1
|
Li X, Chen S, Wang Y, Gao P, Zhang W, Lu Y, Tu P. Pharmacokinetic study of eighteen components from aqueous extract of Corydalis Decumbentis Rhizoma in normal and MCAO rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119963. [PMID: 40354843 DOI: 10.1016/j.jep.2025.119963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine, Corydalis Decumbentis Rhizoma (Xiatianwu, XTW) is known for its beneficial effects in dispelling wind-dampness, promoting blood circulation, and alleviating pain. Conducting detailed pharmacokinetic studies on the bioavailable components of XTW will contribute to its scientific and rational development. AIM OF THE STUDY To explore and explain the pharmacokinetic characteristics of different types of isoquinoline alkaloids and the differences in their pharmacokinetic parameters between normal and middle cerebral artery occlusion (MCAO) model groups following oral administration of aqueous extract of XTW. MATERIALS AND METHODS This study established a quantitative method for the simultaneous determination of 18 alkaloids in rat plasma via ultra-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UPLC-TQ-MS/MS). The 18 alkaloids were then quantified in the plasma of normal and MCAO rats following a single oral gavage of aqueous extract of XTW. RESULTS The quantitative method developed via UPLC-TQ-MS/MS demonstrated excellent selectivity, specificity, linearity, precision, accuracy, matrix effects, recoveries, stability, dilution reliability and carry-over. Following the administration of three doses of XTW, the AUC0-t values of 5 compounds, hydrohydrastinine, corypalmine, tetrahydropalmatine, allocryptopine, and muramine, showed strong linear correlations with the administered doses. At the low dose, 16 out of 18 compounds in the normal group were rapidly absorbed (Tmax < 2 h) and the Cmax of oxyhydrastinine and tetrahydropalmatine both exceeded 100 ng/mL. Compared with those of normal rats, the AUC0-t values of 16 compounds tended to increase in MCAO rats, with a significant increase observed for 8 compounds. CONCLUSION After an oral administration of aqueous extract of XTW to rats, the compounds generally exhibited rapid absorption and elimination. Moreover, slight structural differences could lead to significant variations in pharmacokinetic properties, which may be closely related to the selectivity of intestinal bacteria, transporters, and metabolic enzymes involved in in vivo processes. Pathological damage in MCAO rats could significantly alter pharmacokinetic behaviors after oral administration of XTW aqueous extract, primarily manifesting as increased absorption and in vivo exposure. The results of pharmacokinetics of three single doses in normal rats and comparative pharmacokinetics in normal and MCAO rats provide valuable insights for elucidating the pharmacological substances in XTW and identifying more suitable lead compounds.
Collapse
Affiliation(s)
- Xiaoshuang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sijian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuqi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Peng Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wenxin Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yingyuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Tang J, Ye L, Wang B. Absorption, distribution, metabolism, and excretion (ADME) of R,S-Goitrin in Radix Isatidis in rats by LC-MS/MS determination. Fitoterapia 2025; 183:106514. [PMID: 40188993 DOI: 10.1016/j.fitote.2025.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/21/2025]
Abstract
Radix Isatidis (syn. Isatis indigotica Fort.) is employed in the treatment of fever, influenza, acute tonsillitis, viral hepatitis, and COVID-19, demonstrating diverse pharmacological activities, including antibacterial, antiviral, antioxidant, anticancer, and immune-regulatory effects. Furthermore, there is significant potential for the development of new clinical applications. In order to investigate the pharmacokinetic characteristics, a quantitative method for determining R,S-goitrin in rat plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated. The established LC-MS/MS method was employed to investigate the pharmacokinetics, tissue distribution, plasma protein binding, excretion, and metabolic characteristics of Radix Isatidis extract following oral administration in rats. Meanwhile, by comparing with the oral monomer group, the absorption profile of the extract in rats was assessed. After oral administration of different doses of Radix Isatidis extract (0.1,0.3,1 g/kg) to male rats, showed dose-dependent increases in R,S-goitrin's Cmax and AUC, with bioavailability at 56.33 %. No gender differences in pharmacokinetics (PK) were observed. Compared with the monomer R,S-goitrin (0.03 mg/kg), it was observed higher in vivo exposure AUC(0-t) and peak concentration Cmax of R,S-goitrin after dosing of the Radix Isatidis extract with equal dosage of R,S-goitrin. R,S-goitrin was widely distributed in immune organs (adrenal glands, thymus, lymph nodes), liver, spleen, and gastrointestinal tract after oral administration of Radix Isatidis extract (0.1 g/kg) in rats. R,S-goitrin was primarily excreted via urine, accounting for 56 % of the administered dose, with plasma protein binding ranging from 13 % to 16.4 % across different species. These findings provide data to support Radix Isatidis clinical use in antibacterial, anti-inflammatory, anticancer therapies, and formulation development.
