1
|
Mohamed GA, El-Agamy DS, Abdallah HM, Sindi IA, Almogaddam MA, Alzain AA, Andijani YS, Ibrahim SR. Kaempferol sophoroside glucoside mitigates acetaminophen-induced hepatotoxicity: Role of Nrf2/NF-κB and JNK/ASK-1 signaling pathways. Heliyon 2024; 10:e31448. [PMID: 38813141 PMCID: PMC11133934 DOI: 10.1016/j.heliyon.2024.e31448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
APAP (Acetaminophen)-induced hepatic injury is a major public health threat that requires continuous searching for new effective therapeutics. KSG (Kaempferol-3-sophoroside-7-glucoside) is a kaempferol derivative that was separated from plant species belonging to different genera. This study explored the protective effects of KSG on ALI (acute liver injury) caused by APAP overdose in mice and elucidated its possible mechanisms. The results showed that KSG pretreatment alleviated APAP-induced hepatic damage as it reduced hepatic pathological lesions as well as the serum parameters of liver injury. Moreover, KSG opposed APAP-associated oxidative stress and augmented hepatic antioxidants. KSG suppressed the inflammatory response as it decreased the genetic and protein expression as well as the levels of inflammatory cytokines. Meanwhile, KSG enhanced the mRNA expression and level of anti-inflammatory cytokine, IL-10 (interleukin-10). KSG repressed the activation of NF-κB (nuclear-factor kappa-B), besides it promoted the activation of Nrf2 signaling. Additionally, KSG markedly hindered the elevation of ASK-1 (apoptosis-signal regulating-kinase-1) and JNK (c-Jun-N-terminal kinase). Furthermore, KSG suppressed APAP-induced apoptosis as it decreased the level and expression of Bax (BCL2-associated X-protein), and caspase-3 concurrent with an enhancement of anti-apoptotic protein, Bcl2 in the liver. More thoroughly, Computational studies reveal indispensable binding affinities between KSG and Keap1 (Kelch-like ECH-associated protein-1), ASK1 (apoptosis signal-regulating kinase-1), and JNK1 (c-Jun N-terminal protein kinase-1) with distinctive tendencies for selective inhibition. Taken together, our data showed the hepatoprotective capacity of KSG against APAP-produced ALI via modulation of Nrf2/NF-κB and JNK/ASK-1/caspase-3 signaling. Henceforth, KSG could be a promising hepatoprotective candidate for ALI.
Collapse
Affiliation(s)
- Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dina S. El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed A. Almogaddam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, 21111, Sudan
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, 21111, Sudan
| | - Yusra Saleh Andijani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, 30078, Saudi Arabia
| | - Sabrin R.M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
2
|
Niu J, Wang X, Zhou S, Yue J, Liu Z, Zhou J. Molecular authentication of commercial "Qian-hu" through the integration of nrDNA internal transcribed spacer 2 and nucleotide signature. Mol Biol Rep 2024; 51:639. [PMID: 38727924 DOI: 10.1007/s11033-024-09557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/16/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Peucedani Radix, also known as "Qian-hu" is a traditional Chinese medicine derived from Peucedanum praeruptorum Dunn. It is widely utilized for treating wind-heat colds and coughs accompanied by excessive phlegm. However, due to morphological similarities, limited resources, and heightened market demand, numerous substitutes and adulterants of Peucedani Radix have emerged within the herbal medicine market. Moreover, Peucedani Radix is typically dried and sliced for sale, rendering traditional identification methods challenging. MATERIALS AND METHODS We initially examined and compared 104 commercial "Qian-hu" samples from various Chinese medicinal markets and 44 species representing genuine, adulterants or substitutes, utilizing the mini barcode ITS2 region to elucidate the botanical origins of the commercial "Qian-hu". The nucleotide signature specific to Peucedani Radix was subsequently developed by analyzing the polymorphic sites within the aligned ITS2 sequences. RESULTS The results demonstrated a success rate of 100% and 93.3% for DNA extraction and PCR amplification, respectively. Forty-five samples were authentic "Qian-hu", while the remaining samples were all adulterants, originating from nine distinct species. Peucedani Radix, its substitutes, and adulterants were successfully identified based on the neighbor-joining tree. The 24-bp nucleotide signature (5'-ATTGTCGTACGAATCCTCGTCGTC-3') revealed distinct differences between Peucedani Radix and its common substitutes and adulterants. The newly designed specific primers (PR-F/PR-R) can amplify the nucleotide signature region from commercial samples and processed materials with severe DNA degradation. CONCLUSIONS We advocate for the utilization of ITS2 and nucleotide signature for the rapid and precise identification of herbal medicines and their adulterants to regulate the Chinese herbal medicine industry.
Collapse
Affiliation(s)
- Junmei Niu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Xinyue Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Shilin Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Jiarui Yue
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Zhenwen Liu
- Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.
| | - Jing Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
- Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
3
|
Wang Y, Li J, Hu H, Wu Y, Chen S, Feng X, Wang T, Wang Y, Wu S, Luo H. Distinct microbiome of tongue coating and gut in type 2 diabetes with yellow tongue coating. Heliyon 2024; 10:e22615. [PMID: 38163136 PMCID: PMC10756968 DOI: 10.1016/j.heliyon.2023.e22615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The gut microbiome plays a critical role in the pathogenesis of type 2 diabetes mellitus (T2DM). However, the inconvenience of obtaining fecal samples hinders the clinical application of gut microbiome analysis. In this study, we hypothesized that tongue coating color is associated with the severity of T2DM. Therefore, we aimed to compare tongue coating, gut microbiomes, and various clinical parameters between patients with T2DM with yellow (YC) and non-yellow tongue coatings (NYC). Tongue coating and gut microbiomes of 27 patients with T2DM (13 with YC and 14 with NYC) were analyzed using 16S rDNA gene sequencing technology. Additionally, we measured glycated hemoglobin (HbA1c), random blood glucose (RBG), fasting blood glucose (FBG), postprandial blood glucose (PBG), insulin (INS), glucagon (GC), body mass index (BMI), and homeostasis model assessment of β-cell function (HOMA-β) levels for each patient. The correlation between tongue coating and the gut microbiomes was also analyzed. Our findings provide evidence that the levels of Lactobacillus spp. are significantly higher in both the tongue coating and the gut microbiomes of patients with YC. Additionally, we observed that elevated INS and GC levels, along with decreased BMI and HOMA-β levels, were indicative of a more severe condition in patients with T2DM with YC. Moreover, our results suggest that the composition of the tongue coating may reflect the presence of Lactobacillus spp. in the gut. These results provide insights regarding the potential relationship between tongue coating color, the gut microbiome, and T2DM.
Collapse
Affiliation(s)
- Yao Wang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jiqing Li
- Department of Endocrinology, Hainan Provincial Hospital of Traditional Chinese Medicine , Haikou, Hainan Province, China
| | - Haiying Hu
- West China Hospital Sichuan University, Chengdu, Sichuan Province, China
| | - Yalan Wu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Song Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xiangrong Feng
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ting Wang
- Department of Emergency and Critical Care, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan Province, China
| | - Yinrong Wang
- Department of Endocrinology, Hainan Provincial Hospital of Traditional Chinese Medicine , Haikou, Hainan Province, China
| | - Su Wu
- Department of Endocrinology, Hainan Provincial Hospital of Traditional Chinese Medicine , Haikou, Hainan Province, China
| | - Huanhuan Luo
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Wang G, Bai X, Ren Y, Su Y, Han J. Development of nucleotide signatures for common poisonous organisms provides a new strategy for food poisoning diagnosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115529. [PMID: 37776823 DOI: 10.1016/j.ecoenv.2023.115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
DNA barcoding is widely used in toxic species authentication, but due to serious DNA degradation of forensic materials, the application of full-length barcode sequences in food poisoning diagnosis is greatly limited. Nucleotide signature, a shorter specific molecular marker, derived from traditional DNA barcoding has been proposed as an emerging tool of toxic species detection in deeply processed materials. In this study, to resolve the frequent food poisoning accidents with unknown origin, we envisioned developing a nucleotide signature data set of common poisonous organisms and combining high-throughput sequencing (HTS) to reveal the poisoning cause. Ninety-three individuals and 1093 DNA barcode sequences of twelve common poisonous plants, fish, mushrooms and their related species were collected. Through sequence alignment and screening, the nucleotide signatures were respectively developed and validated as their specific molecular markers. The sequence length varied from 19 bp to 38 bp. These fragments were conserved within the same species or genera, and the specificity between related species has been also demonstrated. To further evaluate the application potential of nucleotide signature in forensic diagnosis, simulated forensic specimens (SFS) containing different poisonous ingredients were sequenced by HTS with PCR-free libraries. As a result, the nucleotide signature was successfully captured from original HTS data without assembly and annotation, accompanied by a high detection sensitivity of 0.1 ng/µl in mixture system. Therefore, this method was suitable for the assay of forensic materials with serious DNA degradation. The present study undoubtedly provides a new perspective and strong support for the detection of toxic ingredients and the diagnosis of food poisoning.
Collapse
Affiliation(s)
- Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xuanjiao Bai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
5
|
Hou J, Yao C, Li Y, Yang L, Chen X, Nie M, Qu H, Ji S, Guo DA. A MS-feature-based medicinal plant database-driven strategy for ingredient identification of Chinese medicine prescriptions. J Pharm Biomed Anal 2023; 234:115482. [PMID: 37290179 DOI: 10.1016/j.jpba.2023.115482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Identification of the individual herbs that constitute the Chinese medicine prescription (CMP) is a key step to control the quality and ensure the efficacy of traditional Chinese medicine (TCM), but also a challenging task for analysts from all over the world. In this study, a MS-feature-based medicinal plant database-driven strategy was proposed for quick and automatic interpretation of CMP ingredients. The single herb database consisting of stable ions of sixty-one common TCM medicinal herbs was first constructed. And then, the data of CMP was imported into a self-built searching program to achieve quick and automatic identification with four steps including level 1 candidate herb screening based on stable ions (step 1), level 2 candidate herb screening based on unique ions (step 2), difficult-to-distinguish herb differentiation (step 3) and results integration (step 4). The identification model was optimized and validated with homemade Shaoyaogancao Decoction, Mahuang Decoction, Banxiaxiexin Decoction, and their related negative prescriptions and homemade fakes. Another nine batches of homemade and commercial CMPs were applied to this new approach and most of composed herbs in the corresponding CMPs were correctly identified. This work provided a promising and universal strategy for the clarification of CMP ingredients.
