasmic pH value of cells cultured in pH 7.6 and 7.8 mediums were significantly higher than those in pH 7.2 and 7.4 mediums (P<0.05). The relative fluorescence value of cytoplasmic pH value was significantly positively correlated with the medium pH value (r=0.99, P<0.05). The proliferation activity was similar among cells cultured in 8 mediums of different pH values for another 1.5 days (P>0.05). After another 2.5 days of culture, the proliferation activity of cells cultured in pH 6.4-6.8 mediums was significantly decreased compared with that in pH 7.6 medium (P<0.05). After another 3.5 days of culture, the proliferation activity of cells cultured in pH 7.0-7.8 mediums was significantly higher than that in pH 6.4-6.8 mediums (P<0.05); compared with that in pH 7.6 medium, the proliferation activity of cells cultured in pH 7.0-7.4 and 7.8 mediums was significantly decreased (P<0.05). After another 4.5 or 5.5 days of culture, the proliferation activity of cells cultured in pH 6.8-7.8 mediums was significantly higher than that in pH 6.4 medium (P<0.05); compared with that in pH 6.6 and 6.8 mediums, the proliferation activity of cells cultured in pH 7.0-7.8 mediums was significantly increased (P<0.05). After another 4.5 days of culture, the proliferation activity of cells cultured in pH 7.6 medium was significantly higher than that in pH 7.0 medium (P<0.05). After another 5.5 days of culture, the proliferation activity of cells cultured in pH 7.2-7.6 mediums was significantly increased compared with that in pH 7.0 medium (P<0.05); the proliferation activity of cells cultured in pH 7.2 and 7.4 mediums was significantly lower than that in pH 7.6 medium (with P values all <0.05) but significantly higher than that in pH 7.6 medium (with P values all <0.05). Immediately after removing the cell seeding stopper, the remaining migration areas were similar among cells cultured in 8 mediums of different pH values (P>0.05). At 24 h after removing the cell seeding stopper, the remaining migration areas of cells cultured in pH 6.6-7.8 mediums were significantly smaller than the area in pH 6.4 medium (P<0.05); compared with those in pH 6.6 and 6.8 mediums, the remaining migration areas of cells cultured in pH 7.0 to 7.6 mediums were significantly reduced (P<0.05). At 48 h after removing the cell seeding stopper, compared with those in pH 6.4 and 6.6 mediums, the remaining migration areas of cells cultured in pH 7.0-7.8 mediums were significantly reduced (P<0.05); the remaining migration areas of cells cultured in pH 7.2 and 7.4 mediums were significantly smaller than those in pH 6.8, 7.0, and 7.8 mediums (P<0.05) but significantly larger than the area in pH 7.6 medium (P<0.05); the remaining migration area of cells cultured in pH 7.6 medium was significantly smaller than that in pH 6.8 or 7.8 medium (with P values all <0.05). After another 48 h of culture, the lumen diameters of tubes formed by cells cultured in pH 7.0, 7.2, 7.4, 7.6, and 7.8 mediums were (5.0±0.5), (7.6±0.9), (8.5±0.7), (11.0±0.8), and (5.3±0.8) μm, respectively, which were significantly longer than (2.8±0.8) μm in pH 6.4 medium (P<0.05); the lumen diameters of tubes formed by cells cultured in pH 6.6 ((4.2±0.3) μm), 6.8 ((4.5±0.6) μm), 7.0, and 7.8 mediums were significantly shorter than the diameter in pH 7.6 medium (P<0.05). After another 48 h of culture, compared with those in pH 6.4 and 6.6 mediums, the protein expressions of Akt phosphorylation sites 473 and 308 of cells cultured in pH 6.8 to 7.8 mediums were significantly increased (P<0.05). Moreover, the protein expression of Akt phosphorylation site 308 of cells cultured in pH 6.6 medium was significantly higher than that in pH 6.4 medium (P<0.05); compared with the expression in pH 6.8 medium, the protein expressions of Akt phosphorylation site 473 of cells cultured in pH 7.0 and 7.4-7.8 mediums were significantly increased (P<0.05); compared with the expression in pH 7.6 medium, the protein expressions of Akt phosphorylation site 473 of cells cultured in pH 7.0-7.4 and 7.8 mediums were significantly decreased (P<0.05); compared with the expression in pH 7.8 medium, the protein expressions of Akt phosphorylation site 308 of cells cultured in pH 7.0 to 7.6 mediums were significantly increased (P<0.05). Conclusions: pH value can regulate the lumen diameter of HDMEC-formed capillaries, which is closely related to the activation of Akt. 7.2-7.6 is the appropriate pH value for constructing tissue engineered capillaries.
Collapse
Affiliation(s)
- X L Wang
- Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - J Li
- Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - Y Q Bian
- Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - J Q Li
- Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - X Y Li
- Department of Plastic and Burn Surgery, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| |
Collapse
|
9
|
Li J, Chen X, Hu M, Wei J, Nie M, Chen J, Liu X. The application of composite scaffold materials based on decellularized vascular matrix in tissue engineering: a review. Biomed Eng Online 2023; 22:62. [PMID: 37337190 DOI: 10.1186/s12938-023-01120-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
Decellularized vascular matrix is a natural polymeric biomaterial that comes from arteries or veins which are removed the cellular contents by physical, chemical and enzymatic means, leaving only the cytoskeletal structure and extracellular matrix to achieve cell adhesion, proliferation and differentiation and creating a suitable microenvironment for their growth. In recent years, the decellularized vascular matrix has attracted much attention in the field of tissue repair and regenerative medicine due to its remarkable cytocompatibility, biodegradability and ability to induce tissue regeneration. Firstly, this review introduces its basic properties and preparation methods; then, it focuses on the application and research of composite scaffold materials based on decellularized vascular matrix in vascular tissue engineering in terms of current in vitro and in vivo studies, and briefly outlines its applications in other tissue engineering fields; finally, it looks into the advantages and drawbacks to be overcome in the application of decellularized vascular matrix materials. In conclusion, as a new bioactive material for building engineered tissue and repairing tissue defects, decellularized vascular matrix will be widely applied in prospect.
Collapse
Affiliation(s)
- Jingying Li
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xiao Chen
- Department of Stomatology Technology, School of Medical Technology, Sichuan College of Traditional Medicine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - Miaoling Hu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jian Wei
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Jiana Chen
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhuo, 646000, China.
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China.
| |
Collapse
|
10
|
Afzal Z, Huguet EL. Bioengineering liver tissue by repopulation of decellularised scaffolds. World J Hepatol 2023; 15:151-179. [PMID: 36926238 PMCID: PMC10011915 DOI: 10.4254/wjh.v15.i2.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Liver transplantation is the only curative therapy for end stage liver disease, but is limited by the organ shortage, and is associated with the adverse consequences of immunosuppression. Repopulation of decellularised whole organ scaffolds with appropriate cells of recipient origin offers a theoretically attractive solution, allowing reliable and timely organ sourcing without the need for immunosuppression. Decellularisation methodologies vary widely but seek to address the conflicting objectives of removing the cellular component of tissues whilst keeping the 3D structure of the extra-cellular matrix intact, as well as retaining the instructive cell fate determining biochemicals contained therein. Liver scaffold recellularisation has progressed from small rodent in vitro studies to large animal in vivo perfusion models, using a wide range of cell types including primary cells, cell lines, foetal stem cells, and induced pluripotent stem cells. Within these models, a limited but measurable degree of physiologically significant hepatocyte function has been reported with demonstrable ammonia metabolism in vivo. Biliary repopulation and function have been restricted by challenges relating to the culture and propagations of cholangiocytes, though advances in organoid culture may help address this. Hepatic vasculature repopulation has enabled sustainable blood perfusion in vivo, but with cell types that would limit clinical applications, and which have not been shown to have the specific functions of liver sinusoidal endothelial cells. Minority cell groups such as Kupffer cells and stellate cells have not been repopulated. Bioengineering by repopulation of decellularised scaffolds has significantly progressed, but there remain significant experimental challenges to be addressed before therapeutic applications may be envisaged.