Collapse
Affiliation(s)
- Jia Tang
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Yuecheng District, 312000 Shaoxing, Zhejiang Province, PR China.
| | - Lisha Ye
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Digestive Health, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, PR China.
| | - Baolian Wang
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Digestive Health, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, PR China.
| |
Collapse
|
3
|
Sun J, Chen Q, Zhuang C, Li X, Yu L, Jin W. Mechanistic insights into synergistic effects using coupled PK-PD modeling. Sci Rep 2025; 15:15631. [PMID: 40325033 PMCID: PMC12053634 DOI: 10.1038/s41598-025-00182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
Develop a novel coupled PK-PD model and apply it to quantitatively evaluate the synergistic effects of Hydroxysafflor Yellow A (HSYA) combined with Calycosin (CA) in the treatment of ischemic stroke. A total of 6 rats were modelled for middle cerebral artery occlusion (MCAO). Plasma was collected from the submandibular venous plexus of rats after the administration of HSYA and CA, and was detected and analyzed by LC-MS method. The plasma expression levels of Caspase-9, IL-1β and SOD in rats were also determined by ELISA kit. Meanwhile, a coupled PK-PD model was proposed, incorporating interaction terms between drugs and coupling of pharmacodynamic effects, to quantitatively reveal their interactions. Moreover, a numerical solution technique based on optimization methods was proposed, enabling the model to be effectively applied to experimental data. Based on the coupled PK model, HSYA and CA significantly increased each other's metabolic rates. The model also showed that CA had a larger apparent volume of distribution and clearance in rats, while HSYA had a shorter mean retention time and elimination half-life. The coupled PK-PD model indicated a synergistic effect between HSYA and CA on all three pharmacodynamic markers, with HSYA contributing more significantly. Despite individual variability among the six rats, the parameter interpretations remained consistent. The proposed coupled PK-PD model and its numerical solution algorithm successfully revealed the synergistic effects of HSYA and CA in the treatment of ischemic stroke. This model lays the foundation for future models with more complex interactions and effects.
Collapse
Affiliation(s)
- Jinzhou Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qianqian Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chumeng Zhuang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaohong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
4
|
Liu X, Ren X, Li R, Deng Q, Li X, He Y, Yao J, Zhang F, Liu W, Sun M, Li M, Ma J, Zheng Y, She G. Integrated pharmacokinetic-pharmacodynamic modeling and metabolomic research on polyphenol-rich fraction of Thymus quinquecostatus Celak. Alleviating cerebral ischemia-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118229. [PMID: 38670403 DOI: 10.1016/j.jep.2024.118229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/24/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thymus quinquecostatus Celak., a member of thymus genus in Lamiaceae family, has been used as a folk medicine for relieving exterior syndrome and alleviating pain in China. The polyphenol-rich fraction (PRF) derived from Thymus quinquecostatus Celak. had been validated that it can protect cerebral ischemia-reperfusion injury (CIRI) by activating Keap1/Nrf2/HO-1 signaling pathway. AIM OF THIS STUDY To explore effective components and their pharmacokinetic and pharmacodynamic characteristics as well as possible mechanisms of PRF in treating CIRI. MATERIALS AND METHODS Normal treated group (NTG) and tMCAO model treated group (MTG) rats were administrated PRF intragastrically. The prototype components and metabolites of PRF in plasma and brain were analyzed by the UPLC-Q-Exactive Orbitrap MSn method. Subsequently, the pharmacokinetics properties of indicative components were performed based on HPLC-QQQ-MS/MS. SOD and LDH activities were determined to study the pharmacodynamic (PD) properties of PRF. The PK-PD relationship of PRF was constructed. In addition, the effect of PRF on endogenous metabolites in plasma and brain was investigated using metabolomic method. RESULTS Salvianic acid A, caffeic acid, rosmarinic acid, scutellarin, and apigenin-7-O-glucuronide were selected as indicative components based on metabolic analysis. The non-compartmental parameters were calculated for indicative components in plasma and brain of NTG and MTG rats. Furthermore, single-component and multi-component PK-PD modeling involved Emax, Imax PD models for effect indexes were fitted as well as ANN models were established, which indicated that these components can work together to regulate SOD and LDH activities in plasma and SOD activity in brain tissue to improve CIRI. Additionally, PRF may ameliorate CIRI by regulating the disorder of endogenous metabolites in lipid metabolism, amino acid metabolism, and purine metabolism pathways in vivo, among which lipid metabolism and purine metabolism are closely related to oxidative stress. CONCLUSION The PK-PD properties of effect substances and mechanisms of PRF anti-CIRI were further elaborated. The findings provide a convincing foundation for the application of T. quinquecostatus Celak. in the maintenance of human health disorders.
Collapse
Affiliation(s)
- Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Ruiwen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Qingyue Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Xianxian Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Yingyu He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Mengyu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Mingxia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Yuan Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
5
|
Jeong JS, Kim JW, Kim JH, Chung EH, Ko JW, Hwang YH, Kim TW. Investigating Changes in Pharmacokinetics of Steroidal Alkaloids from a Hydroethanolic Fritillariae thunbergii Bulbus Extract in 2,4-Dinitrobenzene Sulfonic Acid-Induced Colitis Rats. Pharmaceuticals (Basel) 2024; 17:1001. [PMID: 39204106 PMCID: PMC11357484 DOI: 10.3390/ph17081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
Fritillariae thunbergii Bulbus (FTB), a member of the Liliaceae family, has a long history of use in many herbal formulations for traditional and modern clinical applications to treat various infections and inflammation. To understand FTB's diverse physiochemical properties, it is important to determine the pharmacokinetic properties of its active constituents, the steroidal alkaloids. The aim of the present study was to investigate the pharmacokinetic alterations of the alkaloids, the active components of FTB, in the presence of colitis. A single oral dose of FTB (1 g/kg) was treated to a 2,4-dinitrobenzene sulfonic acid (DNBS)-induced colitis rat model to assess whether the colitis condition could influence the pharmacokinetics of the major alkaloids present in FTB. Among the four major alkaloids, peimisine exhibited a significantly increased systemic exposure, approximately five times higher, under the colitis condition compared with the normal state. Meanwhile, peimine, peiminine, and sipeimine exhibited shorter half-lives in the DNBS group without significant changes in systemic absorption. As herbal medicine may contain active substances with different or opposing efficacies, careful consideration of pharmacokinetic changes in individual components due to diseases is necessary. Further experiments on peimisine are required to ensure the effectiveness and safety of FTB's clinical application in the presence of colitis.