Collapse
Affiliation(s)
- Jianru Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lin Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuebing Chen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Min Nie
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Qu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Yang Z, Lo YT, Quan Z, He J, Chen Y, Faller A, Chua T, Wu HY, Zhang Y, Zou Q, Li F, Chang P, Swanson G, Shaw PC, Lu Z. Application of a modified tetra-primer ARMS-PCR assay for rapid Panax species identity authentication in ginseng products. Sci Rep 2023; 13:14396. [PMID: 37658082 PMCID: PMC10474259 DOI: 10.1038/s41598-023-39940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/02/2023] [Indexed: 09/03/2023] Open
Abstract
Panax ginseng products can be adulterated with materials from other Panax species. The purpose of this study is to provide a rapid P. ginseng authentication method for simultaneous identification of P. ginseng and detection of adulteration in ginseng products at different processing stages. First, a tetra-primer ARMS-PCR assay was designed based on a single-nucleotide polymorphism (SNP) within the trnL-trnF region and was tested at 28 PCR cycles with DNA extracted from Botanical Reference Materials (BRMs). Next, 5' end random nucleotide and 3' terminus phosphorothioates linkage modifications were incorporated into the inner primers to improve sensitivity and specificity at 40 PCR cycles. Finally, the modified assay was validated using characterized market ginseng materials and the detection limit was determined. The modified tetra-primer ARMS-PCR assay can achieve the desired sensitivity and specificity using one set of reaction conditions in ginseng materials at different stages. In validation, it was able to correctly identify target species P. ginseng and differentiate it from closely related species. This study suggests that the modified tetra-primer ARMS-PCR assay can be used for the rapid, species identity authentication of P. ginseng material in ginseng products. This assay can be used to complement chemical analytical methods in quality control, so both species identity and processing attributes of ginseng products can be efficiently addressed.
Collapse
Affiliation(s)
- Zhengxiu Yang
- Quality Control Laboratory, Herbalife NatSource (Hunan) Natural Products Co., Changsha, 410100, China
| | - Yat Tung Lo
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK) and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Zheng Quan
- Corporate Center of Excellence Quality Laboratory, Herbalife International of America, Inc., 950 W 190th Street, Torrance, CA, 90502, USA
| | - Junchen He
- Quality Control Laboratory, Herbalife NatSource (Hunan) Natural Products Co., Changsha, 410100, China
| | - Yanjun Chen
- Quality Control Laboratory, Herbalife NatSource (Hunan) Natural Products Co., Changsha, 410100, China
| | - Adam Faller
- Corporate Center of Excellence Quality Laboratory, Herbalife International of America, Inc., 950 W 190th Street, Torrance, CA, 90502, USA
| | - Tiffany Chua
- Herbalife International of America, Inc., Corporate Quality, 990 W 190th Street, Torrance, CA, 90502, USA
| | - Hoi Yan Wu
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK) and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Yanjun Zhang
- Herbalife International of America, Inc., Corporate Quality, 990 W 190th Street, Torrance, CA, 90502, USA
| | - Qiang Zou
- Quality Control Laboratory, Herbalife NatSource (Hunan) Natural Products Co., Changsha, 410100, China
| | - Fan Li
- Quality Control Laboratory, Herbalife NatSource (Hunan) Natural Products Co., Changsha, 410100, China
| | - Peter Chang
- Herbalife International of America, Inc., Corporate Quality, 990 W 190th Street, Torrance, CA, 90502, USA
| | - Gary Swanson
- Herbalife International of America, Inc., Corporate Quality, 990 W 190th Street, Torrance, CA, 90502, USA
| | - Pang Chui Shaw
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK) and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Zhengfei Lu
- Corporate Center of Excellence Quality Laboratory, Herbalife International of America, Inc., 950 W 190th Street, Torrance, CA, 90502, USA.
| |
Collapse
|
7
|
Wang T, Zhang Y, Wang B, Tang J, Guo X, Li S, Qin L, Zhang L. Screening of Antimicrobial Ingredients in Forsythia Leaves Using Target Constituent Knock-out/Knock-in Strategy and Evaluation of the Combination Effects with Antibiotics. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231163034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
To screen and identify the antimicrobial ingredients of Forsythia suspensa leaves (FL). A screening method based on a constituent knock-out/knock-in strategy was conducted. The antimicrobial activities of FL components against seven commonly infective strains were determined using the Oxford cup method. Their antimicrobial effects when used in combination with common antibiotics were investigated by a checkerboard titration method. Two of the seven strains, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA), were considered to be the most sensitive to the inhibitory effect of FL. The main antimicrobial components in FL were forsythoside I and forsythoside A. The co-administration of vancomycin with forsythoside A was found to have a significant synergistic inhibiting effect on MRSA. Some phenylethanol glycoside components play a major contribution to the antimicrobial effect of FL. This provides a reference for the research and development of FL for both medicinal and food purposes.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Department of Pharmacy, Shanxi Province Key Laboratory of Functional Food with Homologous of Medicine and Food, Changzhi Medical College, Changzhi, China
| | - YuanBo Zhang
- Department of Traditional Chinese Medicine, Bozhou Vocational and Technical College, Bozhou, China
| | - BaiFang Wang
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - JianKai Tang
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - XueJian Guo
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - ShiFei Li
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - LingHao Qin
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liwei Zhang
- Institute of Molecular Science, Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
8
|
Valorization of pineapple processing residues through acetification to produce specialty vinegars enriched with red-Jambo extract of Syzygium malaccense leaf. Sci Rep 2022; 12:19384. [PMID: 36371484 PMCID: PMC9653374 DOI: 10.1038/s41598-022-23968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
The present study proposes the production of vinegars from pineapple processing residues as an eco-friendly strategy for adding value and economic strengthening of the production chain. Pineapple pulp and peel wines were produced and acetificated to vinegar by wild strains of acetic bacteria using Orlean's method (traditional system) followed by enrichment with leaf extract of Red-Jambo, Syzygium malaccense. Appreciable phenolic contents and antioxidant potential were found in pulp and peel vinegars with the added leaf extract. Catechin, epicatechin and caffeic, p-coumaric, ferulic, and gallic acids were the main phenolic compounds found in peel vinegar. The enrichment of the vinegar with the extract promoted an increase in the content of polyphenols (443.6-337.3 mg GAE/L) and antioxidant activity. Peel wines presented higher luminosity (L*) and higher saturation index (C*), and their color tended more toward yellow than pulp wines. Acetification reduced the saturation index (C*) and led to the intensification of the hue angle in the peels vinegar. Each type of pineapple vinegar produced showed biocidal activity against different bacteria and yeast, and the addition of leaf extract potentiated the antimicrobial activity of peel vinegar, especially against Staphalococcus aureus. The vinegars developed could find an attractive market niche in the food sector.
Collapse
|
9
|
Parveen I, Techen N, Handy SM, Li J, Wu C, Chittiboyina AG, Khan IA. The Low Copy Nuclear Gene Region, Granule Bound Starch Synthase (GBSS1), as a Novel Mini-DNA Barcode for the Identification of Different Sage (Salvia) Species. PLANTA MEDICA 2022; 88:985-993. [PMID: 34544191 DOI: 10.1055/a-1618-6496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Morphological similarity within species makes the identification and authentication of Salvia species challenging, especially in dietary supplements that contain processed root or leaf powder of different sage species. In the present study, the species discriminatory power of 2 potential DNA barcode regions from the nuclear genome was evaluated in 7 medicinally important Salvia species from the family Lamiaceae. The nuclear internal transcribed spacer 2 and the exon 9 - 14 region of low copy nuclear gene WAXY coding for granule-bound starch synthase 1 were tested for their species discrimination ability using distance, phylogenetic, and BLAST-based methods. A novel 2-step PCR method with 2 different annealing temperatures was developed to achieve maximum amplification from genomic DNA. The granule-bound starch synthase 1 region showed higher amplification and sequencing success rates, higher interspecific distances, and a perfect barcode gap for the tested species compared to the nuclear internal transcribed spacer 2. Hence, these novel mini-barcodes generated from low copy nuclear gene regions (granule-bound starch synthase) that were proven to be effective barcodes for identifying 7 Salvia species have potential for identification and authentication of other Salvia species.
Collapse
Affiliation(s)
- Iffat Parveen
- National Center for Natural Products Research; School of Pharmacy, University of Mississippi, University, MS, USA
| | - Natascha Techen
- National Center for Natural Products Research; School of Pharmacy, University of Mississippi, University, MS, USA
| | - Sara M Handy
- Center for Food Safety and Applied Nutrition, Office of Regulatory Science, U. S. Food and Drug Administration, College Park, MD, USA
| | - Jing Li
- Botanical Review Team, Immediate Office, Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Charles Wu
- Botanical Review Team, Immediate Office, Office of New Drug Product, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research; School of Pharmacy, University of Mississippi, University, MS, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research; School of Pharmacy, University of Mississippi, University, MS, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, USA
| |
Collapse
|
10
|
Xing Z, Gao H, Wang D, Shang Y, Tuliebieke T, Jiang J, Li C, Wang H, Li Z, Jia L, Wu Y, Wang D, Yang W, Chang Y, Zhang X, Xu L, Jiang C, Huang L, Tian X. A novel biological sources consistency evaluation method reveals high level of biodiversity within wild natural medicine: A case study of Amynthas earthworms as “Guang Dilong”. Acta Pharm Sin B 2022; 13:1755-1770. [PMID: 37139429 PMCID: PMC10150161 DOI: 10.1016/j.apsb.2022.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
For wild natural medicine, unanticipated biodiversity as species or varieties with similar morphological characteristics and sympatric distribution may co-exist in a single batch of medical materials, which affects the efficacy and safety of clinical medication. DNA barcoding as an effective species identification tool is limited by its low sample throughput nature. In this study, combining DNA mini-barcode, DNA metabarcoding and species delimitation method, a novel biological sources consistency evaluation strategy was proposed, and high level of interspecific and intraspecific variations were observed and validated among 5376 Amynthas samples from 19 sampling points regarded as "Guang Dilong" and 25 batches of proprietary Chinese medicines. Besides Amynthas aspergillum as the authentic source, 8 other Molecular Operational Taxonomic Units (MOTUs) were elucidated. Significantly, even the subgroups within A. aspergillum revealed here differ significantly on chemical compositions and biological activity. Fortunately, this biodiversity could be controlled when the collection was limited to designated areas, as proved by 2796 "decoction pieces" samples. This batch biological identification method should be introduced as a novel concept regarding natural medicine quality control, and to offer guidelines for in-situ conservation and breeding bases construction of wild natural medicine.