Collapse
Affiliation(s)
- Zeeshan Afzal
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Laurent Huguet
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
11
|
Zia S, Djalali-Cuevas A, Pflaum M, Hegermann J, Dipresa D, Kalozoumis P, Kouvaka A, Burgwitz K, Andriopoulou S, Repanas A, Will F, Grote K, Schrimpf C, Toumpaniari S, Mueller M, Glasmacher B, Haverich A, Morticelli L, Korossis S. Development of a dual-component infection-resistant arterial replacement for small-caliber reconstructions: A proof-of-concept study. Front Bioeng Biotechnol 2023; 11:957458. [PMID: 36741762 PMCID: PMC9889865 DOI: 10.3389/fbioe.2023.957458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Introduction: Synthetic vascular grafts perform poorly in small-caliber (<6mm) anastomoses, due to intimal hyperplasia and thrombosis, whereas homografts are associated with limited availability and immunogenicity, and bioprostheses are prone to aneurysmal degeneration and calcification. Infection is another important limitation with vascular grafting. This study developed a dual-component graft for small-caliber reconstructions, comprising a decellularized tibial artery scaffold and an antibiotic-releasing, electrospun polycaprolactone (PCL)/polyethylene glycol (PEG) blend sleeve. Methods: The study investigated the effect of nucleases, as part of the decellularization technique, and two sterilization methods (peracetic acid and γ-irradiation), on the scaffold's biological and biomechanical integrity. It also investigated the effect of different PCL/PEG ratios on the antimicrobial, biological and biomechanical properties of the sleeves. Tibial arteries were decellularized using Triton X-100 and sodium-dodecyl-sulfate. Results: The scaffolds retained the general native histoarchitecture and biomechanics but were depleted of glycosaminoglycans. Sterilization with peracetic acid depleted collagen IV and produced ultrastructural changes in the collagen and elastic fibers. The two PCL/PEG ratios used (150:50 and 100:50) demonstrated differences in the structural, biomechanical and antimicrobial properties of the sleeves. Differences in the antimicrobial activity were also found between sleeves fabricated with antibiotics supplemented in the electrospinning solution, and sleeves soaked in antibiotics. Discussion: The study demonstrated the feasibility of fabricating a dual-component small-caliber graft, comprising a scaffold with sufficient biological and biomechanical functionality, and an electrospun PCL/PEG sleeve with tailored biomechanics and antibiotic release.
Collapse
Affiliation(s)
- Sonia Zia
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Adrian Djalali-Cuevas
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Michael Pflaum
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Daniele Dipresa
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Panagiotis Kalozoumis
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Artemis Kouvaka
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Karin Burgwitz
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Sofia Andriopoulou
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Alexandros Repanas
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Fabian Will
- LLS ROWIAK LaserLabSolutions GmbH, Hannover, Germany
| | - Karsten Grote
- Cardiology and Angiology, Philipps-University Marburg, Marburg, Germany
| | - Claudia Schrimpf
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sotiria Toumpaniari
- Cardiopulmonary Regenerative Engineering Group (CARE), Centre for Biological Engineering, Loughborough University, Loughborough, United Kingdom,Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom
| | - Marc Mueller
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Birgit Glasmacher
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany,Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Lucrezia Morticelli
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany
| | - Sotirios Korossis
- Lower Saxony Centre for Biomedical Engineering Implant Research and Development, Hannover Medical School, Hannover, Germany,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany,Cardiopulmonary Regenerative Engineering Group (CARE), Centre for Biological Engineering, Loughborough University, Loughborough, United Kingdom,Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom,*Correspondence: Sotirios Korossis,
| |
Collapse
|
12
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
13
|
Matos RS, Maselli D, McVey JH, Heiss C, Campagnolo P. 3D Printed Bioreactor Enabling the Pulsatile Culture of Native and Angioplastied Large Arteries. Front Cardiovasc Med 2022; 9:864580. [PMID: 35800166 PMCID: PMC9253513 DOI: 10.3389/fcvm.2022.864580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022] Open
Abstract
Routine interventions such as balloon angioplasty, result in vascular activation and remodeling, often requiring re-intervention. 2D in vitro models and small animal experiments have enabled the discovery of important mechanisms involved in this process, however the clinical translation is often underwhelming. There is a critical need for an ex vivo model representative of the human vascular physiology and encompassing the complexity of the vascular wall and the physical forces regulating its function. Vascular bioreactors for ex vivo culture of large vessels are viable alternatives, but their custom-made design and insufficient characterization often hinders the reproducibility of the experiments. The objective of the study was to design and validate a novel 3D printed cost-efficient and versatile perfusion system, capable of sustaining the viability and functionality of large porcine arteries for 7 days and enabling early post-injury evaluations. MultiJet Fusion 3D printing was used to engineer the EasyFlow insert, converting a conventional 50 ml centrifuge tube into a mini bioreactor. Porcine carotid arteries either left untreated or injured with an angioplasty balloon, were cultured under pulsatile flow for up to 7 days. Pressure, heart rate, medium viscosity and shear conditions were adjusted to resemble arterial in vivo hemodynamics. Tissue viability, cell activation and matrix remodeling were analyzed by immunohistochemistry, and vascular function was monitored by duplex ultrasound. Culture conditions in the EasyFlow bioreactor preserved endothelial coverage and smooth muscle organization and extracellular matrix structure in the vessel wall, as compared to static culture. Injured arteries presented hallmarks of early remodeling, such as intimal denudation, smooth muscle cell disarray and media/adventitia activation in flow culture. Duplex ultrasound confirmed continuous pulsatile blood flow conditions, dose-dependent vasodilator response to nitroglycerin in untreated vessels and impaired dilator response in angioplastied vessels. The scope of this work is to validate a low-cost, robust and reproducible system to explore the culture of native and injured large arteries under pulsatile flow. While the study of vascular pathology is beyond the scope of the present paper, our system enables future investigations and provides a platform to test novel therapies and devices ex vivo, in a patient relevant system.
Collapse
Affiliation(s)
- Rolando S. Matos
- Cardiovascular Section, Department of Biochemical Sciences, Guildford, United Kingdom
| | - Davide Maselli
- Cardiovascular Section, Department of Biochemical Sciences, Guildford, United Kingdom
| | - John H. McVey
- Cardiovascular Section, Department of Biochemical Sciences, Guildford, United Kingdom
| | - Christian Heiss
- Cardiovascular Section, Department of Biochemical Sciences, Guildford, United Kingdom,Clinical Medicine Section, Department of Clinical and Experimental Medicine, University of Surrey, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Paola Campagnolo
- Cardiovascular Section, Department of Biochemical Sciences, Guildford, United Kingdom,*Correspondence: Paola Campagnolo
| |
Collapse
|
14
|
Motta SE, Zaytseva P, Fioretta ES, Lintas V, Breymann C, Hoerstrup SP, Emmert MY. Endothelial Progenitor Cell-Based in vitro Pre-Endothelialization of Human Cell-Derived Biomimetic Regenerative Matrices for Next-Generation Transcatheter Heart Valves Applications. Front Bioeng Biotechnol 2022; 10:867877. [PMID: 35433657 PMCID: PMC9008229 DOI: 10.3389/fbioe.2022.867877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/22/2023] Open
Abstract
Hemocompatibility of cardiovascular implants represents a major clinical challenge and, to date, optimal antithrombotic properties are lacking. Next-generation tissue-engineered heart valves (TEHVs) made from human-cell-derived tissue-engineered extracellular matrices (hTEMs) demonstrated their recellularization capacity in vivo and may represent promising candidates to avoid antithrombotic therapy. To further enhance their hemocompatibility, we tested hTEMs pre-endothelialization potential using human-blood-derived endothelial-colony-forming cells (ECFCs) and umbilical vein cells (control), cultured under static and dynamic orbital conditions, with either FBS or hPL. ECFCs performance was assessed via scratch assay, thereby recapitulating the surface damages occurring in transcatheter valves during crimping procedures. Our study demonstrated: feasibility to form a confluent and functional endothelium on hTEMs with expression of endothelium-specific markers; ECFCs migration and confluency restoration after crimping tests; hPL-induced formation of neo-microvessel-like structures; feasibility to pre-endothelialize hTEMs-based TEHVs and ECFCs retention on their surface after crimping. Our findings may stimulate new avenues towards next-generation pre-endothelialized implants with enhanced hemocompatibility, being beneficial for selected high-risk patients.