Collapse
Affiliation(s)
- Ji-Soo Jeong
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-S.J.); (J.-W.K.); (J.-H.K.); (E.-H.C.); (J.-W.K.)
| | - Jeong-Won Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-S.J.); (J.-W.K.); (J.-H.K.); (E.-H.C.); (J.-W.K.)
| | - Jin-Hwa Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-S.J.); (J.-W.K.); (J.-H.K.); (E.-H.C.); (J.-W.K.)
| | - Eun-Hye Chung
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-S.J.); (J.-W.K.); (J.-H.K.); (E.-H.C.); (J.-W.K.)
| | - Je-Won Ko
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-S.J.); (J.-W.K.); (J.-H.K.); (E.-H.C.); (J.-W.K.)
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon 34054, Republic of Korea
| | - Tae-Won Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea; (J.-S.J.); (J.-W.K.); (J.-H.K.); (E.-H.C.); (J.-W.K.)
| |
Collapse
|
6
|
Arlee N, Ampawong S, Limpanont Y, Arunrungvichian K, Kongkiatpaiboon S, Thaenkhum U. LC-MS/MS analysis of didehydrostemofoline from Stemona collinsiae roots extracts in rats plasma and pharmacokinetics profile after oral administration. Fitoterapia 2024; 176:106041. [PMID: 38823598 DOI: 10.1016/j.fitote.2024.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Stemona collinsiae Craib., Stemonaceae, has been traditionally used as medicinal plants for insecticides, treatment of parasitic worms and various diseases in Southeast Asian countries. Its ethanolic root extract has been postulated for anthelminthic activities which has a potential for development for human gnathostomiasis drug. To investigate the pharmacokinetic profile, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method for the quantification of didehydrostemofoline in rats' plasma was developed and validated. The chromatographic separation was performed on a C18 column using 1 mM ammonium acetate in water and methanol (50:50, v/v). Tetrahydropalmatine was used as an internal standard. The multiple reaction monitoring mode was used for quantitative analysis. The validated method showed good sensitivity, linearity, precision, and accuracy. The results of stability showed that didehydrostemofoline was stable in the extracted samples in auto-sampler for 24 h and in the plasma samples under room temperature for 24 h, -20 °C for 1 month, and after three freeze-thaw processes. The developed method was applied to the pharmacokinetic study of didehydrostemofoline after oral administration of S. collinsiae root extract. Didehydrostemofoline was rapidly absorbed from the gastrointestinal tract. The time to peak drug concentration was 1.75 ± 0.62 h with maximum drug concentration of 1152.58 ± 271.18 ng/mL. Didehydrostemofoline was rapidly eliminated from the body with terminal half-life of 1.86 ± 0.50 h. Calculated drug clearance of didehydrostemofoline was 96.82 ± 23.51 L/h and volume of distribution was 260.40 ± 96.81 L. The present study provided useful data for understanding drug disposition in the body with dynamic time-course which could be beneficial for further clinical trials.
Collapse
Affiliation(s)
- Norinee Arlee
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Thailand
| | | | - Sumet Kongkiatpaiboon
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Pathum Thani 12121, Thailand; Thammasat University Research Unit in Cannabis and Herbal Products Innovation, Thammasat University (Rangsit Campus), Pathum Thani 12121, Thailand.
| | - Urusa Thaenkhum
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Thailand.
| |
Collapse
|
7
|
Cao WY, Liu JY, Sun M, Wang JK, Lu F, Yang QN, Zhang WT, Zi MJ, Zhang BE, Liu HB, Wang SG, Wu Y, Wu RZ, Wu WD, Li R, Zhu ZY, Gao R. Pharmacokinetics, safety, and efficacy of Fuqi Guben Gao in the treatment of kidney-yang deficiency syndrome: a randomized, double-blind phase I trial. Front Pharmacol 2024; 15:1351871. [PMID: 39015370 PMCID: PMC11250459 DOI: 10.3389/fphar.2024.1351871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/05/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction: Fuqi Guben Gao (FQGBG) is a botanical drug formulation composed of FuZi (FZ; Aconitum carmichaelii Debeaux [Ranunculaceae; Aconiti radix cocta]), Wolfberry (Lycium barbarum L. [Solanaceae; Lycii fructus]), and Cinnamon (Neolitsea cassia (L.) Kosterm. [Lauraceae; Cinnamomi cortex]). It has been used to clinically treat nocturia caused by kidney-yang deficiency syndrome (KYDS) for over 30 years and warms kidney yang. However, the pharmacological mechanism and the safety of FQGBG in humans require further exploration and evaluation. Methods: We investigated the efficacy of FQGBG in reducing urination and improving immune organ damage in two kinds of KYDS model rats (hydrocortisone-induced model and natural aging model), and evaluated the safety of different oral FQGBG doses through pharmacokinetic (PK) parameters, metabonomics, and occurrence of adverse reactions in healthy Chinese participants in a randomized, double-blind, placebo-controlled, single ascending dose clinical trial. Forty-two participants were allocated to six cohorts with FQGBG doses of 12.5, 25, 50, 75, 100, and 125 g. The PKs of FQGBG in plasma were determined using a fully validated LC-MS/MS method. Results: FQGBG significantly and rapidly improved the symptoms of increased urination in both two KYDS model rats and significantly resisted the adrenal atrophy in hydrocortisone-induced KYDS model rats. No apparent increase in adverse events was observed with dose escalation. Major adverse drug reactions included toothache, thirst, heat sensation, gum pain, diarrhea, abdominal distension, T-wave changes, and elevated creatinine levels. The PK results showed a higher exposure level of benzoylhypaconine (BHA) than benzoylmesaconine (BMA) and a shorter half-life of BMA than BHA. Toxic diester alkaloids, aconitine, mesaconitine, and hypaconitine were below the lower quantitative limit. Drug-induced metabolite markers primarily included lysophosphatidylcholines, fatty acids, phenylalanine, and arginine metabolites; no safety-related metabolite changes were observed. Conclusion: Under the investigated dosing regimen, FQGBG was safe. The efficacy mechanism of FQGBG in treating nocturia caused by KYDS may be related to the improvement of the hypothalamus-pituitary-adrenal axis function and increased energy metabolism. Clinical Trial Registration: https://www.chictr.org.cn/showproj.html?proj=26934, identifier ChiCTR1800015840.