Collapse
Affiliation(s)
- Zhimei Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Han Gao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ye Shang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Tenukeguli Tuliebieke
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jibao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunxiao Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hong Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenguo Li
- Mudanjiang YouBo Pharmaceutical Co. Ltd., Mudanjiang 157000, China
| | - Lifu Jia
- Guizhou Ruihe Pharmaceutical Co. Ltd., Guizhou 550000, China
| | - Yongsheng Wu
- Mudanjiang YouBo Pharmaceutical Co. Ltd., Mudanjiang 157000, China
| | - Dandan Wang
- Mudanjiang YouBo Pharmaceutical Co. Ltd., Mudanjiang 157000, China
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Liuwei Xu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Chao Jiang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China
- Corresponding authors.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China
- Corresponding authors.
| | - Xiaoxuan Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- Corresponding authors.
| |
Collapse
|
11
|
Wang M, Ling C, Cao J, Yin Y, Chang X, Wu J, Cheng T. Role of Tripartite Motif-Containing 3 Protein (TRIM3) in Rheumatoid Arthritis and Its Mechanism. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aim: To discuss TRIM3’s effects and relative mechanisms in RA development. Materials and methods: Using FLS as research object in our study. Present study divided into two steps, first step, discussing TRIM3 depressing effects in normal FLS cell; next, using IL-1β
stimulating to make RA cell model, TRIM3 overexpression in RA model to observe cell biological activities. Measuring IL-6 and TNF-α levels by ELISA kit; evaluating cell proliferation by MTT and EdU assay; relative proteins including TRIM3, TAB2 and NF-κB(p65) proteins
expression using WB method. Results: With TRIM3 knockdown, FLS cell proliferation were significantly increased with IL-6, TNF-α levels significantly up-regulation (P < 0.001, respectively). Meanwhile, TAB2 protein expression significantly depressing and NF-κB(p65)
protein significantly increasing; those were similar as IL-1β stimulating RA cell model in FLS cell line. In RA cell model, transfection TRIM3 in FLS cell, the cell proliferation was significantly depressed with IL-1β, TNF-α levels depressing, and TAB2
protein expression significantly increasing and NF-κB(p65) protein significantly depressing. Conclusion: TRIM3 knockdown might be a result to RA development; with TRIM3 overexpression, RA induced FLS hyperproliferation significantly improved with TAB2 up-regulation and
NF-κB(p65) down-regulation in vitro.
Collapse
Affiliation(s)
- Mingjun Wang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Chen Ling
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Jing Cao
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Yufeng Yin
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| | - Tao Cheng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, P. R. China
| |
Collapse
|
12
|
Zhang T, Xu F, Ruhsam M, Feng L, Zhang M, Wang Z, Wang X. A nucleotide signature for the identification of Pinelliae Rhizoma (Banxia) and its products. Mol Biol Rep 2022; 49:7753-7763. [PMID: 35670929 PMCID: PMC9171473 DOI: 10.1007/s11033-022-07600-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/12/2022] [Indexed: 12/03/2022]
Abstract
Background Ensuring the authenticity of raw materials is a key step prior to producing Chinese patent medicines. Pinelliaternata (Thunb.) Breit. is the botanical origin of Pinelliae Rhizoma (Banxia), a traditional Chinese medicine used to treat cough, insomnia, nausea, inflammation, epilepsy, and so on. Unfortunately, authentic Pinelliae Rhizoma is often adulterated by morphologically indistinguishable plant material due to the insufficient regulatory procedures of processed medicinal plant products. Thus, it is important to develop a molecular assay based on species-specific nucleotide signatures and primers to efficiently distinguish authentic Pinelliae Rhizoma from its adulterants. Methods and results The ITS2 region of 67 Pinelliae Rhizoma and its common adulterants were sequenced. Eight single nucleotide polymorphisms within a 28–43 bp stretch of ITS2 were used to develop six primer pairs to amplify these species-specific regions. We assayed 56 Pinelliae Rhizoma products sold on the Chinese market, including medicinal slices, powder and Chinese patent medicines, which revealed that about 66% of products were adulterated. The most common adulterants were Pinelliapedatisecta (found in 57% of the assayed products), Arisaemaerubescens (9%), Typhoniumgiganteum (2%) and Typhoniumflagelliforme (2%). Conclusions A severe adulteration condition was revealed in the traditional medicine market. The species-specific nucleotide assays developed in this study can be applied to reliably identify Pinelliae Rhizoma and its adulterants, aiding in the authentication and quality control of processed products on the herbal market. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07600-0.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Qiyao Resources and Anti-Tumor Activities, Shaanxi Administration of Traditional Chinese Medicine, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 10061, China
| | - Fusheng Xu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, Edinburgh, EH3 5LR, UK
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Qiyao Resources and Anti-Tumor Activities, Shaanxi Administration of Traditional Chinese Medicine, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 10061, China
| | - Miao Zhang
- Lixian Spring Pharmaceutical Co. Ltd., Longnan, 742200, China
| | - Zhengwei Wang
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Xumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China. .,Key Laboratory of Qiyao Resources and Anti-Tumor Activities, Shaanxi Administration of Traditional Chinese Medicine, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 10061, China.
| |
Collapse
|
13
|
Wang G, Liu Y, Bai X, Cao P, Pang X, Han J. Identification and poisoning diagnosis of Aconitum materials using a genus-specific nucleotide signature. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113539. [PMID: 35489139 DOI: 10.1016/j.ecoenv.2022.113539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Aconitum genus generally contains hypertoxic alkaloids. Poisoning incidents due to the improper ingestion of Aconitum materials frequently occur around the world. DNA barcoding is considered as a powerful tool for species identification, but complete sequences of conventional DNA barcodes are sometimes unattainable from food and highly processed products due to severe DNA degradation. Therefore, a shorter molecular marker will be more profitable for the authentication and poisoning diagnosis of Aconitum materials. In this study, 1246 psbA-trnH sequences and chloroplast genomes representing 183 taxa of Aconitum were collected, and a 23-bp nucleotide signature unique to Aconitum genus (5'-TATATGAGTCATTGAAGTTGCAG-3') was developed. The nucleotide signature was conserved and universal within Aconitum while divergent among other genera. The specific molecular signature was then successfully applied to the detection of processed Aconitum ingredients. To further evaluate the application potential of nucleotide signature in completely unknown mixture samples, boiled food mixtures, containing different ratios of Aconitum materials, were sequenced by high-throughput sequencing technology. The results showed that the nucleotide signature sequence could be directly extracted from raw sequencing data, even at a low DNA concentration of 0.2 ng/µl. Consequently, the 23-bp genus-specific nucleotide signature represents a significant step forward in the use of DNA barcoding to identify processed samples and food mixtures with degraded DNA. This study undoubtedly provides a new perspective and strong support for the identification and detection of Aconitum-containing products, which can be further introduced to the diagnosis of food poisoning.
Collapse
Affiliation(s)
- Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xuanjiao Bai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Pei Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiaohui Pang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
14
|
Development of a Genus-Universal Nucleotide Signature for the Identification and Supervision of Ephedra-Containing Products. Molecules 2022; 27:molecules27072342. [PMID: 35408741 PMCID: PMC9000813 DOI: 10.3390/molecules27072342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Ephedra plants generally contain ephedrine alkaloids, which are the critical precursor compounds of methamphetamine (METH). METH could cause serious physical and mental damage, and therefore Ephedra materials are strictly in supervision internationally. However, unlawful utilization of Ephedra herbs and its products still exist. Thus, it is imperative to establish a universal method for monitoring Ephedra ingredients in complex mixtures and processed products. In this study, 224 ITS2 sequences representing 59 taxa within Ephedra were collected, and a 23-bp genus-level nucleotide signature (GTCCGGTCCGCCTCGGCGGTGCG) was developed for the identification of the whole genus. The specific primers MH-1F/1R were designed, and 125 individuals of twelve Ephedra species/varieties were gathered for applicability verification of the nucleotide signature. Additionally, seven batches of Chinese patent medicines containing Ephedra herbs were used to test the application of the nucleotide signature in complex and highly processed materials. The results demonstrated that the 23-bp molecular marker was unique to Ephedra and conserved within the genus. It can be successfully utilized for the detection of Ephedra components in complex preparations and processed products with severe DNA degradation. The method developed in this study could undoubtedly serve as a strong support for the supervision of illegal circulation of Ephedra-containing products.
Collapse
|
15
|
Wang G, Bai X, Chen X, Ren Y, Pang X, Han J. Detection of Adulteration and Pesticide Residues in Chinese Patent Medicine Qipi Pill Using KASP Technology and GC-MS/MS. Front Nutr 2022; 9:837268. [PMID: 35369100 PMCID: PMC8965643 DOI: 10.3389/fnut.2022.837268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Chinese patent medicines (CPMs) are of great value for the prevention and treatment of diseases. However, adulterants and pesticide residues in CPMs have become the “bottleneck” impeding the globalization of traditional Chinese medicine. In this study, 12 batches of commercially available Qipi pill (a famous CPM recorded in Chinese Pharmacopeia) from different manufacturers were investigated to evaluate their authenticity and quality safety. Considering the severely degraded DNA in CPMs, kompetitive allele specific PCR (KASP) technology combined with DNA mini-barcodes was proposed for the quality regulation of a large number of products in CPM market. The residues of four kinds of pesticides including pentachloronitrobenzene (PCNB), hexachlorocyclohexane (HCH), aldrin, and dichlorodiphenyltrichloroethane (DDT) were quantified using gas chromatography and tandem mass spectrometry (GC-MS/MS). The results indicated that in two of the 12 batches of Qipi pill, the main herbal ingredient Panax ginseng was completely substituted by P. quinquefolius, and one sample was partially adulterated with P. quinquefolius. The PCNB residue was detected in 11 batches of Qipi pill, ranging from 0.11 to 0.46 mg/kg, and the prohibited pesticide HCH was present in four samples. Both adulteration and banned pesticides were found in two CPMs. This study suggests that KASP technology combined with DNA mini-barcodes can be used for the quality supervision of large sample size CPMs with higher efficiency but lower cost. Our findings also provide the insight that pesticide residues in CPMs should be paid more attention in the future.