Collapse
Affiliation(s)
- Sarah E. Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Polina Zaytseva
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Emanuela S. Fioretta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Valentina Lintas
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Christian Breymann
- Department of Obstetrics and Gynaecology, University Hospital Zurich, Obstetric Research, Feto- Maternal Haematology Research Group, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- *Correspondence: Maximilian Y. Emmert,
| |
Collapse
|
15
|
Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR. 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Front Cardiovasc Med 2022; 9:847554. [PMID: 35310996 PMCID: PMC8931492 DOI: 10.3389/fcvm.2022.847554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the efforts devoted to drug discovery and development, the number of new drug approvals have been decreasing. Specifically, cardiovascular developments have been showing amongst the lowest levels of approvals. In addition, concerns over the adverse effects of drugs to the cardiovascular system have been increasing and resulting in failure at the preclinical level as well as withdrawal of drugs post-marketing. Besides factors such as the increased cost of clinical trials and increases in the requirements and the complexity of the regulatory processes, there is also a gap between the currently existing pre-clinical screening methods and the clinical studies in humans. This gap is mainly caused by the lack of complexity in the currently used 2D cell culture-based screening systems, which do not accurately reflect human physiological conditions. Cell-based drug screening is widely accepted and extensively used and can provide an initial indication of the drugs' therapeutic efficacy and potential cytotoxicity. However, in vitro cell-based evaluation could in many instances provide contradictory findings to the in vivo testing in animal models and clinical trials. This drawback is related to the failure of these 2D cell culture systems to recapitulate the human physiological microenvironment in which the cells reside. In the body, cells reside within a complex physiological setting, where they interact with and respond to neighboring cells, extracellular matrix, mechanical stress, blood shear stress, and many other factors. These factors in sum affect the cellular response and the specific pathways that regulate variable vital functions such as proliferation, apoptosis, and differentiation. Although pre-clinical in vivo animal models provide this level of complexity, cross species differences can also cause contradictory results from that seen when the drug enters clinical trials. Thus, there is a need to better mimic human physiological conditions in pre-clinical studies to improve the efficiency of drug screening. A novel approach is to develop 3D tissue engineered miniaturized constructs in vitro that are based on human cells. In this review, we discuss the factors that should be considered to produce a successful vascular construct that is derived from human cells and is both reliable and reproducible.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei
| | - Tala Abu Samaan
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Asmaa A. Farah
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- Chris R. Triggle
| |
Collapse
|
16
|
Rohringer S, Schneider KH, Eder G, Hager P, Enayati M, Kapeller B, Kiss H, Windberger U, Podesser BK, Bergmeister H. Chorion-derived extracellular matrix hydrogel and fibronectin surface coatings show similar beneficial effects on endothelialization of expanded polytetrafluorethylene vascular grafts. Mater Today Bio 2022; 14:100262. [PMID: 35509865 PMCID: PMC9059097 DOI: 10.1016/j.mtbio.2022.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
The endothelium plays an important regulatory role for cardiovascular homeostasis. Rapid endothelialization of small diameter vascular grafts (SDVGs) is crucial to ensure long-term patency. Here, we assessed a human placental chorionic extracellular matrix hydrogel (hpcECM-gel) as coating material and compared it to human fibronectin in-vitro. hpcECM-gels were produced from placental chorion by decellularization and enzymatic digestion. Human umbilical vein endothelial cells (HUVECs) were seeded to non-, fibronectin- or hpcECM-gel-coated expanded polytetrafluorethylene (ePTFE) SDVGs. Coating efficiency as well as endothelial cell proliferation, migration and adhesion studies on grafts were performed. hpcECM-gel depicted high collagen and glycosaminoglycan content and neglectable DNA amounts. Laminin and fibronectin were both retained in the hpcECM-gel after the decellularization process. HUVEC as well as endothelial progenitor cell attachment were both significantly enhanced on hpcECM-gel coated grafts. HUVECs seeded to hpcECM-gel depicted significantly higher platelet endothelial cell adhesion molecule-1 (PECAM-1) expression in the perinuclear region. Cell retention to flow was enhanced on fibronectin and hpcECM-gel coated grafts. Since hpcECM-gel induced a significantly higher endothelial cell adhesion to ePTFE than fibronectin, it represents a possible alternative for SDVG modification to improve endothelialization.
Collapse
Affiliation(s)
- Sabrina Rohringer
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Karl H. Schneider
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Gabriela Eder
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Pia Hager
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Marjan Enayati
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Kapeller
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Herbert Kiss
- Medical University of Vienna, Department of Obstetrics and Gynaecology, Division of Obstetrics and Feto-Maternal Medicine, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ursula Windberger
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Bruno K. Podesser
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helga Bergmeister
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
17
|
Keshi E, Tang P, Weinhart M, Everwien H, Moosburner S, Seiffert N, Lommel M, Kertzscher U, Globke B, Reutzel-Selke A, Strücker B, Pratschke J, Sauer IM, Haep N, Hillebrandt KH. Surface modification of decellularized bovine carotid arteries with human vascular cells significantly reduces their thrombogenicity. J Biol Eng 2021; 15:26. [PMID: 34819102 PMCID: PMC8611970 DOI: 10.1186/s13036-021-00277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since autologous veins are unavailable when needed in more than 20% of cases in vascular surgery, the production of personalized biological vascular grafts for implantation has become crucial. Surface modification of decellularized xenogeneic grafts with vascular cells to achieve physiological luminal coverage and eventually thromboresistance is an important prerequisite for implantation. However, ex vivo thrombogenicity testing remains a neglected area in the field of tissue engineering of vascular grafts due to a multifold of reasons. METHODS After seeding decellularized bovine carotid arteries with human endothelial progenitor cells and umbilical cord-derived mesenchymal stem cells, luminal endothelial cell coverage (LECC) was correlated with glucose and lactate levels on the cell supernatant. Then a closed loop whole blood perfusion system was designed. Recellularized grafts with a LECC > 50% and decellularized vascular grafts were perfused with human whole blood for 2 h. Hemolysis and complete blood count evaluation was performed on an hourly basis, followed by histological and immunohistochemical analysis. RESULTS While whole blood perfusion of decellularized grafts significantly reduced platelet counts, platelet depletion from blood resulting from binding to re-endothelialized grafts was insignificant (p = 0.7284). Moreover, macroscopic evaluation revealed thrombus formation only in the lumen of unseeded grafts and histological characterization revealed lack of CD41 positive platelets in recellularized grafts, thus confirming their thromboresistance. CONCLUSION In the present study we were able to demonstrate the effect of surface modification of vascular grafts in their thromboresistance in an ex vivo whole blood perfusion system. To our knowledge, this is the first study to expose engineered vascular grafts to human whole blood, recirculating at high flow rates, immediately after seeding.
Collapse
Affiliation(s)
- Eriselda Keshi
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Peter Tang
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marie Weinhart
- Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.,Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hanover, Germany
| | - Hannah Everwien
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nicolai Seiffert
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Michael Lommel
- Institute for Cardiovascular Computer-Assisted Medicine, Biofluid Mechanics Lab, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Kertzscher
- Institute for Cardiovascular Computer-Assisted Medicine, Biofluid Mechanics Lab, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Brigitta Globke
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Benjamin Strücker
- Department of General, Visceral and Transplant Surgery, Universitätsklinikum Münster, Münster, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany
| | - Igor Maximillian Sauer
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany. .,Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany.
| | - Nils Haep
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Karl Herbert Hillebrandt
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
18
|
Durán-Rey D, Crisóstomo V, Sánchez-Margallo JA, Sánchez-Margallo FM. Systematic Review of Tissue-Engineered Vascular Grafts. Front Bioeng Biotechnol 2021; 9:771400. [PMID: 34805124 PMCID: PMC8595218 DOI: 10.3389/fbioe.2021.771400] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
Pathologies related to the cardiovascular system are the leading causes of death worldwide. One of the main treatments is conventional surgery with autologous transplants. Although donor grafts are often unavailable, tissue-engineered vascular grafts (TEVGs) show promise for clinical treatments. A systematic review of the recent scientific literature was performed using PubMed (Medline) and Web of Science databases to provide an overview of the state-of-the-art in TEVG development. The use of TEVG in human patients remains quite restricted owing to the presence of vascular stenosis, existence of thrombi, and poor graft patency. A total of 92 original articles involving human patients and animal models were analyzed. A meta-analysis of the influence of the vascular graft diameter on the occurrence of thrombosis and graft patency was performed for the different models analyzed. Although there is no ideal animal model for TEVG research, the murine model is the most extensively used. Hybrid grafting, electrospinning, and cell seeding are currently the most promising technologies. The results showed that there is a tendency for thrombosis and non-patency in small-diameter grafts. TEVGs are under constant development, and research is oriented towards the search for safe devices.
Collapse
Affiliation(s)
- David Durán-Rey
- Laparoscopy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Crisóstomo
- Cardiovascular Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan A Sánchez-Margallo
- Bioengineering and Health Technologies Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Francisco M Sánchez-Margallo
- Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Scientific Direction, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|
19
|
Khanna A, Zamani M, Huang NF. Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering. J Cardiovasc Dev Dis 2021; 8:137. [PMID: 34821690 PMCID: PMC8622600 DOI: 10.3390/jcdd8110137] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.