Collapse
Affiliation(s)
- Wei-Yi Cao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jun-Yu Liu
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Min Sun
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Jing-Kun Wang
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Fang Lu
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Qiao-Ning Yang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Wan-Tong Zhang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Ming-Jie Zi
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Bai-E Zhang
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Hong-Bin Liu
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Shu-Ge Wang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Yi Wu
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Rong-Zu Wu
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Wen-Di Wu
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Rui Li
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zhao-Yun Zhu
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Rui Gao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
8
|
Jia Z, Zou G, Xie Y, Zhang E, Yimingjiang M, Cheng X, Fang C, Wei F. Pharmacokinetic-Pharmacodynamic Correlation Analysis of Rhodiola crenulata in Rats with Myocardial Ischemia. Pharmaceuticals (Basel) 2024; 17:595. [PMID: 38794164 PMCID: PMC11124525 DOI: 10.3390/ph17050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The pharmacokinetics (PK) of Rhodiola crenulata in rats were studied, and pharmacokinetic-pharmacodynamic (PK-PD) correlation analysis was performed to elucidate their time-concentration-effect relationship. The myocardial ischemia model was made with pituitrin. Rats were divided into sham operation, sham operation administration, model, and model administration groups (SG, SDG, MG, and MDG, respectively; n = 6). Blood was collected from the fundus venous plexus at different time points after oral administration. The HPLC-QQQ-MS/MS method was established for the quantification of five components of Rhodiola crenulata. CK, HBDH, SOD, LDH, and AST at different time points were detected via an automatic biochemical analyzer. DAS software was used to analyze PK parameters and PK-PD correlation. The myocardial ischemia model was established successfully. There were significant differences in the PK parameters (AUC0-t, AUC0-∞, Cmax) in MDG when compared with SDG. Two PD indicators, CK and HBDH, conforming to the sigmoid-Emax model, had high correlation with the five components, which indicated a delay in the pharmacological effect relative to the drug concentration in plasma. The difference in the PK parameters between modeled and normal rats was studied, and the time-concentration-effect of composition and effect indicators were investigated. This study can provide reference for the rational clinical application of Rhodiola crenulata and for related studies of other anti-myocardial ischemia drugs.
Collapse
Affiliation(s)
- Zhixin Jia
- National Institutes for Food and Drug Control, Beijing 100050, China; (Z.J.)
| | - Guoming Zou
- Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.Z.); (Y.X.)
| | - Yongyan Xie
- Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.Z.); (Y.X.)
| | - Enning Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 102401, China;
| | - Mureziya Yimingjiang
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing 102401, China;
| | - Xianlong Cheng
- National Institutes for Food and Drug Control, Beijing 100050, China; (Z.J.)
| | - Cong Fang
- Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.Z.); (Y.X.)
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing 100050, China; (Z.J.)
| |
Collapse
|
9
|
Ozeer FZ, Nagandran S, Wu YS, Wong LS, Stephen A, Lee MF, Kijsomporn J, Guad RM, Batumalaie K, Oyewusi HA, Verma A, Yadav E, Afzal S, Sekar M, Subramaniyan V, Fuloria NK, Fuloria S, Sarker MMR. A comprehensive review of phytochemicals of Withania somnifera (L.) Dunal (Solanaceae) as antiviral therapeutics. DISCOVER APPLIED SCIENCES 2024; 6:187. [DOI: 10.1007/s42452-024-05845-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/20/2024] [Indexed: 11/22/2024]
Abstract
AbstractViruses have caused millions and billions of infections and high mortality rates without successful immunization due to a lack of antiviral drugs approved for clinical use. Therefore, the discovery of novel antiviral drugs is impertinent and natural products are excellent alternative sources. Withania somnifera (L.) Dunal (Solanaceae) is recognized as one of the most significant herbs in the Ayurvedic system and it had been utilized in various biological actions for more than 3000 years. This review aimed to discuss the therapeutic effects and associated molecular mechanisms of Withania somnifera (WS) and its phytochemicals, withanolides against various viruses in preclinical and clinical settings towards developing potential inhibitors which could target virus proteins or their respective host cell receptors. WS was reported to attenuate coronavirus disease 2019 (COVID-19), serve as a potential ligand against the herpes simplex virus (HSV) DNA polymerase, suppress Alzheimer’s disease progression by inhibiting the cytotoxicity induced by the human immunodeficiency virus 1 (HIV-1)-activated beta-amyloid (Aβ), and attenuate the neuraminidase activity of H1N1 influenza. WS root extracts have also reduced the mortality rates and stress levels in tilapia infected with tilapia lake virus (TiLV), and stimulated antiviral nitric oxide formation in chicks infected with infectious bursal disease (IBD). With increasing evidence from previous literatures, further in vitro and in vivo investigations of WS against other viral infections may provide promising results.