Collapse
|
16
|
Liu Q, Guo S, Zheng X, Shen X, Zhang T, Liao B, He W, Hu H, Cheng R, Xu J. Licorice Germplasm Resources Identification Using DNA Barcodes Inner-Variants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2036. [PMID: 34685843 PMCID: PMC8541099 DOI: 10.3390/plants10102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Based on the gradual transformation from wild growth to artificial cultivation, the accurate authentication of licorice seeds contributes to the first committed step of its quality control and is pivotal to ensure the clinical efficacy of licorice. However, it is still challenging to obtain genetically stable licorice germplasm resources due to the multi-source, multi-heterozygous, polyploid, and hybrid characteristics of licorice seeds. Here, a new method for determining the heterozygosity of licorice seed mixture, based on the various sites, and finding the composition characteristics of licorice seed is preliminarily designed and proposed. Namely, high-throughput full-length multiple DNA barcodes(HFMD), based on ITS multi-copy variation exist, the full-length amplicons of ITS2, psbA-trnH and ITS are directly sequenced by rDNA through the next-generation sequence(NGS) and single-molecule real-time (SMRT) technologies. By comparing the three sequencing methods, our results proved that SMRT sequencing successfully identified the complete gradients of complex mixed samples with the best performance. Meanwhile, HFMD is a brilliant and feasible method for evaluating the heterozygosity of licorice seeds. It shows a perfect interpretation of DNA barcoding and can be applied in multi-base multi-heterozygous and polyploid species.
Collapse
Affiliation(s)
- Qianwen Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Q.L.); (T.Z.); (B.L.)
| | - Shuai Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.G.); (W.H.)
| | - Xiasheng Zheng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Xiaofeng Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China;
| | - Tianyi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Q.L.); (T.Z.); (B.L.)
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Q.L.); (T.Z.); (B.L.)
| | - Wenrui He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.G.); (W.H.)
| | - Haoyu Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Q.L.); (T.Z.); (B.L.)
| | - Ruiyang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Q.L.); (T.Z.); (B.L.)
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Q.L.); (T.Z.); (B.L.)
| |
Collapse
|
17
|
Yanaso S, Phrutivorapongkul A, Hongwiset D, Piyamongkol S, Intharuksa A. Verification of Thai ethnobotanical medicine "Kamlang Suea Khrong" driven by multiplex PCR and powerful TLC techniques. PLoS One 2021; 16:e0257243. [PMID: 34534243 PMCID: PMC8448358 DOI: 10.1371/journal.pone.0257243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
Kamlang Suea Khrong (KSK) crude drug, a traditional Thai medicine used for oral tonic and analgesic purposes, is obtained from three origins: the inner stem bark of Betula alnoides (BA) or the stems of Strychnos axillaris (SA) or Ziziphus attopensis (ZA). According to the previous reports, SA contains strychnine-type alkaloids that probably cause poisoning; however, only organoleptic approaches are insufficient to differentiate SA from the other plant materials. To ensure the botanical origin of KSK crude drug, powerful and reliable tools are desperately needed. Therefore, molecular and chemical identification methods, DNA barcoding and thin-layer chromatography (TLC), were investigated. Reference databases, i.e., the ITS region and phytochemical profile of the authentic plant species, were conducted. In case of molecular analysis, multiplex polymerase chain reaction (PCR) based on species-specific primers was applied. Regarding species-specific primers designation, the suitability of three candidate barcode regions (ITS, ITS1, and ITS2) was evaluated by genetic distance using K2P model. ITS2 presented the highest interspecific variability was verified its discrimination power by tree topology. Accordingly, ITS2 was used to create primers that successfully specified plant species of authentic samples. For chemical analysis, TLC with toluene:ethyl acetate:ammonia (1:9:0.025) and hierarchical clustering were operated to identify the authentic crude drugs. The developed multiplex PCR and TLC methods were then applied to identify five commercial KSK crude drugs (CK1-CK5). Both methods correspondingly indicated that CK1-CK2 and CK3-CK5 were originated from BA and ZA, respectively. Molecular and chemical approaches are convenient and effective identification methods that can be performed for the routine quality-control of the KSK crude drugs for consumer reliance. According to chemical analysis, the results indicated BA, SA, and ZA have distinct chemical profiles, leading to differences in pharmacological activities. Consequently, further scientific investigations are required to ensure the quality and safety of Thai ethnobotanical medicine known as KSK.
Collapse
Affiliation(s)
- Suthira Yanaso
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Bang Phli, Samutprakan, Thailand
| | - Ampai Phrutivorapongkul
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Darunee Hongwiset
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Sirivipa Piyamongkol
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
18
|
Wang B, Wu Z, Li W, Liu G, Tang Y. Insights into the molecular mechanisms of Huangqi decoction on liver fibrosis via computational systems pharmacology approaches. Chin Med 2021; 16:59. [PMID: 34301291 PMCID: PMC8306236 DOI: 10.1186/s13020-021-00473-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/17/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The traditional Chinese medicine Huangqi decoction (HQD) consists of Radix Astragali and Radix Glycyrrhizae in a ratio of 6: 1, which has been used for the treatment of liver fibrosis. In this study, we tried to elucidate its action of mechanism (MoA) via a combination of metabolomics data, network pharmacology and molecular docking methods. METHODS Firstly, we collected prototype components and metabolic products after administration of HQD from a publication. With known and predicted targets, compound-target interactions were obtained. Then, the global compound-liver fibrosis target bipartite network and the HQD-liver fibrosis protein-protein interaction network were constructed, separately. KEGG pathway analysis was applied to further understand the mechanisms related to the target proteins of HQD. Additionally, molecular docking simulation was performed to determine the binding efficiency of compounds with targets. Finally, considering the concentrations of prototype compounds and metabolites of HQD, the critical compound-liver fibrosis target bipartite network was constructed. RESULTS 68 compounds including 17 prototype components and 51 metabolic products were collected. 540 compound-target interactions were obtained between the 68 compounds and 95 targets. Combining network analysis, molecular docking and concentration of compounds, our final results demonstrated that eight compounds (three prototype compounds and five metabolites) and eight targets (CDK1, MMP9, PPARD, PPARG, PTGS2, SERPINE1, TP53, and HIF1A) might contribute to the effects of HQD on liver fibrosis. These interactions would maintain the balance of ECM, reduce liver damage, inhibit hepatocyte apoptosis, and alleviate liver inflammation through five signaling pathways including p53, PPAR, HIF-1, IL-17, and TNF signaling pathway. CONCLUSIONS This study provides a new way to understand the MoA of HQD on liver fibrosis by considering the concentrations of components and metabolites, which might be a model for investigation of MoA of other Chinese herbs.
Collapse
Affiliation(s)
- Biting Wang
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zengrui Wu
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Weihua Li
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Guixia Liu
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Tang
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
19
|
Hirohara T, Tsuri K, Miyagawa K, Paine RTR, Yamanaka H. The Application of PMA (Propidium Monoazide) to Different Target Sequence Lengths of Zebrafish eDNA: A New Approach Aimed Toward Improving Environmental DNA Ecology and Biological Surveillance. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.632973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Environmental DNA (eDNA) analysis has enabled more sensitive and efficient biological monitoring than traditional methods. However, since the target species is not directly observed, interpretation of results cannot preclude process Type I errors. Specifically, there may be a spatial or temporal gap between the target eDNA and the eDNA source in the sampled area. Moreover, eDNA surveillance lacks the ability to distinguish whether eDNA originated from a living or non-living source. This kind of Type I error is difficult to control for, in part, because the relationship between the state of eDNA (i.e., intracellular or extracellular) and the degradation rate is still unclear. Here, we applied PMA (Propidium monoazide) to eDNA analysis which enabled us to differentiate “intact cells” from “disrupted cells.” PMA is a dye that has a high affinity for double-stranded DNA and forms a covalent bond with double-stranded DNA and inhibits amplification of the bonded DNA molecules by PCR. Since PMA is impermeable to the cell membrane, DNA protected by an intact cell membrane can be selectively detected. In this study, we investigated the workability of PMA on vertebrate eDNA using zebrafish, Danio rerio. Aquarium water was incubated for 1 week to monitor the eDNA degradation process of both intracellular and extracellular eDNA. We developed ten species-specific quantitative PCR assays for D. rerio with different amplification lengths that enabled independent quantification of total eDNA (sum of intracellular and extracellular eDNA, commonly measured in other studies) and intracellular eDNA (DNA in intact cells) and allow for analyses of sequence length-dependent eDNA degradation in combination with PMA. We confirmed that PMA is effective at differentiating “intact” and “disrupted” fish cells. We found that total eDNA and intracellular eDNA have different degradation processes that are dependent on the length of target sequence. For future conservation efforts using eDNA analyses, it is necessary to increase the reliability of the analysis results. The research presented here provides new analysis tools that expand our understanding of the ecology of eDNA, so that more accurate and reliable conclusions can be determined.
Collapse
|
20
|
Yik MHY, Kong BLH, Siu TY, Lau DTW, Cao H, Shaw PC. Differentiation of Hedyotis diffusa and Common Adulterants Based on Chloroplast Genome Sequencing and DNA Barcoding Markers. PLANTS (BASEL, SWITZERLAND) 2021; 10:161. [PMID: 33467716 PMCID: PMC7829813 DOI: 10.3390/plants10010161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022]
Abstract
Chinese herbal tea, also known as Liang Cha or cooling beverage, is popular in South China. It is regarded as a quick-fix remedy to relieve minor health problems. Hedyotis diffusa Willd. (colloquially Baihuasheshecao) is a common ingredient of cooling beverages. H. diffusa is also used to treat cancer and bacterial infections. Owing to the high demand for H. diffusa, two common adulterants, Hedyotis brachypoda (DC.) Sivar and Biju (colloquially Nidingjingcao) and Hedyotis corymbosa (L.) Lam. (colloquially Shuixiancao), are commonly encountered in the market. Owing to the close similarity of their morphological characteristics, it is difficult to differentiate them. Here, we sequenced the complete chloroplast genomes of the three species of Hedyotis using next-generation sequencing (NGS). By comparing the complete chloroplast genomes, we found that they are closely related in the subfamily Rubioideae. We also discovered that there are significant differences in the number and repeating motifs of microsatellites and complex repeats and revealed three divergent hotspots, rps16-trnQ intergenic spacer, ndhD and ycf1. By using these species-specific sequences, we propose new DNA barcoding markers for the authentication of H. diffusa and its two common adulterants.
Collapse
Affiliation(s)
- Mavis Hong-Yu Yik
- Li Dak Sum Yip Yio Chin R & D Center for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; (M.H.-Y.Y.); (B.L.-H.K.); (D.T.-W.L.)
| | - Bobby Lim-Ho Kong
- Li Dak Sum Yip Yio Chin R & D Center for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; (M.H.-Y.Y.); (B.L.-H.K.); (D.T.-W.L.)
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China;
| | - Tin-Yan Siu
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China;
| | - David Tai-Wai Lau
- Li Dak Sum Yip Yio Chin R & D Center for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; (M.H.-Y.Y.); (B.L.-H.K.); (D.T.-W.L.)
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China;
| | - Hui Cao
- Research Center for Traditional Chinese Medicine of Lingnan (Southern China) and College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Pang-Chui Shaw
- Li Dak Sum Yip Yio Chin R & D Center for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; (M.H.-Y.Y.); (B.L.-H.K.); (D.T.-W.L.)