Collapse
Affiliation(s)
| | - Maedeh Zamani
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
20
|
Lopera Higuita M, Lopera Giraldo JF, Sarrafian TL, Griffiths LG. Tissue engineered bovine saphenous vein extracellular matrix scaffolds produced via antigen removal achieve high in vivo patency rates. Acta Biomater 2021; 134:144-159. [PMID: 34192567 DOI: 10.1016/j.actbio.2021.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Diseases of small diameter blood vessels encompass the largest portion of cardiovascular diseases, with over 4.2 million people undergoing autologous vascular grafting every year. However, approximately one third of patients are ineligible for autologous vascular grafting due to lack of suitable donor vasculature. Acellular extracellular matrix (ECM) scaffolds derived from xenogeneic vascular tissue have potential to serve as ideal biomaterials for production of off-the-shelf vascular grafts capable of eliminating the need for autologous vessel harvest. A modified antigen removal (AR) tissue process, employing aminosulfabetaine-16 (ASB-16) was used to create off-the-shelf small diameter (< 3 mm) vascular graft from bovine saphenous vein ECM scaffolds with significantly reduced antigenic content, while retaining native vascular ECM protein structure and function. Elimination of native tissue antigen content conferred graft-specific adaptive immune avoidance, while retention of native ECM protein macromolecular structure resulted in pro-regenerative cellular infiltration, ECM turnover and innate immune self-recognition in a rabbit subpannicular model. Finally, retention of the delicate vascular basement membrane protein integrity conferred endothelial cell repopulation and 100% patency rate in a rabbit jugular interposition model, comparable only to Autograft implants. Alternatively, the lack of these important basement membrane proteins in otherwise identical scaffolds yielded a patency rate of only 20%. We conclude that acellular antigen removed bovine saphenous vein ECM scaffolds have potential to serve as ideal off-the-shelf small diameter vascular scaffolds with high in vivo patency rates due to their low antigen content, retained native tissue basement membrane integrity and preserved native ECM structure, composition and functional properties. STATEMENT OF SIGNIFICANCE: The use of autologous vessels for the treatment of small diameter vascular diseases is common practice. However, the use of autologous tissue poses significant complications due to tissue harvest and limited availability. Developing an alternative vessel for use for the treatment of small diameter vessel diseases can potentially increase the success rate of autologous vascular grafting by eliminating complications related to the use of autologous vessel and increased availability. This manuscript demonstrates the potential of non-antigenic extracellular matrix (ECM) scaffolds derived from xenogeneic vascular tissue as off-the-shelf vascular grafts for the treatment of small diameter vascular diseases.
Collapse
Affiliation(s)
| | - Juan F Lopera Giraldo
- Department of Plastic Surgery, Clínica Las Américas, Antioquia, Dg. 75B ##2A-80/140, Medellín, Colombia
| | - Tiffany L Sarrafian
- Department of Thoracic Surgery, Mayo Clinic, 200 1st St SW, Rochester MN, USA
| | - Leigh G Griffiths
- Department of Cardiovascular Diseases, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA.
| |
Collapse
|
21
|
Alvino VV, Thomas AC, Ghorbel MT, Rapetto F, Narayan SA, Kilcooley M, Iacobazzi D, Carrabba M, Fagnano M, Cathery W, Avolio E, Caputo M, Madeddu P. Reconstruction of the Swine Pulmonary Artery Using a Graft Engineered With Syngeneic Cardiac Pericytes. Front Bioeng Biotechnol 2021; 9:715717. [PMID: 34568300 PMCID: PMC8459923 DOI: 10.3389/fbioe.2021.715717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
The neonatal heart represents an attractive source of regenerative cells. Here, we report the results of a randomized, controlled, investigator-blinded preclinical study, which assessed the safety and effectiveness of a matrix graft cellularized with cardiac pericytes (CPs) in a piglet model of pulmonary artery (PA) reconstruction. Within each of five trios formed by 4-week-old female littermate piglets, one element (the donor) was sacrificed to provide a source of CPs, while the other two elements (the graft recipients) were allowed to reach the age of 10 weeks. During this time interval, culture-expanded donor CPs were seeded onto swine small intestinal submucosa (SIS) grafts, which were then shaped into conduits and conditioned in a flow bioreactor. Control unseeded SIS conduits were subjected to the same procedure. Then, recipient piglets were randomized to surgical reconstruction of the left PA (LPA) with unseeded or CP-seeded SIS conduits. Doppler echocardiography and cardiac magnetic resonance imaging (CMRI) were performed at baseline and 4-months post-implantation. Vascular explants were examined using histology and immunohistochemistry. All animals completed the scheduled follow-up. No group difference was observed in baseline imaging data. The final Doppler assessment showed that the LPA’s blood flow velocity was similar in the treatment groups. CMRI revealed a mismatch in the average growth of the grafted LPA and contralateral branch in both treatment groups. Histology of explanted arteries demonstrated that the CP-seeded grafts had a thicker luminal cell layer, more intraparietal arterioles, and a higher expression of endothelial nitric oxide synthase (eNOS) compared with unseeded grafts. Moreover, the LPA stump adjacent to the seeded graft contained more elastin and less collagen than the unseeded control. Syngeneic CP engineering did not accomplish the primary goal of supporting the graft’s growth but was able to improve secondary outcomes, such as the luminal cellularization and intraparietal vascularization of the graft, and elastic remodeling of the recipient artery. The beneficial properties of neonatal CPs may be considered in future bioengineering applications aiming to reproduce the cellular composition of native arteries.
Collapse
Affiliation(s)
- Valeria Vincenza Alvino
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Anita C Thomas
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Mohamed T Ghorbel
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Filippo Rapetto
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Srinivas A Narayan
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Michael Kilcooley
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Dominga Iacobazzi
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Michele Carrabba
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Marco Fagnano
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - William Cathery
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Massimo Caputo
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
22
|
Fayon A, Menu P, El Omar R. Cellularized small-caliber tissue-engineered vascular grafts: looking for the ultimate gold standard. NPJ Regen Med 2021; 6:46. [PMID: 34385472 PMCID: PMC8361171 DOI: 10.1038/s41536-021-00155-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the lack of efficacy of synthetic vascular substitutes in the replacement of small-caliber arteries, vascular tissue engineering (VTE) has emerged as a promising solution to produce viable small-caliber tissue-engineered vascular grafts (TEVG). Previous studies have shown the importance of a cellular intimal layer at the luminal surface of TEVG to prevent thrombotic events. However, the cellularization of a TEVG seems to be a critical approach to consider in the development of a TEVG. To date, no standard cellularization method or cell type has been established to create the ideal TEVG by promoting its long-term patency and function. In this review, advances in VTE are described and discussed with a particular focus on the construction approaches of cellularized small-caliber TEVGs, the cell types used, as well as their preclinical and clinical applications.
Collapse
Affiliation(s)
- Adrien Fayon
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Patrick Menu
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.
- Université de Lorraine, Faculté de Pharmacie, Nancy, F-54000, France.
| | - Reine El Omar
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, Faculté de Pharmacie, Nancy, F-54000, France
| |
Collapse
|
23
|
Fazal F, Raghav S, Callanan A, Koutsos V, Radacsi N. Recent advancements in the bioprinting of vascular grafts. Biofabrication 2021; 13. [PMID: 34102613 DOI: 10.1088/1758-5090/ac0963] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Recent advancements in the bioinks and three-dimensional (3D) bioprinting methods used to fabricate vascular constructs are summarized herein. Critical biomechanical properties required to fabricate an ideal vascular graft are highlighted, as well as various testing methods have been outlined to evaluate the bio-fabricated grafts as per the Food and Drug Administration (FDA) and International Organization for Standardization (ISO) guidelines. Occlusive artery disease and cardiovascular disease are the major causes of death globally. These diseases are caused by the blockage in the arteries, which results in a decreased blood flow to the tissues of major organs in the body, such as the heart. Bypass surgery is often performed using a vascular graft to re-route the blood flow. Autologous grafts represent a gold standard for such bypass surgeries; however, these grafts may be unavailable due to the previous harvesting or possess a poor quality. Synthetic grafts serve well for medium to large-sized vessels, but they fail when used to replace small-diameter vessels, generally smaller than 6 mm. Various tissue engineering approaches have been used to address the urgent need for vascular graft that can withstand hemodynamic blood pressure and has the ability to grow and remodel. Among these approaches, 3D bioprinting offers an attractive solution to construct patient-specific vessel grafts with layered biomimetic structures.
Collapse
Affiliation(s)
- Faraz Fazal
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, EH9 3FB Edinburgh, United Kingdom.,Department of Mechanical Engineering, University of Engineering and Technology, Lahore, (New Campus) Pakistan
| | - Sakshika Raghav
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, EH9 3FB Edinburgh, United Kingdom
| | - Anthony Callanan
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, The King's Buildings, EH9 3JL Edinburgh, United Kingdom
| | - Vasileios Koutsos
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, EH9 3FB Edinburgh, United Kingdom
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, EH9 3FB Edinburgh, United Kingdom
| |
Collapse
|
24
|
Fang S, Ellman DG, Andersen DC. Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans. Cells 2021; 10:713. [PMID: 33807009 PMCID: PMC8005053 DOI: 10.3390/cells10030713] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability.