Graphical Abstract
Collapse
|
10
|
Liu L, Lyu J, Yang L, Gao Y, Zhao B. Using Pharmacokinetic-Pharmacodynamic Modeling to Study the Main Active Substances of the Anticancer Effect in Mice from Panax ginseng- Ophiopogon japonicus. Molecules 2024; 29:334. [PMID: 38257247 PMCID: PMC10819458 DOI: 10.3390/molecules29020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Ginseng Radix et Rhizoma Rubra (Panax ginseng C.A. Mey, Hongshen, in Chinese) and Ophiopogonis Radix (Ophiopogon japonicus (L.f) Ker-Gawl., Maidong, in Chinese) are traditional Chinese herbal pairs, which were clinically employed to enhance the immune system of cancer patients. This study employed the pharmacokinetic and pharmacodynamic (PK-PD) spectrum-effect association model to investigate the antitumor active substances of P. ginseng and O. japonicus (PG-OJ). The metabolic processes of 20 major bioactive components were analyzed using Ultra-Performance Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (UPLC-MS/MS) in the lung tissue of tumor-bearing mice treated with PG-OJ. The ELISA method was employed to detect the levels of TGF-β1, TNF-α, and IFN-γ in the lung tissue of mice at various time points, and to analyze their changes after drug administration. The results showed that all components presented a multiple peaks absorption pattern within 0.083 to 24 h post-drug administration. The tumor inhibition rate of tumor and repair rate of IFN-γ, TNF-α, and TGF-β1 all increased, indicating a positive therapeutic effect of PG-OJ on A549 tumor-bearing mice. Finally, a PK-PD model based on the GBDT algorithm was developed for the first time to speculate that Methylophiopogonanone A, Methylophiopogonanone B, Ginsenoside Rb1, and Notoginsenoside R1 are the main active components in PG-OJ for lung cancer treatment.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.L.); (J.L.); (L.Y.)
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Lyu
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.L.); (J.L.); (L.Y.)
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Jinan 250355, China
- High Level Traditional Chinese Medicine Key Disciplines of the State Administration of Traditional Chinese Medicine, Pharmaceutics of Traditional Chinese Medicine, Jinan 250355, China
| | - Longfei Yang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.L.); (J.L.); (L.Y.)
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Jinan 250355, China
- High Level Traditional Chinese Medicine Key Disciplines of the State Administration of Traditional Chinese Medicine, Pharmaceutics of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.L.); (J.L.); (L.Y.)
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Jinan 250355, China
- High Level Traditional Chinese Medicine Key Disciplines of the State Administration of Traditional Chinese Medicine, Pharmaceutics of Traditional Chinese Medicine, Jinan 250355, China
| | - Bonian Zhao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (L.L.); (J.L.); (L.Y.)
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Jinan 250355, China
- High Level Traditional Chinese Medicine Key Disciplines of the State Administration of Traditional Chinese Medicine, Pharmaceutics of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
11
|
Lee A, Chung YC, Song KH, Ryuk JA, Ha H, Hwang YH. Network pharmacology-based identification of bioavailable anti-inflammatory agents from Psoralea corylifolia L. in an experimental colitis model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116534. [PMID: 37127140 DOI: 10.1016/j.jep.2023.116534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional oriental medicine, the dried seeds of Psoralea corylifolia L. (PC) have been used to treat various diseases, including gastrointestinal, urinary, orthopedic, diarrheal, ulcer, and inflammatory disorders. AIM OF THE STUDY Although its various biological properties are well-known, there is no information on the therapeutic effects and bioavailable components of PC against inflammatory bowel disease. Therefore, we focused on the relationship between hydroethanolic extract of PC (EPC) that ameliorates colitis in mice and bioactive constituents of EPC that suppress pro-inflammatory cytokines in macrophages. MATERIALS AND METHODS We investigated the therapeutic effects of EPC in a dextran sulfate sodium-induced colitis mouse model and identified the orally absorbed components of EPC using UPLC-MS/MS analysis. In addition, we evaluated and validated the mechanism of action of the bioavailable constituents of EPC using network pharmacology analysis. The effects on nitric oxide (NO) and inflammatory cytokines were measured by Griess reagent and enzyme linked immunosorbent assay in lipopolysaccharide (LPS)-induced macrophages. RESULTS In experimental colitis, EPC improved body weight loss, colon length shortening, and disease activity index. Moreover, EPC reduced the serum levels of pro-inflammatory cytokines and histopathological damage to the colon. Network pharmacological analysis identified 13 phytochemicals that were bioavailable following oral administration of EPC, as well as their potential anti-inflammatory effects. 11 identified EPC constituents markedly reduced the overproduction of NO, tumor necrosis factor-α, and/or interleukin-6 in macrophages induced by LPS. The LPS-induced expression of the nuclear factor kappa-light-chain-enhancer of activated B cells reporter gene was reduced by the 4 EPC constituents. CONCLUSIONS The results indicate that the protective activity of EPC against colitis is a result of the additive effects of each constituent on the expression of inflammatory cytokines. Therefore, it suggests that 11 bioavailable phytochemicals of EPC could aid in the management of intestinal inflammation, and also provides useful insights into the clinical application of PC for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Ami Lee
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea
| | - You Chul Chung
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Kwang Hoon Song
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Jin Ah Ryuk
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Hyunil Ha
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea.