- Shiu-Ying Hu Herbarium, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China;
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants (CUHK), The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
21
|
Ichim MC, de Boer HJ. A Review of Authenticity and Authentication of Commercial Ginseng Herbal Medicines and Food Supplements. Front Pharmacol 2021; 11:612071. [PMID: 33505315 PMCID: PMC7832030 DOI: 10.3389/fphar.2020.612071] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Ginseng traditional medicines and food supplements are the globally top selling herbal products. Panax ginseng, Panax quinquefolius and Panax notoginseng are the main commercial ginseng species in herbal medicine. Prices of ginseng products vary widely based on the species, quality, and purity of the used ginseng, and this provides a strong driver for intentional adulteration. Our systematic literature search has reviewed the authenticity results of 507 ginseng-containing commercial herbal products sold in 12 countries scattered across six continents. The analysis of the botanical and chemical identity of all these products shows that 76% are authentic while 24% were reported as adulterated. The number of commercial products as well as the percentage of adulteration varies significantly between continents, being highest in South America (100%) and Australia (75%), and lower in Europe (35%), North America (23%), Asia (21%) and Africa (0%). At a national level, from the five countries for which more than 10 products have been successfully authenticated, the highest percentage of adulterated ginseng products were purchased from Taiwan (49%), followed by Italy (37%), China (21%), and USA (12%), while all products bought in South Korea were reported to be authentic. In most cases, labeled Panax species were substituted with other Panax species, but substitution of ginseng root, the medicinally recommended plant part, with leaves, stems or flowers was also reported. Efficient and practical authentication using biomarkers to distinguish the main ginseng varieties and secondary metabolite spectra for age determination are essential to combat adulteration in the global marketplace.
Collapse
Affiliation(s)
- Mihael Cristin Ichim
- “Stejarul” Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamt, Romania
| | | |
Collapse
|
22
|
Guo M, Jiang W, Yu J, Pang X. Investigating the authenticity of Ophiopogonis Radix and its Chinese patent medicines by using a nucleotide signature. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113134. [PMID: 32668322 DOI: 10.1016/j.jep.2020.113134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ophiopogonis Radix (Maidong), derived from the dried root tuber of Ophiopogon japonicus (Thunb.) Ker Gawl., has been widely used in the treatment of chronic inflammatory and cardiovascular diseases. However, Ophiopogonis Radix is often adulterated with some species because of morphological similarities. Adulterants circulating in herbal markets are a latent threat to the clinical safety and consumers' interest. AIM OF THE STUDY We aimed to develop a nucleotide signature for identification of Ophiopogonis Radix and its Chinese patent medicines. MATERIALS AND METHODS A total of 255 ITS2 sequences representing 39 species and 4 varieties were used to develop a nucleotide signature of Ophiopogonis Radix. The nucleotide signature was used to investigate 17 commercial crude drugs and eight batches of Chinese patent medicines. RESULTS A 69 bp nucleotide signature unique to Ophiopogonis Radix was found. The survey revealed that 2 of 17 crude drug samples were adulterants detected as Liriopes Radix (Shanmaidong). Fortunately, no adulterants were detected in the eight batches of Chinese patent medicines. CONCLUSIONS The newly developed nucleotide signature could be efficiently applied to identify Ophiopogonis Radix and its Chinese patent medicines, aiding in the authentication, quality control, and supervision of processed products in herbal markets.
Collapse
Affiliation(s)
- Mengyue Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Wenjun Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jingsheng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xiaohui Pang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
23
|
Tian X, Lv S, Tian H, Wang R, Wang H. Development of an accurate and reliable DNA method for botanical origin authentication of ginseng food products. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
A two-step approach for systematic identification and quality evaluation of wild and introduced Anemone flaccida Fr. Schmidt (Di Wu) based on DNA barcode and UPLC-QTOF-MS/MS. Anal Bioanal Chem 2020; 412:1807-1816. [PMID: 32025771 DOI: 10.1007/s00216-020-02426-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/22/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
Herbal materials have both medicinal and commercial values. As such, accurate species and content identification and verification are necessary to ensure the safe and effective use for medical and commodity purposes. Herein, we introduce a two-step approach for systematic identification and quality evaluation of wild and introduced Anemone flaccida Fr. Schmidt (aka Di Wu) using DNA barcode and ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS). To begin, a precise and rapid identification method based on internal transcribed spacer 2 (ITS2) sequence was developed to ensure the authenticity of 'Di Wu' species. Next, the major active components were fully characterized utilizing a targeted profile of oleanane-type triterpenoid saponins, which was established via UPLC-QTOF-MS/MS. As a result, 34 oleanane-type triterpenoid saponins were identified or characterized in 'Di Wu.' The qualitative and relative quantitative analysis showed obvious differences between wild and introduced 'Di Wu.' Furthermore, dynamic changes in the contents of triterpenoid saponins throughout various harvesting periods were clearly explained and mid-April was identified as the appropriate harvest time. Moreover, results indicate that the contents of five main saponins (anhuienoside E, glycosideSt-I4a, hemsgiganoside B, flaccidoside II, and hederasaponin B) are more appropriate as a quality evaluation indicator than the current quality standard. The two-step approach provides a suitable strategy to evaluate the genuine quality of wild and introduced 'Di Wu,' and can be applied to the targeted analysis of other triterpenoid saponin analogues for quality evaluation. Graphical Abstract .
Collapse
|
25
|
Lo YT, Shaw PC. Application of next-generation sequencing for the identification of herbal products. Biotechnol Adv 2019; 37:107450. [DOI: 10.1016/j.biotechadv.2019.107450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022]
|
26
|
Shamim M, Khan NI. Neuroprotective effect ofPanax ginsengextract against cerebral ischemia–reperfusion-injury-induced oxidative stress in middle cerebral artery occlusion models. Facets (Ott) 2019. [DOI: 10.1139/facets-2018-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated the in vivo neuroprotective role of Panax ginseng extract (PGE) pretreatment against transient cerebral ischemia in a middle cerebral artery occlusion (MCAO) model. Rats were randomly divided as follows: group I, control; group II, sham-operated; group III, where animals were subjected to MCAO surgery; and group IV, where animals were orally administered 10 mL PGE per day (200 mg/kg of body weight per day) for 30 d followed by MCAO induction at day 31. Following 24 h of reperfusion, blood and tissue (brain, liver, and kidney) samples were collected for biochemical and histopathological examination. Biochemical testing included lipid profile, liver enzymes, kidney function tests, C-reactive protein (CRP), lactate dehydrogenase (LDH), glucose, and total protein estimation. Tissue antioxidants (catalase, superoxide dismutase, and glutathione) were assessed in brain, liver, and kidney tissues. MCAO-induced histopathological changes were also examined in the tissues. Pretreatment with PGE showed significant improvement in tissue antioxidant status in brain, liver and kidney tissues. PGE treatment maintains plasma lipid profile, liver enzymes, kidney function, and CRP, LDH, and glucose levels. Histologically, monocytes and macrophage infiltration were observed in the tissues of MCAO animals, whereas PGE treatment preserved tissue architecture and minimal monocyte infiltration. PGE supplementation showed a neuroprotective effect against ischemia–reperfusion injury by effectively increasing endogenous antioxidant enzyme activity.
Collapse
Affiliation(s)
- Mufzala Shamim
- Pathophysiology Research Unit, Department of Physiology, University of Karachi, Karachi 75270, Pakistan
| | - Nazish Iqbal Khan
- Pathophysiology Research Unit, Department of Physiology, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
27
|
Detecting Schisandrae Chinensis Fructus and Its Chinese Patent Medicines with a Nucleotide Signature. Genes (Basel) 2019; 10:genes10050397. [PMID: 31121984 PMCID: PMC6562420 DOI: 10.3390/genes10050397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
Schisandrae Chinensis Fructus (Wuweizi) is often adulterated with Schisandrae Sphenantherae Fructus (Nanwuweizi) in the herbal market. This adulteration is a threat to clinical treatment and safety. In this study, we aimed to develop a nucleotide signature for the identification of Wuweizi and its Chinese patent medicines based on the mini-DNA barcoding technique. We collected 49 samples to obtain internal transcribed spacer 2 (ITS2) sequences and developed a 26-bp nucleotide signature (5′-CGCTTTGCGACGCTCCCCTCCCTCCC-3′) on the basis of a single nucleotide polymorphism (SNP) site within the ITS2 region that is unique to Wuweizi. Then, using the nucleotide signature, we investigated 27 batches of commercial crude drug samples labeled as Wuweizi and eight batches of Chinese patent medicines containing Wuweizi. Results showed that eight commercial crude drug samples were adulterants and one of the Chinese patent medicines contained adulterants. The nucleotide signature can serve as an effective tool for identifying Wuweizi and its Chinese patent medicines and can thus be used to ensure clinical drug safety.
Collapse
|
28
|
Yanqing C, Bo W, Ping W, Bisheng H, Hegang L, Chao X, Mingli W, Nili W, Di L, Zhigang H, Shilin C. Rapid identification of common medicinal snakes and their adulterants using the Bar-HRM analysis method. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30:367-374. [PMID: 30686100 DOI: 10.1080/24701394.2018.1532417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Effective identification methods for snake species are lacking, exacerbating the extermination of medicinal and commercially valuable snake species. Hence, it is imperative to find fast and reliable methods to distinguish snake samples available on the market. Seventy-three samples from four families belonging to 13 genera were collected in China and found to contain common medicinal snakes and their adulterants. Cytochrome oxidase I (COI) was utilized as a DNA barcode to analyse these common snakes, and a DNA mini-barcode was employed for fast detection. Then, the DNA mini-barcode assays were coupled with a high-resolution melting (HRM) analysis (Bar-HRM) to realize the rapid discrimination of these snake species. The results showed the power of DNA barcoding with COI, which was capable of distinguishing all collected snake samples, and the combined Bar-HRM method can successfully identify the adulterants and different snake species. In particular, Bar-HRM revealed Bungarus fasciatus adulterants in B. multicinctus at concentrations as low as 1.6%. Moreover, the results of the study confirmed the effectiveness of the technique in terms of the rapid identification of snakes, which has great potential for ensuring the safety of commercially valuable snake species.