Collapse
Affiliation(s)
- Shu Fang
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- The Danish Regenerative Center, Odense University Hospital, J. B. Winsløwsvej 4, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Ditte Gry Ellman
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- The Danish Regenerative Center, Odense University Hospital, J. B. Winsløwsvej 4, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| |
Collapse
|
25
|
Rafique M, Wei T, Sun Q, Midgley AC, Huang Z, Wang T, Shafiq M, Zhi D, Si J, Yan H, Kong D, Wang K. The effect of hypoxia-mimicking responses on improving the regeneration of artificial vascular grafts. Biomaterials 2021; 271:120746. [PMID: 33725586 DOI: 10.1016/j.biomaterials.2021.120746] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/16/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
Cellular transition to hypoxia following tissue injury, has been shown to improve angiogenesis and regeneration in multiple tissues. To take advantage of this, many hypoxia-mimicking scaffolds have been prepared, yet the oxygen access state of implanted artificial small-diameter vascular grafts (SDVGs) has not been investigated. Therefore, the oxygen access state of electrospun PCL grafts implanted into rat abdominal arteries was assessed. The regions proximal to the lumen and abluminal surfaces of the graft walls were normoxic and only the interior of the graft walls was hypoxic. In light of this differential oxygen access state of the implanted grafts and the critical role of vascular regeneration on SDVG implantation success, we investigated whether modification of SDVGs with HIF-1α stabilizer dimethyloxalylglycine (DMOG) could achieve hypoxia-mimicking responses resulting in improving vascular regeneration throughout the entirety of the graft wall. Therefore, DMOG-loaded PCL grafts were fabricated by electrospinning, to support the sustained release of DMOG over two weeks. In vitro experiments indicated that DMOG-loaded PCL mats had significant biological advantages, including: promotion of human umbilical vein endothelial cells (HUVECs) proliferation, migration and production of pro-angiogenic factors; and the stimulation of M2 macrophage polarization, which in-turn promoted macrophage regulation of HUVECs migration and smooth muscle cells (SMCs) contractile phenotype. These beneficial effects were downstream of HIF-1α stabilization in HUVECs and macrophages in normoxic conditions. Our results indicated that DMOG-loaded PCL grafts improved endothelialization, contractile SMCs regeneration, vascularization and modulated the inflammatory reaction of grafts in abdominal artery replacement models, thus promoting vascular regeneration.
Collapse
Affiliation(s)
- Muhammad Rafique
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tingting Wei
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiqi Sun
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ziqi Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Muhammad Shafiq
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Dengke Zhi
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianghua Si
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
26
|
Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, Zeng W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater 2021; 6:2557-2568. [PMID: 33665496 PMCID: PMC7887299 DOI: 10.1016/j.bioactmat.2020.12.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) have enormous potential for vascular replacement therapy. However, thrombosis and intimal hyperplasia are important problems associated with TEVGs especially small diameter TEVGs (<6 mm) after transplantation. Endothelialization of TEVGs is a key point to prevent thrombosis. Here, we discuss different types of endothelialization and different seed cells of tissue-engineered vascular grafts. Meanwhile, endothelial heterogeneity is also discussed. Based on it, we provide a new perspective for selecting suitable types of endothelialization and suitable seed cells to improve the long-term patency rate of tissue-engineered vascular grafts with different diameters and lengths. The material, diameter and length of tissue-engineered vascular graft are all key factors affecting its long-term patency. Endothelialization strategies should consider the different diameters and lengths of tissue-engineered vascular grafts. Cell heterogeneity and tissue heterogeneity should be considered in the application of seed cells.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Wanshan Liao
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaochen Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Weiming Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yanzhao Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.,Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
27
|
Berry DB, Englund EK, Chen S, Frank LR, Ward SR. Medical imaging of tissue engineering and regenerative medicine constructs. Biomater Sci 2021; 9:301-314. [PMID: 32776044 PMCID: PMC8262082 DOI: 10.1039/d0bm00705f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advancement of tissue engineering and regenerative medicine (TERM) strategies to replicate tissue structure and function has led to the need for noninvasive assessment of key outcome measures of a construct's state, biocompatibility, and function. Histology based approaches are traditionally used in pre-clinical animal experiments, but are not always feasible or practical if a TERM construct is going to be tested for human use. In order to transition these therapies from benchtop to bedside, rigorously validated imaging techniques must be utilized that are sensitive to key outcome measures that fulfill the FDA standards for TERM construct evaluation. This review discusses key outcome measures for TERM constructs and various clinical- and research-based imaging techniques that can be used to assess them. Potential applications and limitations of these techniques are discussed, as well as resources for the processing, analysis, and interpretation of biomedical images.
Collapse
Affiliation(s)
- David B Berry
- Departments of NanoEngineering, University of California, San Diego, USA.
| | | | | | | | | |
Collapse
|
28
|
Mallis P, Kostakis A, Stavropoulos-Giokas C, Michalopoulos E. Future Perspectives in Small-Diameter Vascular Graft Engineering. Bioengineering (Basel) 2020; 7:160. [PMID: 33321830 PMCID: PMC7763104 DOI: 10.3390/bioengineering7040160] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The increased demands of small-diameter vascular grafts (SDVGs) globally has forced the scientific society to explore alternative strategies utilizing the tissue engineering approaches. Cardiovascular disease (CVD) comprises one of the most lethal groups of non-communicable disorders worldwide. It has been estimated that in Europe, the healthcare cost for the administration of CVD is more than 169 billion €. Common manifestations involve the narrowing or occlusion of blood vessels. The replacement of damaged vessels with autologous grafts represents one of the applied therapeutic approaches in CVD. However, significant drawbacks are accompanying the above procedure; therefore, the exploration of alternative vessel sources must be performed. Engineered SDVGs can be produced through the utilization of non-degradable/degradable and naturally derived materials. Decellularized vessels represent also an alternative valuable source for the development of SDVGs. In this review, a great number of SDVG engineering approaches will be highlighted. Importantly, the state-of-the-art methodologies, which are currently employed, will be comprehensively presented. A discussion summarizing the key marks and the future perspectives of SDVG engineering will be included in this review. Taking into consideration the increased number of patients with CVD, SDVG engineering may assist significantly in cardiovascular reconstructive surgery and, therefore, the overall improvement of patients' life.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Alkiviadis Kostakis
- Center of Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| |
Collapse
|
29
|
Kimicata M, Swamykumar P, Fisher JP. Extracellular Matrix for Small-Diameter Vascular Grafts. Tissue Eng Part A 2020; 26:1388-1401. [PMID: 33231135 PMCID: PMC7759287 DOI: 10.1089/ten.tea.2020.0201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023] Open
Abstract
To treat coronary heart disease, coronary artery bypass grafts are used to divert blood flow around blockages in the coronary arteries. Autologous grafts are the gold standard of care, but they are characterized by their lack of availability, low quality, and high failure rates. Alternatively, tissue-engineered small-diameter vascular grafts made from synthetic or natural polymers have not demonstrated adequate results to replace autologous grafts; synthetic grafts result in a loss of patency due to thrombosis and intimal hyperplasia, whereas scaffolds from natural polymers are generally unable to support the physiological conditions. Extracellular matrix (ECM) from a variety of sources, including cell-derived, 2D, and cannular tissues, has become an increasingly useful tool for this application. The current review examines the ECM-based methods that have recently been investigated in the field and comments on their viability for clinical applications.
Collapse
Affiliation(s)
- Megan Kimicata
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, and University of Maryland, College Park, Maryland, USA
| | - Prateek Swamykumar
- Center for Engineering Complex Tissues, and University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - John P. Fisher
- Center for Engineering Complex Tissues, and University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
30
|
Bacci C, Wong V, Barahona V, Merna N. Cardiac and lung endothelial cells in response to fluid shear stress on physiological matrix stiffness and composition. Microcirculation 2020; 28:e12659. [PMID: 32945052 DOI: 10.1111/micc.12659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Preconditioning of endothelial cells from different vascular beds has potential value for re-endothelialization and implantation of engineered tissues. Understanding how substrate stiffness and composition affects tissue-specific cell response to shear stress will aid in successful endothelialization of engineered tissues. We developed a platform to test biomechanical and biochemical stimuli. METHODS A novel polydimethylsiloxane-based parallel plate flow chamber enabled application of laminar fluid shear stress of 2 dynes/cm2 for 12 hours to microvascular cardiac and lung endothelial cells cultured on cardiac and lung-derived extracellular matrix. Optical imaging of cells was used to quantify cell changes in cell alignment. Analysis of integrin expression was performed using flow cytometry. RESULTS Application of fluid shear stress caused the greatest cell alignment in cardiac endothelial cells seeded on polystyrene and lung endothelial cells on polydimethylsiloxane. This resulted in elongation of the lung endothelial cells. αv and β3 integrin expression decreased after application of shear stress in both cell types. CONCLUSION Substrate stiffness plays an important role in regulating tissue-specific endothelial response to shear stress, which may be due to differences in their native microenvironments. Furthermore, cardiac and lung endothelial cell response to shear stress was significantly regulated by the type of coating used.