| |
Collapse
|
12
|
Yuan Y, An B, Xie S, Qu W, Hao H, Huang L, Luo W, Liang J, Peng D. The dose regimen formulation of doxycycline hydrochloride and florfenicol injection based on ex vivo pharmacokinetic-pharmacodynamic modeling against the Actinobacillus pleuropneumoniae in pigs. ANIMAL DISEASES 2023. [DOI: 10.1186/s44149-023-00066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
AbstractDoxycycline hydrochloride and florfenicol combination (DoxHcl&FF) is an effective treatment for respiratory diseases. In the study, our objective was to evaluate the activity of DoxHcl&FF against Actinobacillus pleuropneumoniae (APP) in porcine pulmonary epithelial lining fluid (PELF) and the optimal dosage scheme to avoid the development of resistance. The DoxHcl&FF was administered intramuscularly (IM) at 20 mg/kg, and the PELF was collected at different time points. The minimum inhibitory concentration (MIC) and time-mortality curves were also included in the study. Based on the sigmoid Emax equation and dose equations, the study integrated the in vivo pharmacokinetic data of infected pigs and ex vivo pharmacodynamic data to obtain the area under concentration time curve (AUC0-24h)/MIC values in PELF and achieve bacteriostatic activity, bactericidal activity and the virtual eradication of bacteria. The study showed that the combination of DoxHcl and FF caused no significant changes in PK parameters. The peak concentration (Cmax) of FF in healthy and diseased pigs was 8.87 ± 0.08 μg/mL and 8.67 ± 0.07 μg/mL, the AUC0-24h were 172.75 ± 2.52 h·μg/mL and 180.22 ± 3.13 h·μg/mL, the Cmax of DoxHcl was 7.91 ± 0.09 μg/mL and 7.99 ± 0.05 μg/mL, and the AUC0-24h was 129.96 ± 3.70 h·μg/mL and 169.82 ± 4.38 h·μg/mL. DoxHcl&FF showed strong concentration-dependent tendencies. The bacteriostatic, bactericidal, and elimination activity were calculated as 5.61, 18.83 and 32.68 h, and the doses were 1.37 (bacteriostatic), 4.59 (bactericidal) and 7.99 (elimination) mg/kg. These findings indicated that the calculated recommended dose could assist in achieving more precise administration, increasing the effectiveness of DoxHcl&FF treatment for APP infections.
Collapse
|
13
|
Tao L, Mo Z, Li Z, Li S, Luo Z, Li D, Wang D, Zhu W, Ding B. Efficacy and Safety of Shenfu Injection on Acute Heart Failure: A Systematic Review and Meta-Analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154641. [PMID: 36646027 DOI: 10.1016/j.phymed.2023.154641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The adjunctive efficacy and safety of Shenfu Injection (SFI) for acute heart failure (AHF) still remains ambiguous even though previous studies made initial conclusions. OBJECTIVE To comprehensively evaluate the adjunctive efficacy and safety of SFI in the treatment of AHF. STUDY DESIGN This was a meta-analysis and systematic review. METHODS 8 databases were searched for qualified randomized controlled trials (RCTs) from May 1990 to May 2022. The primary results included total clinical effective rate (TCER) and left ventricular ejection fraction (LVEF). The secondary results included left ventricular end diastolic dimension (LVEDD), heart rate (HR), N-terminal pro-B-type natriuretic peptide (NT-proBNP), brain natriuretic peptide (BNP) and adverse events (AE). The quality evaluation, meta-analysis, sensitivity analysis, subgroup analysis and publication bias were conducted by RevMan5.3 software. Meta-regression analysis was conducted using Stata software 15.0, and trial sequential analyses (TSA) was performed by TSA program. Finally, the GRADE (Grading of Recommendation, Assessment, Development, and Evaluation) system was applied for evaluating the quality of evidence. RESULTS 61 RCTs containing 5505 AHF patients were included. The meta results demonstrated SFI combined with conventional western treatment (CWT) for AHF was superior to CWT alone in improving the TCER (RR = 1.21; 95% CI (1.18, 1.24); p < 0.001), improving LVEF (SMD = 0.85; 95% CI (0.77,0.92); p < 0.001) and reducing HR (SMD = -0.67; 95% CI (0.80, -0.54) p < 0.001). It had a lower AE rate in the SFI+CWT group (27/753, 3.59%) than the CWT group (68/739, 9.20%) (RR = 0.40; 95% CI (0.26, 0.61); p < 0.001). The outcomes' evidentiary quality of TCER, HR, LVEF and AE were assessed as moderate. CONCLUSION Adjunctive use of SFI was safer to improve TCER and heart function of AHF, but the results should be interpreted with cautious for clinical practice until high quality-designed RCTs were require for further confirmation due to poor quality of part of the included studies.