Collapse
Affiliation(s)
- Chen Yanqing
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Wang Bo
- b Hubei Institute for Drug Control , Wuhan , China
| | - Wang Ping
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Huang Bisheng
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Liu Hegang
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China.,c Zhan Yahua National Famous Traditional Chinese Medicine Experts Inheritance Studio , Wuhan , China
| | - Xiong Chao
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Wu Mingli
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Wang Nili
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China
| | - Liu Di
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China.,c Zhan Yahua National Famous Traditional Chinese Medicine Experts Inheritance Studio , Wuhan , China
| | - Hu Zhigang
- a College of Pharmacy , Hubei University of Chinese Medicine , Wuhan , China.,c Zhan Yahua National Famous Traditional Chinese Medicine Experts Inheritance Studio , Wuhan , China
| | - Chen Shilin
- d Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing , China
| |
Collapse
|
29
|
Gao Z, Liu Y, Wang X, Wei X, Han J. DNA Mini-Barcoding: A Derived Barcoding Method for Herbal Molecular Identification. FRONTIERS IN PLANT SCIENCE 2019; 10:987. [PMID: 31555305 PMCID: PMC6724574 DOI: 10.3389/fpls.2019.00987] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 07/12/2019] [Indexed: 05/06/2023]
Abstract
In recent years, the demand for natural herbal products (NHP) has increased; however, the quality of these products is difficult to confirm due to the lack of a comprehensive quality control system. Traditional methods are not effective in detecting processed ingredients. DNA barcoding is an established technique that has been used for more than 10 years. This technique uses short standard sequences (generally 200-600 bp) to identify species. While a complete DNA barcode is difficult to obtain from NHP due to DNA degradation, mini-barcoding is a complementary tool to identify species in NHP. DNA mini-barcoding uses smaller DNA segments for polymerase chain reaction amplification and can be applied to identify species rapidly. The present review summarizes the development and application of DNA mini-barcodes over recent years and discusses the limitations of this technique. This review also compares mini-barcoding and meta-barcoding, a technique using universal polymerase chain reaction primers to simultaneously amplify multiple DNA barcodes and identify many species in a single environmental sample. Additionally, other detection methods that can be combined with mini-barcodes, such as nucleotide signatures, high-resolution DNA melting analysis, and gold nanoparticles, are discussed. DNA mini-barcoding can fill the gaps left by other methods in the field of herbal molecular identification.
Collapse
|
30
|
Torres-Villarreal D, Camacho A, Castro H, Ortiz-Lopez R, de la Garza AL. Anti-obesity effects of kaempferol by inhibiting adipogenesis and increasing lipolysis in 3T3-L1 cells. J Physiol Biochem 2018; 75:83-88. [PMID: 30539499 DOI: 10.1007/s13105-018-0659-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/02/2018] [Indexed: 02/06/2023]
Abstract
Kaempferol is a natural flavonoid widely found in fruits, vegetables, and tea. Kaempferol possesses beneficial biological properties such as anti-inflammatory and antioxidant activities. Positive energy balance during obesity correlates with a pro-inflammatory chronic state. In this context, we hypothesized that kaempferol might promote anti-obesity effects by modulating adipogenesis and lipolytic pathways. Adipocyte viability at 24, 48, and 72 h was measured by an ATP-based assay. Pre-adipocytes (day 0) or mature adipocytes (day 12) were treated with 60 μM kaempferol until day 21 to evaluate its potential anti-adipogenic and lipolytic effect, respectively. Total lipid accumulation was assessed using Oil Red O staining assay. Gene expression was measured by RT-qPCR to evaluate the effect of kaempferol on adipogenesis and lipolysis gene expression. Our results showed a dose-dependent effect of kaempferol treatment on cell viability promoting cell death at higher than 60 μM concentration. Pre-adipocytes stimulation by 60 μM kaempferol resulted in 62% adipogenesis inhibition whereas in mature adipocytes, it reduced 39% intracellular lipid accumulation. Also, 60 μM kaempferol treatment decreased Cebpa mRNA expression when compared to control cells. In contrast, Pnpla2 and Lipe gene expression were upregulated in 3T3-L1 cells incubated with 60 μM kaempferol. In summary, our results showed that kaempferol modulates adipogenic differentiation in 3T3-L1 cells by promoting downregulation of Cebpa gene expression and decreasing lipid accumulation in mature adipocytes by its positive effects on Pnpla2 and Lipe mRNA levels. Kaempferol might display an anti-obesity effect.
Collapse
Affiliation(s)
- D Torres-Villarreal
- Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León, Mexico
| | - A Camacho
- Facultad de Medicna, Departamento de Bioquímica y Medicina Molecular, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León, Mexico.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León, Mexico
| | - H Castro
- Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León, Mexico
| | - R Ortiz-Lopez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | - A L de la Garza
- Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León, Mexico. .,Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
31
|
Lo YT, Yik MHY, Shaw PC. Effective authentication of Placenta Hominis. Chin Med 2018; 13:32. [PMID: 29946350 PMCID: PMC6007028 DOI: 10.1186/s13020-018-0188-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/08/2018] [Indexed: 11/30/2022] Open
Abstract
Background Human placenta is used to make the medicinal product Placenta Hominis in Asian countries. With its therapeutic benefits and limited supply, intentional or inadvertent adulteration is found in the market. In order to enforce the implementation of product description laws and protect customer rights, we established a hierarchical protocol involving morphological, chemical, biochemical and molecular diagnosis to authenticate this medicinal product. Methods Ten samples claimed as Placenta Hominis were collected from herbal shops in China, Hong Kong and Taiwan. Species-specific diagnostic primers for human, cow, deer and sheep were designed for PCR amplification and subsequent DNA sequencing for species identification. Commercially available pregnancy test strip was used to detect human chorionic gonadotropin (hCG), and progesterone competitive ELISA kit was used to detect the presence of progesterone in samples. The presence of starch in samples was tested by adding small amount of iodine solution onto the samples. Results Among the ten samples studied, results showed that no cow, deer and sheep DNA sequence was found in all samples. Five samples were genuine with the presence of human DNA, hCG and progesterone accompanied with the absence of starch fillers. On the other hand, four samples were adulterants which may be made from starch products. In addition, a sample was found as a mixture of Placenta Hominis and starch fillers, and it did not conform to the product requirement of Placenta Hominis. Conclusions The comprehensive protocol developed involving morphological, chemical, biochemical and molecular diagnosis provides an accurate method to regulatory bodies and testing laboratories for the quality control of Placenta Hominis. Electronic supplementary material The online version of this article (10.1186/s13020-018-0188-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yat-Tung Lo
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK) and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Mavis Hong-Yu Yik
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK) and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Pang-Chui Shaw
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK) and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
32
|
Liu Y, Wang XY, Wei XM, Gao ZT, Han JP. Rapid Authentication of Ginkgo biloba Herbal Products Using the Recombinase Polymerase Amplification Assay. Sci Rep 2018; 8:8002. [PMID: 29789688 PMCID: PMC5964079 DOI: 10.1038/s41598-018-26402-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/14/2018] [Indexed: 12/27/2022] Open
Abstract
Species adulteration in herbal products (HPs) exposes consumers to health risks. Chemical and morphological methods have their own deficiencies when dealing with the detection of species containing the same active compounds in HPs. In this study, we developed a rapid identification method using the recombinase polymerase amplification (RPA) assay to detect two species, Ginkgo biloba and Sophora japonica (as adulteration), in Ginkgo biloba HPs. Among 36 Ginkgo biloba HP samples, 34 were found to have Ginkgo biloba sequences, and 9 were found to have Sophora japonica sequences. During the authentication process, the RPA-LFS assay showed a higher specificity, sensitivity and efficiency than PCR-based methods. We initially applied the RPA-LSF technique to detect plant species in HPs, demonstrating that this assay can be developed into an efficient tool for the rapid on-site authentication of plant species in Ginkgo biloba HPs.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xiao-Yue Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xue-Min Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Zi-Tong Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jian-Ping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
33
|
Duan BZ, Fang HL, Li XW, Huang LF, Ping W, Chen SL. Survey of traditional Dai medicine reveals species confusion and potential safety concerns: a case study on Radix Clerodendri Japonicum. Chin J Nat Med 2018. [PMID: 28629531 DOI: 10.1016/s1875-5364(17)30063-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The adulteration of herbal products is a threat to consumer safety. In the present study, we surveyed the species composition of commercial Radix Clerodendri Japonicum products using DNA barcoding as a supervisory method. A reference database for plant-material DNA-barcode was successfully constructed with 48 voucher samples from 12 Clerodendrum species. The database was used to identify 27 Radix Clerodendri Japonicum decoction piece samples purchased from drug stores and hospitals. The DNA sequencing results revealed that only 1 decoction piece (3.70%) was authentic C. japonicum, as recorded in the Dai Pharmacopeia, whereas the other samples were all adulterants, indicating a potential safety issue. The results indicate that decoction pieces that are available in the market have complex origins and that DNA barcoding is a suitable tool for regulation of Dai medicines.
Collapse
Affiliation(s)
- Bao-Zhong Duan
- College of Pharmaceutical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Pharmaceutical Sciences, Dali University, Dali 671000, China
| | - Hai-Lan Fang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Pharmaceutical Sciences, Dali University, Dali 671000, China
| | - Xi-Wen Li
- College of Pharmaceutical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Lin-Fang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wang Ping
- College of Pharmaceutical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Shi-Lin Chen
- College of Pharmaceutical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
34
|
Yu N, Wei YL, Zhu Y, Zhu N, Wang YL, Zhang HP, Sun AD. Integrated approach for identifying and evaluating the quality of Marsdenia tenacissima in the medicine market. PLoS One 2018; 13:e0195240. [PMID: 29624609 PMCID: PMC5889066 DOI: 10.1371/journal.pone.0195240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/19/2018] [Indexed: 11/22/2022] Open
Abstract
The accurate identification and quality evaluation of herbal medical plants is highly necessary to ensure their safety and efficacy. In present study, a new strategy combining DNA barcoding techniques with thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) was proposed to facilitate the identification and quality control of M. tenacissima. In present work, the internal transcribed spacer 2 (ITS2) barcode was successfully used to identify 58 M. tenacissima samples and its adulterants. TLC successfully identified the other three M. tenacissima samples that failed to produce ITS2 regions. An adulterant was found in all the 62 samples. Moreover, the content of active medicinal ingredients is important for herbal plants quality. The content of tenacissoside H (TS-H) of M. tenacissima samples was determined by HPLC to range from 0.39% to 1.09%, which meets the criterion of the Chinese Pharmacopoeia. Thus, DNA barcoding coupled with TLC and HPLC is very promising to identify and evaluate the quality of M. tenacissima in the medicine market.