Collapse
Affiliation(s)
- Cydnee Bacci
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Sciences, Hofstra University, Hempstead, NY, USA
| | - Vanessa Wong
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Sciences, Hofstra University, Hempstead, NY, USA
| | - Victor Barahona
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Sciences, Hofstra University, Hempstead, NY, USA
| | - Nick Merna
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Sciences, Hofstra University, Hempstead, NY, USA
| |
Collapse
|
31
|
He Z, Liu G, Ma X, Yang D, Li Q, Li N. Comparison of small-diameter decellularized scaffolds from the aorta and carotid artery of pigs. Int J Artif Organs 2020; 44:350-360. [PMID: 32988264 DOI: 10.1177/0391398820959350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM Tissue-specific extracellular matrix promotes tissue regeneration and repair. We aimed to identify the optimal decellularized matrices for tissue-engineered vascular graft (TEVG). METHODS Decellularized aorta of fetal pigs (DAFP, n = 6, group A), decellularized aorta of adult pigs (DAAP, n = 6, group B), and decellularized carotid artery of adult pigs (DCAP, n = 6, group C) were prepared. Scaffolds were compared using histology and ultrastructure. Endothelial cell (EC) and myofibroblast (MFB) infiltration assessments were performed in vitro. Cell infiltration was measured in vivo. Biomechanical properties were also determined. RESULTS Almost original cells were removed by the acellularization procedure, while the construction of the matrix basically remained. In vitro, monolayer ECs and multi-layer MFBs were formed onto the internal surface of the specimens after 3 weeks. In vivo, cell infiltration in group A significantly increased at the 6th and 8th week when compared with groups B and C (p < 0.01). The infiltrated cells were mainly MFBs and a few CD4+ T-lymphocytes/macrophages in the specimens. Groups A and B showed greater axial compliance than group C (p < 0.01). CONCLUSION DAFP was the most suitable for use as a small-caliber vascular graft.
Collapse
Affiliation(s)
- Zhijuan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guofeng Liu
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xu Ma
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Daping Yang
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingchun Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
32
|
Jafarihaghighi F, Ardjmand M, Mirzadeh A, Hassani MS, Parizi SS. Current challenges and future trends in manufacturing small diameter artificial vascular grafts in bioreactors. Cell Tissue Bank 2020; 21:377-403. [PMID: 32415569 DOI: 10.1007/s10561-020-09837-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/09/2020] [Indexed: 01/17/2023]
Abstract
Cardiovascular diseases are a leading cause of death. Vascular surgery is mainly used to solve this problem. However, the generation of a functional and suitable substitute for small diameter (< 6 mm) displacement is challengeable. Moreover, synthetic prostheses, made of polyethylene terephthalate and extended polytetrafluoroethylene show have shown insufficient performance. Therefore, the challenges dominating the use of autografts have prevented their efficient use. Tissue engineering is highlighted in regenerative medicine perhaps in aiming to address the issue of end-stage organ failure. While organs and complex tissues require the vascular supply to support the graft survival and render the bioartificial organ role, vascular tissue engineering has shown to be a hopeful method for cell implantation by the production of tissues in vitro. Bioreactors are a salient point in vascular tissue engineering due to the capability for reproducible and controlled variations showing a new horizon in blood vessel substitution. This review strives to display the overview of current concepts in the development of small-diameter by using bioreactors. In this work, we show a critical look at different factors for developing small-diameter and give suggestions for future studies.
Collapse
Affiliation(s)
- Farid Jafarihaghighi
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Abolfazl Mirzadeh
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mohammad Salar Hassani
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Shahriar Salemi Parizi
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
- Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
33
|
Endothelialization of arterial vascular grafts by circulating monocytes. Nat Commun 2020; 11:1622. [PMID: 32238801 PMCID: PMC7113268 DOI: 10.1038/s41467-020-15361-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Recently our group demonstrated that acellular tissue engineered vessels (A-TEVs) comprised of small intestinal submucosa (SIS) immobilized with heparin and vascular endothelial growth factor (VEGF) could be implanted into the arterial system of a pre-clinical ovine animal model, where they endothelialized within one month and remained patent. Here we report that immobilized VEGF captures blood circulating monocytes (MC) with high specificity under a range of shear stresses. Adherent MC differentiate into a mixed endothelial (EC) and macrophage (Mφ) phenotype and further develop into mature EC that align in the direction of flow and produce nitric oxide under high shear stress. In-vivo, newly recruited cells on the vascular lumen express MC markers and at later times they co-express MC and EC-specific proteins and maintain graft patency. This novel finding indicates that the highly prevalent circulating MC contribute directly to the endothelialization of acellular vascular grafts under the right chemical and biomechanical cues. Acellular tissue engineered vessels functionalised with VEGF are coated with a layer of endothelial cells after in vivo implantation, but the source of the cells are unknown. Here the authors provide evidence that monocytes expressing VEGF receptors can transdifferentiate into endothelial cells via a macrophage intermediate.
Collapse
|
34
|
Lopera Higuita M, Griffiths LG. Small Diameter Xenogeneic Extracellular Matrix Scaffolds for Vascular Applications. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:26-45. [PMID: 31663438 DOI: 10.1089/ten.teb.2019.0229] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, despite the success of percutaneous coronary intervention (PCI), coronary artery bypass graft (CABG) remains among the most commonly performed cardiac surgical procedures in the United States. Unfortunately, the use of autologous grafts in CABG presents a major clinical challenge as complications due to autologous vessel harvest and limited vessel availability pose a significant setback in the success rate of CABG surgeries. Acellular extracellular matrix (ECM) scaffolds derived from xenogeneic vascular tissues have the potential to overcome these challenges, as they offer unlimited availability and sufficient length to serve as "off-the-shelf" CABGs. Unfortunately, regardless of numerous efforts to produce a fully functional small diameter xenogeneic ECM scaffold, the combination of factors required to overcome all failure mechanisms in a single graft remains elusive. This article covers the major failure mechanisms of current xenogeneic small diameter vessel ECM scaffolds, and reviews the recent advances in the field to overcome these failure mechanisms and ultimately develop a small diameter ECM xenogeneic scaffold for CABG. Impact Statement Currently, the use of autologous vessel in coronary artery bypass graft (CABG) is common practice. However, the use of autologous tissue poses significant complications due to tissue harvest and limited availability. Developing an alternative vessel for use in CABG can potentially increase the success rate of CABG surgery by eliminating complications related to the use of autologous vessel. However, this development has been hindered by an array of failure mechanisms that currently have not been overcome. This article describes the currently identified failure mechanisms of small diameter vascular xenogeneic extracellular matrix scaffolds and reviews current research targeted to overcoming these failure mechanisms toward ensuring long-term graft patency.