Collapse
Affiliation(s)
- Lanting Tao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong provincial hospital of Chinese medicine, Guangzhou, 510120, China; State key laboratory of emergency of Chinese medicine, Guangdong provincial hospital of Chinese medicine, Guangzhou, 510120, China
| | - Zhaofan Mo
- The second clinical college of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zunjiang Li
- The second clinical college of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Shuang Li
- The first clinical college of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Ziqing Luo
- Animal Experiment Centre of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Dongli Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong provincial hospital of Chinese medicine, Guangzhou, 510120, China; State key laboratory of emergency of Chinese medicine, Guangdong provincial hospital of Chinese medicine, Guangzhou, 510120, China
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 528329, China
| | - Wei Zhu
- Guangdong provincial hospital of Chinese medicine, Guangzhou, 510120, China.
| | - Banghan Ding
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong provincial hospital of Chinese medicine, Guangzhou, 510120, China; State key laboratory of emergency of Chinese medicine, Guangdong provincial hospital of Chinese medicine, Guangzhou, 510120, China.
| |
Collapse
|
14
|
Shi P, Ruan Y, Zhong C, Teng L, Ke L, Yao H. Identification of pharmacokinetic markers for safflower injection using a combination of system pharmacology, multicomponent pharmacokinetics, and quantitative proteomics study. Front Pharmacol 2022; 13:1062026. [PMID: 36506545 PMCID: PMC9727182 DOI: 10.3389/fphar.2022.1062026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Safflower injection (SI), a water-extract preparation from safflower (Carthamus tinctorius L.), has been widely used for the treatment of cardio-cerebrovascular diseases. This work aims to develop an approach for identifying PK markers of cardiovascular herbal medicines using SI as a case study. Firstly, qualitative and quantitative analyses were performed to reveal ingredients of the preparation via HPLC-MS. Subsequently, multiple PK ingredients and integrated PK investigations were carried out to ascertain ingredients with favorable PK properties (e.g., easily detected at conventional PK time points and high system exposure) for the whole preparation. Next, ingredients against cardiovascular diseases (CVDs) in the preparation were predicted with target fishing and system pharmacology studies. Finally, ingredients with favorable PK properties, satisfactory PK representativeness for the preparation, and high relevance to CVDs were considered as potential PK markers. Their therapeutic effect was further evaluated using the H2O2-induced H9c2 cardiomyocyte-injured model and a proteomics study to identify objective PK markers. As results, it disclosed that SI mainly contains 11 ingredients. Among them, five ingredients, namely, hydroxysafflor yellow A (HSYA), syringin (SYR), p-coumaric acid (p-CA), scutellarin (SCU), and p-hydroxybenzaldehyde (p-HBA), showed favorable PK properties. HSYA, SYR, and rutin (RU) were predicted to show high relevance to CVDs and screened as potential PK markers. However, only HSYA and SYR were confirmed as therapeutic ingredients against CVDs. Combined with these findings, only HSYA demonstrated satisfactory representativeness on PK properties and therapeutic effects of multiple ingredients of the preparation, thereby indicating that HSYA is a potential PK marker for the SI. The results of this study can provide a reference for the characterization of PK markers for traditional Chinese medicines.
Collapse
Affiliation(s)
- Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China,State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou, China,*Correspondence: Peiying Shi, ; Hong Yao, ,
| | - Yijun Ruan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Linglin Teng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China,*Correspondence: Peiying Shi, ; Hong Yao, ,
| |
Collapse
|
15
|
Wang Y, Xue Y, Guo HD. Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction. Front Pharmacol 2022; 13:1013740. [PMID: 36330092 PMCID: PMC9622800 DOI: 10.3389/fphar.2022.1013740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are the leading cause of global mortality, in which myocardial infarction accounts for 46% of total deaths. Although good progress has been achieved in medication and interventional techniques, a proven method to repair the damaged myocardium has not yet been determined. Stem cell therapy for damaged myocardial repair has evolved into a promising treatment for ischemic heart disease. However, low retention and poor survival of the injected stem cells are the major obstacles to achieving the intended therapeutic effects. Chinese botanical and other natural drug substances are a rich source of effective treatment for various diseases. As such, numerous studies have revealed the role of Chinese medicine in stem cell therapy for myocardial infarction treatment, including promoting proliferation, survival, migration, angiogenesis, and differentiation of stem cells. Here, we discuss the potential and limitations of stem cell therapy, as well as the regulatory mechanism of Chinese medicines underlying stem cell therapy. We focus on the evidence from pre-clinical trials and clinical practices, and based on traditional Chinese medicine theories, we further summarize the mechanisms of Chinese medicine treatment in stem cell therapy by the commonly used prescriptions. Despite the pre-clinical evidence showing that traditional Chinese medicine is helpful in stem cell therapy, there are still some limitations of traditional Chinese medicine therapy. We also systematically assess the detailed experimental design and reliability of included pharmacological research in our review. Strictly controlled animal models with multi-perspective pharmacokinetic profiles and high-grade clinical evidence with multi-disciplinary efforts are highly demanded in the future.
Collapse
Affiliation(s)
- Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuezhen Xue
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hai-dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Law SK, Wang Y, Lu X, Au DCT, Chow WYL, Leung AWN, Xu C. Chinese medicinal herbs as potential prodrugs for obesity. Front Pharmacol 2022; 13:1016004. [PMID: 36263142 PMCID: PMC9573959 DOI: 10.3389/fphar.2022.1016004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a leading worldwide health threat with ever-growing prevalence, it promotes the incidence of various diseases, particularly cardiovascular disease, metabolic syndrome, diabetes, hypertension, and certain cancers. Traditional Chinese Medicine (TCM) has been used to control body weight and treat obesity for thousands of years, Chinese medicinal herbs provide a rich natural source of effective agents against obesity. However, some problems such as complex active ingredients, poor quality control, and unclear therapeutic mechanisms still need to be investigated and resolved. Prodrugs provide a path forward to overcome TCM deficiencies such as absorption, distribution, metabolism, excretion (ADME) properties, and toxicity. This article aimed to review the possible prodrugs from various medicinal plants that demonstrate beneficial effects on obesity and seek to offer insights on prodrug design as well as a solution to the global obesity issues.