Collapse
Affiliation(s)
- Ning Yu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yu-long Wei
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yue Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Ning Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yan-li Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Hai-ping Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Ai-dong Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
- * E-mail:
| |
Collapse
|
35
|
Lo YT, Shaw PC. DNA-based techniques for authentication of processed food and food supplements. Food Chem 2018; 240:767-774. [DOI: 10.1016/j.foodchem.2017.08.022] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/07/2017] [Accepted: 08/03/2017] [Indexed: 12/31/2022]
|
36
|
Li Y, Fang T, Zhu S, Huang F, Chen Z, Wang Y. Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy combined with iPLS and SiPLS. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:37-43. [PMID: 28787625 DOI: 10.1016/j.saa.2017.06.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/07/2017] [Accepted: 06/30/2017] [Indexed: 05/24/2023]
Abstract
Olive oil adulteration with waste cooking oil was detected and quantified by combining optical Raman scattering spectroscopy and chemometrics. Spectra of 96 olive oil samples with waste cooking oil (2.5%, 5%, 10%, 20%, 30% and 50%) were collected by the portable Raman spectroscopy system. iPLS and SiPLS quantitative analysis models were established. The results revealed that spectral data after SNV processing are the best for synergy interval partial least square (SiPLS) modeling and forecast. The root mean squared error of calibration (RMSEC) is 0.0503 and the root mean squared error of validation (RMSEV) is 0.0485. The lower limit of application (LLA) of the proposed method is c[WCO]=0.5%. According to linear regression calculation, the theoretical limit of detection (LOD) of the proposed method is about c[WCO]=0.475%. The established model could make effective quantitative analysis on adulteration of waste cooking oil. It provides a quick accurate method for adulteration detection of waste cooking oil in olive oil.
Collapse
Affiliation(s)
- Yuanpeng Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, , Jinan University, Guangzhou510632, China; Department of Optoelectronic Engineering, , Jinan University, Guangzhou510632, China
| | - Tao Fang
- Department of Optoelectronic Engineering, , Jinan University, Guangzhou510632, China
| | - Siqi Zhu
- Department of Optoelectronic Engineering, , Jinan University, Guangzhou510632, China
| | - Furong Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, , Jinan University, Guangzhou510632, China; Department of Optoelectronic Engineering, , Jinan University, Guangzhou510632, China; Research Institute of Jinan University in Dongguan, Dongguan523000, China.
| | - Zhenqiang Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, , Jinan University, Guangzhou510632, China; Department of Optoelectronic Engineering, , Jinan University, Guangzhou510632, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou510632, China
| |
Collapse
|
37
|
Wang XY, Xu R, Chen J, Song JY, Newmaster SG, Han JP, Zhang Z, Chen SL. Detection of Cistanches Herba ( Rou Cong Rong) Medicinal Products Using Species-Specific Nucleotide Signatures. FRONTIERS IN PLANT SCIENCE 2018; 9:1643. [PMID: 30483295 PMCID: PMC6242781 DOI: 10.3389/fpls.2018.01643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/23/2018] [Indexed: 05/08/2023]
Abstract
Cistanches Herba is a medicinal plant that has tonification properties and is commonly used in Asia. Owing to the imbalance between supply and demand, adulterants are frequently added for profit. However, there is no regulatory oversight because quality control tools are not sufficient for identifying heavily processed products. Thus, a novel molecular tool based on nucleotide signatures and species-specific primers was developed. The ITS2 regions from 251 Cistanches Herba and adulterant samples were sequenced. On the basis of SNP sites, four nucleotide signatures within 30~37 bp and six species-specific primers were developed, and they were validated by artificial experimental mixtures consisting of six different species and different ratios. This method was also applied to detect 66 Cistanches Herba products on the market, including extracts and Chinese patent medicines. The results demonstrated the utility of nucleotide signatures in identifying adulterants in mixtures. The market study revealed 36.4% adulteration: 19.7% involved adulteration with Cynomorium songaricum or Cistanche sinensis, and 16.7% involved substitution with Cy. songaricum, Ci. sinensis, or Boschniakia rossica. The results also revealed that Cy. songaricum was the most common adulterant in the market. Thus, we recommend the use of species-specific nucleotide signatures for regulating adulteration and verifying the quality assurance of medicinal product supply chains, especially for processed products whose DNA is degraded.
Collapse
Affiliation(s)
- Xiao-yue Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medicinal Science and Peking Union Medicinal College, Beijing, China
| | - Rong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medicinal Science and Peking Union Medicinal College, Beijing, China
| | - Jun Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medicinal Science and Peking Union Medicinal College, Beijing, China
| | - Jing-yuan Song
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medicinal Science and Peking Union Medicinal College, Beijing, China
| | - Steven-G Newmaster
- NHP Research Alliance, Biodiversity Institute of Ontario (BIO), University of Guelph, Guelph, ON, Canada
| | - Jian-ping Han
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medicinal Science and Peking Union Medicinal College, Beijing, China
- *Correspondence: Jian-ping Han
| | - Zheng Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medicinal Science and Peking Union Medicinal College, Beijing, China
- Zheng Zhang
| | - Shi-lin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Lo YT, Shaw PC. DNA barcoding in concentrated Chinese medicine granules using adaptor ligation-mediated polymerase chain reaction. J Pharm Biomed Anal 2017; 149:512-516. [PMID: 29175746 DOI: 10.1016/j.jpba.2017.11.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
The use of DNA barcodes for species identification is a common laboratory practice. However, PCR amplification of full-length DNA barcode in processed material is difficult because of severe DNA fragmentation. In this study, an adaptor ligation-mediated PCR protocol was derived to amplify sets of target DNA fragments isolated from two CCMG products. The specially designed adaptor with asymmetric strands and terminal modification avoids amplification of non-target DNA sequences. DNA extracted from Angelica sinensis and Panax notoginseng CCMG were ligated with the adaptors and amplified by an adaptor primer and a single universal barcode primer to obtain partial ITS2 sequence. Results showed that various length of DNA fragments within the ITS2 region were amplified and could be used to identify the concerned species. The adaptor ligation-mediated PCR is therefore a promising universal method for species identification in highly processed herbal products.
Collapse
Affiliation(s)
- Yat-Tung Lo
- Li Dak Sum Yip Yio Chin R & D Center for Chinese Medicine, State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK) and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong, China.
| | - Pang-Chui Shaw
- Li Dak Sum Yip Yio Chin R & D Center for Chinese Medicine, State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK) and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong, China.
| |
Collapse
|
39
|
Chen Q, Ai N, Liao J, Shao X, Liu Y, Fan X. Revealing topics and their evolution in biomedical literature using Bio-DTM: a case study of ginseng. Chin Med 2017; 12:27. [PMID: 28919923 PMCID: PMC5596940 DOI: 10.1186/s13020-017-0148-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/04/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Valuable scientific results on biomedicine are very rich, but they are widely scattered in the literature. Topic modeling enables researchers to discover themes from an unstructured collection of documents without any prior annotations or labels. In this paper, taking ginseng as an example, biological dynamic topic model (Bio-DTM) was proposed to conduct a retrospective study and interpret the temporal evolution of the research of ginseng. METHODS The system of Bio-DTM mainly includes four components, documents pre-processing, bio-dictionary construction, dynamic topic models, topics analysis and visualization. Scientific articles pertaining to ginseng were retrieved through text mining from PubMed. The bio-dictionary integrates MedTerms medical dictionary, the second edition of side effect resource, a dictionary of biology and HGNC database of human gene names (HGNC). A dynamic topic model, a text mining technique, was used to emphasize on capturing the development trends of topics in a sequentially collected documents. Besides the contents of topics taken on, the evolution of topics was visualized over time using ThemeRiver. RESULTS From the topic 9, ginseng was used in dietary supplements and complementary and integrative health practices, and became very popular since the early twentieth century. Topic 6 reminded that the planting of ginseng is a major area of research and symbiosis and allelopathy of ginseng became a research hotspot in 2007. In addition, the Bio-DTM model gave an insight into the main pharmacologic effects of ginseng, such as anti-metabolic disorder effect, cardioprotective effect, anti-cancer effect, hepatoprotective effect, anti-thrombotic effect and neuroprotective effect. CONCLUSION The Bio-DTM model not only discovers what ginseng's research involving in but also displays how these topics evolving over time. This approach can be applied to the biomedical field to conduct a retrospective study and guide future studies.
Collapse
Affiliation(s)
- Qian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Ni Ai
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yufeng Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
40
|
Derivative Technology of DNA Barcoding (Nucleotide Signature and SNP Double Peak Methods) Detects Adulterants and Substitution in Chinese Patent Medicines. Sci Rep 2017; 7:5858. [PMID: 28724933 PMCID: PMC5517575 DOI: 10.1038/s41598-017-05892-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/05/2017] [Indexed: 11/21/2022] Open
Abstract
Lonicerae japonicae Flos has been used to produce hundred kinds of Chinese patent medicines (CPMs) in China. Economically motivated adulterants have been documented, leading to market instability and a decline in consumer confidence. ITS2 has been used to identify raw medicinal materials, but it’s not suitable for the identification of botanical extracts and complex CPMs. Therefore, a short barcode for the identification of processed CPMs would be profitable. A 34 bp nucleotide signature (5′ CTAGCGGTGGTCGTACGATAGCCAATGCATGAGT 3′) was developed derived from ITS2 region of Eucommiae Folium based on unique motifs. Mixtures of powdered Lonicerae japonicae Flos and Lonicerae Flos resulted in double peaks at the expected SNP (Single Nucleotide Polymorphisms) positions, of which the height of the peaks were roughly indicative of the species’ ratio in the mixed powder. Subsequently we tested 20 extracts and 47 CPMs labelled as containing some species of Lonicera. The results revealed only 17% of the extracts and 22% of the CPMs were authentic, others exist substitution or adulterant; 7% were shown to contain both of two adulterants Eucommiae Folium and Lonicerae Flos. The methods developed in this study will widely broaden the application of DNA barcode in quality assurance of natural health products.
Collapse
|
41
|
Liu Y, Wang XY, Gao ZT, Han JP, Xiang L. Detection of Ophiocordyceps sinensis and Its Common Adulterates Using Species-Specific Primers. Front Microbiol 2017; 8:1179. [PMID: 28680424 PMCID: PMC5478735 DOI: 10.3389/fmicb.2017.01179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/09/2017] [Indexed: 11/30/2022] Open
Abstract
Ophiocordyceps sinensis is a fungus that infects Hepialidae caterpillars, mummifying the larvae and producing characteristic fruiting bodies (stromata) that are processed into one of the most valued traditional Chinese medicines (TCM). The product commands a very high price due to a high demand but a very limited supply. Adulteration with other fungi is a common problem and there is a need to test preparation for the presence of the correct fungus. In the current study, a PCR-based approach for the identification of O. sinensis based on a segment of the internal transcribed spacer (ITS) region was developed. The segments is 146-bp in size and is likely to be amplified even in materials where processing led to DNA fragmentation. Primer development was based on the alignment of sequence data generated from a total of 89 samples of O. sinensis and potential adulterants as well as sequences date from 41 Ophiocordyceps species and 26 Cordyceps species available in GenBank. Tests with primer pair, DCF4/DCR4, demonstrated generation of an amplicon from DNA extracted from O. sinensis stromata, but not from extracts derived from adulterants. Species-specific primer pairs were also developed and tested for detection of the common adulterants, Cordyceps gunnii, Cordyceps cicadae, Cordyceps militaris, Cordyceps liangshanensis and Ophiocordyceps nutans. The collection of primers developed in the present study will be useful for the authentication of preparation claiming to only contain O. sinensis and for the detection of fungi used as adulterants in these preparations.