Collapse
Affiliation(s)
| | - Leigh G Griffiths
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
35
|
Yuan H, Chen C, Liu Y, Lu T, Wu Z. Strategies in cell‐free tissue‐engineered vascular grafts. J Biomed Mater Res A 2019; 108:426-445. [PMID: 31657523 DOI: 10.1002/jbm.a.36825] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Haoyong Yuan
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Chunyang Chen
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Yuhong Liu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Ting Lu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Zhongshi Wu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| |
Collapse
|
36
|
Yang Y, Lei D, Zou H, Huang S, Yang Q, Li S, Qing FL, Ye X, You Z, Zhao Q. Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia. Acta Biomater 2019; 97:321-332. [PMID: 31523025 DOI: 10.1016/j.actbio.2019.06.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022]
Abstract
For the surgical treatment of coronary artery disease, renal artery stenosis and other peripheral vascular diseases, there is significant demand for small diameter (inner diameter <6 mm) vascular grafts. However, autologous grafts are not always available when the substitute vascular grafts are severely diseased. In our previous work, hybrid small-diameter vascular grafts were successfully fabricated by combining electrospun polycaprolactone (PCL) and decellularized rat aorta (DRA). However, histological assessments of these grafts revealed the development of intimal hyperplasia, indicating potential negative impacts on the long-term patency of these grafts. To address this challenge, PCL nanofibers blended with rapamycin (RM) were electrospun outside the decellularized vascular graft to fabricate a RM-loaded hybrid tissue-engineered vascular graft (RM-HTEV), endowing the graft with a drug delivery function to prevent intimal hyperplasia. RM-HTEV possessed superior mechanical properties compared to DRA and exhibited a sustained drug release profile. To evaluate the applicability of RM-HTEV in vivo, abdominal aorta transplantation was performed on rats. Doppler sonography showed that the grafts were functional for up to 8 weeks in vivo. Moreover, histological analysis of explanted grafts 12 weeks postimplantation demonstrated that RM-HTEV significantly decreased neo-intimal hyperplasia compared with HTEV, without impairing reendothelialization and M2 macrophage polarization. Overall, RM-HTEV represents a promising strategy for developing small-diameter vascular grafts with great clinical translational potential. STATEMENT OF SIGNIFICANCE: In this study, a new type of rapamycin-loaded hybrid tissue-engineered vascular graft (RM-HTEV) was fabricated using electrospinning technology. The unique hybrid bi-layer structure endowed the RM-HTEV with multi-functionality: the exterior rapamycin-loaded electrospun PCL nanofibrous layer enhanced the mechanical properties of the graft and possessed drug releasing property; the interior decellularized aorta layer with porous structure could facilitate cell proliferation and migration. In in vivo implantation experiment, RM-HTEV exhibited satisfying long-term patency rate and significantly inhibited intimal hyperplasia without impairing re-endothelialization and M2 macrophage polarization. This strategy is expected to be a promising strategy for developing bioactive small-diameter vascular grafts with great clinical translational potential.
Collapse
|
37
|
Ilanlou S, Khakbiz M, Amoabediny G, Mohammadi J. Preclinical studies of acellular extracellular matrices as small-caliber vascular grafts. Tissue Cell 2019; 60:25-32. [DOI: 10.1016/j.tice.2019.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
|
38
|
Hazwani A, Sha'Ban M, Azhim A. Characterization and in vivo study of decellularized aortic scaffolds using closed sonication system. Organogenesis 2019; 15:120-136. [PMID: 31495272 DOI: 10.1080/15476278.2019.1656997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix (ECM) based bioscaffolds prepared by decellularization has increasingly emerged in tissue engineering application because it has structural, biochemical, and biomechanical cues that have dramatic effects upon cell behaviors. Therefore, we developed a closed sonication decellularization system to prepare ideal bioscaffolds with minimal adverse effects on the ECM. The decellularization was achieved at 170 kHz of ultrasound frequency in 0.1% and 2% Sodium Dodecyl Sulphate (SDS) solution for 10 hours. The immersion treatment as control was performed to compare the decellularization efficiency with our system. Cell removal and ECM structure were determined by histological staining and biochemical assay. Biomechanical properties were investigated by the indentation testing to test the stiffness, a residual force and compression of bioscaffolds. Additionally, in vivo implantation was performed in rat to investigate host tissue response. Compared to native tissues, histological staining and biochemical assay confirm the absence of cellularity with preservation of ECM structure. Moreover, sonication treatment has not affected the stiffness [N/mm] and a residual force [N] of the aortic scaffolds except for compression [%] which 2% SDS significantly decreased compared to native tissues showing higher SDS has a detrimental effect on ECM structure. Finally, minimal inflammatory response was observed after 1 and 5 weeks of implantation. This study reported that the novelty of our developed closed sonication system to prepare ideal bioscaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Aqilah Hazwani
- Department of Biomedical Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia , Kuantan , Pahang , Malaysia
| | - Munirah Sha'Ban
- Department of Physical Rehabilitation Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia , Kuantan , Pahang , Malaysia
| | - Azran Azhim
- Department of Biomedical Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia , Kuantan , Pahang , Malaysia
| |
Collapse
|
39
|
Sphingosine-1-phosphate in Endothelial Cell Recellularization Improves Patency and Endothelialization of Decellularized Vascular Grafts In Vivo. Int J Mol Sci 2019; 20:ijms20071641. [PMID: 30987025 PMCID: PMC6480112 DOI: 10.3390/ijms20071641] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Background: S1P has been shown to improve the endothelialization of decellularized vascular grafts in vitro. Here, we evaluated the potential of tissue-engineered vascular grafts (TEVGs) constructed by ECs and S1P on decellularized vascular scaffolds in a rat model. Methods: Rat aorta was decellularized mainly by 0.1% SDS and characterized by histology. Rat ECs, were seeded onto decellularized scaffolds, and the viability of the ECs was evaluated by biochemical assays. Then, we investigated the in vivo patency rate and endothelialization for five groups of decellularized vascular grafts (each n = 6) in a rat abdominal aorta model for 14 days. The five groups included (1) rat allogenic aorta (RAA); (2) decellularized RAA (DRAA); (3) DRAA with S1P (DRAA/S1P); (4) DRAA with EC recellularization (DRAA/EC); and (5) DRAA with S1P and EC recellularization (DRAA/EC/S1P). Results: In vitro, ECs were identified by the uptake of Dil-Ac-LDL. S1P enhanced the expression of syndecan-1 on ECs and supported the proliferation of ECs on decellularized vascular grafts. In vivo, RAA and DRAA/EC/S1P both had 100% patency without thrombus formation within 14 days. Better endothelialization, more wall structure maintenance and less inflammation were noted in the DRAA/EC/S1P group. In contrast, there was thrombus formation in the DRAA, DRAA/S1P and DRAA/EC groups. Conclusion: S1P could inhibit thrombus formation to improve the patency rate of EC-covered decellularized vascular grafts in vivo and may play an important role in the construction of TEVGs.
Collapse
|
40
|
Skovrind I, Harvald EB, Juul Belling H, Jørgensen CD, Lindholt JS, Andersen DC. Concise Review: Patency of Small-Diameter Tissue-Engineered Vascular Grafts: A Meta-Analysis of Preclinical Trials. Stem Cells Transl Med 2019; 8:671-680. [PMID: 30920771 PMCID: PMC6591545 DOI: 10.1002/sctm.18-0287] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Several patient groups undergoing small‐diameter (<6 mm) vessel bypass surgery have limited autologous vessels for use as grafts. Tissue‐engineered vascular grafts (TEVG) have been suggested as an alternative, but the ideal TEVG remains to be generated, and a systematic overview and meta‐analysis of clinically relevant studies is lacking. We systematically searched PubMed and Embase databases for (pre)clinical trials and identified three clinical and 68 preclinical trials ([>rabbit]; 873 TEVGs) meeting the inclusion criteria. Preclinical trials represented low to medium risk of bias, and binary logistic regression revealed that patency was significantly affected by recellularization, TEVG length, TEVG diameter, surface modification, and preconditioning. In contrast, scaffold types were less important. The patency was 63.5%, 89%, and 100% for TEVGs with a median diameter of 3 mm, 4 mm, and 5 mm, respectively. In the group of recellularized TEVGs, patency was not improved by using smooth muscle cells in addition to endothelial cells nor affected by the endothelial origin, but seems to benefit from a long‐term (46–240 hours) recellularization time. Finally, data showed that median TEVG length (5 cm) and median follow‐up (56 days) used in preclinical settings are relatively inadequate for direct clinical translation. In conclusion, our data imply that future studies should consider a TEVG design that at least includes endothelial recellularization and bioreactor preconditioning, and we suggest that more standard guidelines for testing and reporting TEVGs in large animals should be considered to enable interstudy comparisons and favor a robust and reproducible outcome as well as clinical translation.
Collapse
Affiliation(s)
- Ida Skovrind
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense C, Denmark
| | - Eva Bang Harvald
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark.,Center for Vascular Regeneration, Odense University Hospital, Odense C, Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense C, Denmark
| | - Helene Juul Belling
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense C, Denmark
| | | | - Jes Sanddal Lindholt
- Department of Cardiac, Thoracic, and Vascular Surgery, Odense University Hospital, Odense C, Denmark
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark.,Center for Vascular Regeneration, Odense University Hospital, Odense C, Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense C, Denmark.,Clinical Institute, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
41
|
Smith RJ, Yi T, Nasiri B, Breuer CK, Andreadis ST. Implantation of VEGF-functionalized cell-free vascular grafts: regenerative and immunological response. FASEB J 2019; 33:5089-5100. [PMID: 30629890 DOI: 10.1096/fj.201801856r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, our group demonstrated that immobilized VEGF can capture flowing endothelial cells (ECs) from the blood in vitro and promote endothelialization and patency of acellular tissue-engineered vessels (A-TEVs) into the arterial system of an ovine animal model. Here, we demonstrate implantability of submillimeter diameter heparin and VEGF-decorated A-TEVs in a mouse model and discuss the cellular and immunologic response. At 1 mo postimplantation, the graft lumen was fully endothelialized, as shown by expression of EC markers such as CD144, eNOS, CD31, and VEGFR2. Interestingly, the same cells coexpressed leukocyte/macrophage (Mϕ) markers CD14, CD16, VEGFR1, CD38, and EGR2. Notably, there was a stark difference in the cellular makeup between grafts containing VEGF and those containing heparin alone. In VEGF-containing grafts, infiltrating monocytes (MCs) converted into anti-inflammatory M2-Mϕs, and the grafts developed well-demarcated luminal and medial layers resembling those of native arteries. In contrast, in grafts containing only heparin, MCs converted primarily into M1-Mϕs, and the endothelial and smooth muscle layers were not well defined. Our results indicate that VEGF may play an important role in regulating A-TEV patency and regeneration, possibly by regulating the inflammatory response to the implants.-Smith, R. J., Jr., Yi, T., Nasiri, B., Breuer, C. K., Andreadis, S. T. Implantation of VEGF-functionalized cell-free vascular grafts: regenerative and immunological response.
Collapse
Affiliation(s)
- Randall J Smith
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, New York, USA
| | - Tai Yi
- Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Bita Nasiri
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, New York, USA; and
| | | | - Stelios T Andreadis
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, New York, USA.,Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, New York, USA; and.,Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York, Amherst, New York, USA
| |
Collapse
|
42
|
Soldani G, Murzi M, Faita F, Di Lascio N, Al Kayal T, Spanò R, Canciani B, Losi P. In vivo evaluation of an elastomeric small‐diameter vascular graft reinforced with a highly flexible Nitinol mesh. J Biomed Mater Res B Appl Biomater 2018; 107:951-964. [DOI: 10.1002/jbm.b.34189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Giorgio Soldani
- Laboratory for Biomaterials & Graft TechnologyIstituto di Fisiologia Clinica CNR Massa 54100 Italy
| | - Michele Murzi
- Fondazione Toscana Gabriele Monasterio (FTGM) Massa 54100 Italy
| | - Francesco Faita
- Laboratory for Experimental UltrasoundIstituto di Fisiologia Clinica CNR Pisa 56127 Italy
| | - Nicole Di Lascio
- Laboratory for Experimental UltrasoundIstituto di Fisiologia Clinica CNR Pisa 56127 Italy
- Institute of Life SciencesScuola Superiore Sant'Anna Pisa 56127 Italy
| | - Tamer Al Kayal
- Laboratory for Biomaterials & Graft TechnologyIstituto di Fisiologia Clinica CNR Massa 54100 Italy
| | - Raffaele Spanò
- Laboratory of Regenerative MedicineDIMES, University of Genoa Genoa 16132 Italy
| | - Barbara Canciani
- Laboratory of Regenerative MedicineDIMES, University of Genoa Genoa 16132 Italy
| | - Paola Losi
- Laboratory for Biomaterials & Graft TechnologyIstituto di Fisiologia Clinica CNR Massa 54100 Italy
| |
Collapse
|
43
|
In Vivo Performance of Decellularized Vascular Grafts: A Review Article. Int J Mol Sci 2018; 19:ijms19072101. [PMID: 30029536 PMCID: PMC6073319 DOI: 10.3390/ijms19072101] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022] Open
Abstract
Due to poor vessel quality in patients with cardiovascular diseases, there has been an increased demand for small-diameter tissue-engineered blood vessels that can be used as replacement grafts in bypass surgery. Decellularization techniques to minimize cellular inflammation have been applied in tissue engineering research for the development of small-diameter vascular grafts. The biocompatibility of allogenic or xenogenic decellularized matrices has been evaluated in vitro and in vivo. Both short-term and long-term preclinical studies are crucial for evaluation of the in vivo performance of decellularized vascular grafts. This review offers insight into the various preclinical studies that have been performed using decellularized vascular grafts. Different strategies, such as surface-modified, recellularized, or hybrid vascular grafts, used to improve neoendothelialization and vascular wall remodeling, are also highlighted. This review provides information on the current status and the future development of decellularized vascular grafts.
Collapse
|
44
|
Atlan M, Simon-Yarza T, Ino JM, Hunsinger V, Corté L, Ou P, Aid-Launais R, Chaouat M, Letourneur D. Design, characterization and in vivo performance of synthetic 2 mm-diameter vessel grafts made of PVA-gelatin blends. Sci Rep 2018; 8:7417. [PMID: 29743525 PMCID: PMC5943294 DOI: 10.1038/s41598-018-25703-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/24/2018] [Indexed: 01/06/2023] Open
Abstract
Since the development of the first vascular grafts, fabrication of vessel replacements with diameters smaller than 6 mm remains a challenge. The present work aimed to develop PVA (poly (vinyl alcohol))-gelatin hybrids as tubes suitable for replacement of very small vessels and to evaluate their performance using a rat abdominal aorta interposition model. PVA-gelatin hybrid tubes with internal and external diameters of 1.4 mm and 1.8 mm, respectively, composed of 4 different gelatin ratios were prepared using a one-step strategy with both chemical and physical crosslinking. By 3D Time of Flight MRI, Doppler-Ultrasound, Computed Tomography angiography and histology, we demonstrated good patency rates with the 1% gelatin composition until the end of the study at 3 months (50% compared to 0% of PVA control grafts). A reduction of the patency rate during the time of implantation suggested some loss of properties of the hybrid material in vivo, further confirmed by mechanical evaluation until one year. In particular, stiffening and reduction of compliance of the PVA-gelatin grafts was demonstrated, which might explain the observed long-term changes in patency rate. These encouraging results confirm the potential of PVA-gelatin hybrids as ready-to-use vascular grafts for very small vessel replacement.
Collapse
Affiliation(s)
- M Atlan
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France. .,Faculty of Medicine, University Pierre et Marie Curie, Plastic Surgery Department, Hôpital Tenon, Paris, France.
| | - T Simon-Yarza
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France.
| | - J M Ino
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France
| | - V Hunsinger
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France.,Faculty of Medicine, University Pierre et Marie Curie, Plastic Surgery Department, Hôpital Tenon, Paris, France
| | - L Corté
- MINES ParisTech, PSL Research University, MAT - Centre des Matériaux, CNRS UMR 7633, BP 87 91003, Evry, France.,ESPCI-Paris, PSL Research University, Matière Molle et Chimie, CNRS UMR 7167, Paris, 75005, France
| | - P Ou
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France
| | - R Aid-Launais
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France.,FRIM, INSERM UMS 034 Paris Diderot University, X. Bichat Hospital, 75018, Paris, France
| | - M Chaouat
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France.,Plastic Surgery Department, Burn Unit, Paris Diderot University, Hôpital Saint Louis, Paris, France
| | - D Letourneur
- INSERM U1148, Laboratory for Vascular Translational Science, X. Bichat Hospital, Paris Diderot University, Paris 13 University, 75018, Paris, France
| |
Collapse
|
45
|
Selden C, Fuller B. Role of Bioreactor Technology in Tissue Engineering for Clinical Use and Therapeutic Target Design. Bioengineering (Basel) 2018; 5:bioengineering5020032. [PMID: 29695077 PMCID: PMC6027481 DOI: 10.3390/bioengineering5020032] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/01/2023] Open
Abstract
Micro and small bioreactors are well described for use in bioprocess development in pre-production manufacture, using ultra-scale down and microfluidic methodology. However, the use of bioreactors to understand normal and pathophysiology by definition must be very different, and the constraints of the physiological environment influence such bioreactor design. This review considers the key elements necessary to enable bioreactors to address three main areas associated with biological systems. All entail recreation of the in vivo cell niche as faithfully as possible, so that they may be used to study molecular and cellular changes in normal physiology, with a view to creating tissue-engineered grafts for clinical use; understanding the pathophysiology of disease at the molecular level; defining possible therapeutic targets; and enabling appropriate pharmaceutical testing on a truly representative organoid, thus enabling better drug design, and simultaneously creating the potential to reduce the numbers of animals in research. The premise explored is that not only cellular signalling cues, but also mechano-transduction from mechanical cues, play an important role.
Collapse
Affiliation(s)
- Clare Selden
- Institute for Liver and Digestive Health, Division of Medicine, Faculty of Medical Sciences, University College London, Royal Free Hospital Campus, Rowland Hill Street, Hampstead, London NW3 2PF, UK.
| | - Barry Fuller
- Department of Nanotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London NW3 2QG, UK.
| |
Collapse
|