Collapse
Affiliation(s)
- Yang Liu
- Identification Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Xiao-Yue Wang
- Identification Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Zi-Tong Gao
- Identification Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Jian-Ping Han
- Identification Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Li Xiang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| |
Collapse
|
42
|
Liu Y, Fan G, Zhang J, Zhang Y, Li J, Xiong C, Zhang Q, Li X, Lai X. Metabolic discrimination of sea buckthorn from different Hippophaë species by 1H NMR based metabolomics. Sci Rep 2017; 7:1585. [PMID: 28484246 PMCID: PMC5431470 DOI: 10.1038/s41598-017-01722-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/04/2017] [Indexed: 12/16/2022] Open
Abstract
Sea buckthorn (Hippophaë; Elaeagnaceae) berries are widely consumed in traditional folk medicines, nutraceuticals, and as a source of food. The growing demand of sea buckthorn berries and morphological similarity of Hippophaë species leads to confusions, which might cause misidentification of plants used in natural products. Detailed information and comparison of the complete set of metabolites of different Hippophaë species are critical for their objective identification and quality control. Herein, the variation among seven species and seven subspecies of Hippophaë was studied using proton nuclear magnetic resonance (1H NMR) metabolomics combined with multivariate data analysis, and the important metabolites were quantified by quantitative 1H NMR (qNMR) method. The results showed that different Hippophaë species can be clearly discriminated and the important interspecific discriminators, including organic acids, L-quebrachitol, and carbohydrates were identified. Statistical differences were found among most of the Hippophaë species and subspecies at the content levels of the aforementioned interspecific discriminators via qNMR and one-way analysis of variance (ANOVA) test. These findings demonstrated that 1H NMR-based metabolomics is an applicable and effective approach for simultaneous metabolic profiling, species differentiation and quality assessment.
Collapse
Affiliation(s)
- Yue Liu
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610051, China
| | - Gang Fan
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Zhang
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjian Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Chao Xiong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qi Zhang
- National Institute for Food and Drug Control, Beijing, 100050, China
| | - Xiaodong Li
- National Institute for Food and Drug Control, Beijing, 100050, China.
| | - Xianrong Lai
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
43
|
Jia J, Xu Z, Xin T, Shi L, Song J. Quality Control of the Traditional Patent Medicine Yimu Wan Based on SMRT Sequencing and DNA Barcoding. FRONTIERS IN PLANT SCIENCE 2017; 8:926. [PMID: 28620408 PMCID: PMC5449480 DOI: 10.3389/fpls.2017.00926] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/17/2017] [Indexed: 05/22/2023]
Abstract
Substandard traditional patent medicines may lead to global safety-related issues. Protecting consumers from the health risks associated with the integrity and authenticity of herbal preparations is of great concern. Of particular concern is quality control for traditional patent medicines. Here, we establish an effective approach for verifying the biological composition of traditional patent medicines based on single-molecule real-time (SMRT) sequencing and DNA barcoding. Yimu Wan (YMW), a classical herbal prescription recorded in the Chinese Pharmacopoeia, was chosen to test the method. Two reference YMW samples were used to establish a standard method for analysis, which was then applied to three different batches of commercial YMW samples. A total of 3703 and 4810 circular-consensus sequencing (CCS) reads from two reference and three commercial YMW samples were mapped to the ITS2 and psbA-trnH regions, respectively. Moreover, comparison of intraspecific genetic distances based on SMRT sequencing data with reference data from Sanger sequencing revealed an ITS2 and psbA-trnH intergenic spacer that exhibited high intraspecific divergence, with the sites of variation showing significant differences within species. Using the CCS strategy for SMRT sequencing analysis was adequate to guarantee the accuracy of identification. This study demonstrates the application of SMRT sequencing to detect the biological ingredients of herbal preparations. SMRT sequencing provides an affordable way to monitor the legality and safety of traditional patent medicines.
Collapse
|
44
|
A Nucleotide Signature for the Identification of Angelicae Sinensis Radix (Danggui) and Its Products. Sci Rep 2016; 6:34940. [PMID: 27713564 PMCID: PMC5054691 DOI: 10.1038/srep34940] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
Abstract
It is very difficult to identify Angelicae sinensis radix (Danggui) when it is processed into Chinese patent medicines. The proposed internal transcribed spacer 2 (ITS2) is not sufficient to resolve heavily processed materials. Therefore, a short barcode for the identification of processed materials is urgently needed. In this study, 265 samples of Angelicae sinensis radix and adulterants were collected. The ITS2 region was sequenced, and based on one single nucleotide polymorphism(SNP) site unique to Angelica sinensis, a nucleotide signature consisting of 37-bp (5′-aatccgcgtc atcttagtga gctcaaggac ccttagg-3′) was developed. It is highly conserved and specific within Angelica sinensis while divergent among other species. Then, we designed primers (DG01F/DG01R) to amplify the nucleotide signature region from processed materials. 15 samples procured online were analysed. By seeking the signature, we found that 7 of them were counterfeits. 28 batches of Chinese patent medicines containing Danggui were amplified. 19 of them were found to contain the signature, and adulterants such as Ligusticum sinense, Notopterygium incisum, Angelica decursiva and Angelica gigas were detected in other batches. Thus, this nucleotide signature, with only 37-bp, will broaden the application of DNA barcoding to identify the components in decoctions, Chinese patent medicines and other products with degraded DNA.
Collapse
|
45
|
Jiang LL, Lo YT, Chen WT, Shaw PC. DNA authentication of animal-derived concentrated Chinese medicine granules. J Pharm Biomed Anal 2016; 129:398-404. [PMID: 27468133 DOI: 10.1016/j.jpba.2016.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/15/2016] [Accepted: 07/17/2016] [Indexed: 11/26/2022]
Abstract
Concentrated Chinese medicine granules (CCMG) offer patients a convenient option for traditional therapy. However with morphological and microscopic characteristics lost, it is difficult to authenticate and control the quality of these medicinal products. This study is the first to examine the feasibility of using DNA techniques to authenticate animal-derived CCMG, which has so far lacking of effective means for authentication. Primers targeting amplicons of different sizes were designed to determine the presence of PCR-amplifiable DNA fragments in two types of CCMG, namely Zaocys and Scorpio. Species-specific primers were designed to differentiate the genuine drugs from their adulterants. The specificity of the designed primers was evaluated in crude drugs (including genuine and adulterant) and CCMG. Results showed that by using species-specific primers, DNA fragments of less than 200bp could be isolated from the CCMG and the concerned source materials. This study demonstrated the presence of small size DNA in animal-derived CCMG and the DNA is effective in species identification. The work has extended the application of DNA techniques in herbal medicine and this approach may be further developed for quality control and regulatory compliance in the CCMG industry.
Collapse
Affiliation(s)
- Li-Li Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Yat-Tung Lo
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Wei-Ting Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Pang-Chui Shaw
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
46
|
Liu Y, Wang X, Wang L, Chen X, Pang X, Han J. A Nucleotide Signature for the Identification of American Ginseng and Its Products. FRONTIERS IN PLANT SCIENCE 2016; 7:319. [PMID: 27047504 PMCID: PMC4796032 DOI: 10.3389/fpls.2016.00319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/01/2016] [Indexed: 05/22/2023]
Abstract
American ginseng (derived from Panax quinquefolius) is one of the most widely used medicinal herbs in the world. Because of its high price and increasing demand, there are many adulterants on the market. The proposed internal transcribed spacer 2 (ITS2) has been used to identify raw medicinal materials, but it is not suitable for the identification of Chinese patent medicine ingredients. Therefore, a short barcode for the identification of processed American ginseng and its corresponding Chinese patent medicines would be profitable. In this study, 94 samples of American ginseng and Asian ginseng were collected from all over the world. The ITS2 region was sequenced, and a nucleotide signature was developed based on one single nucleotide polymorphism (SNP) site unique to American ginseng. The nucleotide signature (atcactcctt tgcgggagtc gaggcgg) consists of 27 bases over the length of the ITS2 sequence (420 bp). Furthermore, we also designed primer pairs to amplify the nucleotide signature; the specific primer pair 4F/4R has been found to be unique to the ginseng species and capable of amplifying the nucleotide signatures from Chinese patent medicines and decoctions. We used the nucleotide signature method to inspect ginseng products in Chinese patent medicines; 24 batches of Chinese patent medicine from stores in Beijing were amplified and sequenced successfully. Using the double peaks at the SNP sites of the nucleotide signature, 5 batches were found to be counterfeits, and 2 batches were found to contain adulterants. Thus, this nucleotide signature, with only 27 bp, has broadened the application of DNA barcoding in identification of decoctions, Chinese patent medicines and other ginseng products with degraded DNA. This method can rapidly identify ginseng products and could also be developed as an on-site detection method.
Collapse
|
47
|
Homogeneous fluorescent specific PCR for the authentication of medicinal snakes using cationic conjugated polymers. Sci Rep 2015; 5:16260. [PMID: 26537289 PMCID: PMC4633673 DOI: 10.1038/srep16260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/12/2015] [Indexed: 11/08/2022] Open
Abstract
A label-free, homogenous and sensitive one-step method for the molecular authentication of medicinal snakes has been developed by combining a rapid PCR technique with water-soluble cationic conjugated polyelectrolytes (CCPs). Three medicinal snake materials (Deinagkistrodon acutus, Zaocys dhumnades and Bungarus multicinctus; a total of 35 specimens) and 48 snake specimens with similar morphologies and textures were clearly distinguished by the naked eye by utilizing a CCP-based assay in a high-throughput manner. The identification of medicinal snakes in patented Chinese drugs was successfully performed using this detection system. In contrast to previous fluorescence-labeled oligonucleotide detection and direct DNA stain hybridization assays, this method does not require designing dye-labeled primers, and unfavorable dimer fluorescence is avoided in this homogenous method.
Collapse
|