Collapse
Affiliation(s)
- Siu Kan Law
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yanping Wang
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, Hong Kong SAR, China
| | - Xinchen Lu
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dawn Ching Tung Au
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wesley Yeuk Lung Chow
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Chuanshan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Chuanshan Xu,
| |
Collapse
|
17
|
Yang S, Hao S, Wang Q, Lou Y, Jia L, Chen D. The interactions between traditional Chinese medicine and gut microbiota: Global research status and trends. Front Cell Infect Microbiol 2022; 12:1005730. [PMID: 36171760 PMCID: PMC9510645 DOI: 10.3389/fcimb.2022.1005730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background There is a crosstalk between traditional Chinese medicine (TCM) and gut microbiota (GM), many articles have studied and discussed the relationship between the two. The purpose of this study is to use bibliometric analysis to explore the research status and development trends of the TCM/GM research, identify and analyze the highly cited papers relating to the TCM/GM. Methods A literature search regarding TCM/GM publications from 2004 to 2021 was undertaken on August 13, 2022. The main information (full record and cited references) of publications was extracted from the Science Citation Index Expanded (SCI-E) of Web of Science Core Collection (WoSCC). The Bibliometrix of R package, CiteSpace and VOSviewer were used for bibliometric analysis. Results A total of 830 papers were included. The publication years of papers were from 2004 to 2021. The number of papers had increased rapidly since 2018. China had the most publications and made most contributions to this field. Nanjing University of Chinese Medicine and Beijing University of Chinese Medicine were in the leading productive position in TCM/GM research, Chinese Academy of Chinese Medical Sciences had the highest total citations (TC). Duan Jin-ao from Nanjing University of Chinese Medicine had the largest number of publications, and Tong Xiao-lin from China Academy of Chinese Medical Sciences had the most TC. The Journal of Ethnopharmacology had the most published papers and the most TC. The main themes in TCM/GM included the role of GM in TCM treatment of glucolipid metabolism diseases and lower gastrointestinal diseases; the mechanism of interactions between GM and TCM to treat diseases; the links between TCM/GM and metabolism; and the relationship between GM and oral bioavailability of TCM. Conclusion This study gained insight into the research status, hotspots and trends of global TCM/GM research, identified the most cited articles in TCM/GM and analyzed their characteristics, which may inform clinical researchers and practitioners’ future directions.
Collapse
Affiliation(s)
- Shanshan Yang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shaodong Hao
- Sixth Clinical School of Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yanni Lou
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Liqun Jia
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Dongmei Chen,
| | - Dongmei Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Dongmei Chen,
| |
Collapse
|
18
|
Bai X, Liu G, Yang J, Zhu J, Li X. Gut Microbiota as the Potential Mechanism to Mediate Drug Metabolism Under High-Altitude Hypoxia. Curr Drug Metab 2022; 23:8-20. [PMID: 35088664 DOI: 10.2174/1389200223666220128141038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The characteristics of pharmacokinetics and the activity and expression of drug-metabolizing enzymes and transporters significantly change under a high-altitude hypoxic environment. Gut microbiota is an important factor affecting the metabolism of drugs through direct or indirect effects, changing the bioavailability, biological activity, or toxicity of drugs and further affecting the efficacy and safety of drugs in vivo. A high-altitude hypoxic environment significantly changes the structure and diversity of gut microbiota, which may play a key role in drug metabolism under a high-altitude hypoxic environment. METHODS An investigation was carried out by reviewing published studies to determine the role of gut microbiota in the regulation of drug-metabolizing enzymes and transporters. Data and information on expression change in gut microbiota, drug-metabolizing enzymes and transporters under a high-altitude hypoxic environment were explored and proposed. RESULTS High-altitude hypoxia is an important environmental factor that can adjust the structure of the gut microbiota and change the diversity of intestinal microbes. It was speculated that the gut microbiota could regulate drug-metabolizing enzymes through two potential mechanisms, the first being through direct regulation of the metabolism of drugs in vivo and the second being indirect, i.e., through the regulation of drug-metabolizing enzymes and transporters, thereby affecting the activity of drugs. CONCLUSION This article reviews the effects of high-altitude hypoxia on the gut microbiota and the effects of these changes on drug metabolism.
Collapse
Affiliation(s)
- Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Junbo Zhu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
19
|
Tang JF, Li XL, Li WX, Zhang SQ, Li MM, Zhang H, Wang XY, Niu L. Pharmacokinetic comparison of four major bio-active components of naoxintong capsule in normal and acute blood stasis rats using ultra-performance liquid chromatography coupled with triple-quadrupole mass spectrometry. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.336835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Tang JF, Li XL, Li WX, Zhang SQ, Li MM, Zhang H, Wang XY, Niu L. Pharmacokinetic comparison of four major bio-active components of naoxintong capsule in normal and acute blood stasis rats using ultra-performance liquid chromatography coupled with triple-quadrupole mass spectrometry. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_53_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Chen M, Chen M, Lu D, Wang Y, Zhang L, Wang Z, Wu B. Period 2 Regulates CYP2B10 Expression and Activity in Mouse Liver. Front Pharmacol 2021; 12:764124. [PMID: 34887762 PMCID: PMC8650840 DOI: 10.3389/fphar.2021.764124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/03/2021] [Indexed: 01/08/2023] Open
Abstract
CYP2B10 is responsible for metabolism and detoxification of many clinical drugs. Here, we aimed to investigate a potential role of Period 2 (PER2) in regulating expression of hepatic CYP2B10. Regulatory effects of PER2 on hepatic expression of CYP2B10 and other enzymes were determined using Per2-deficient mice with exons 4-6 deleted (named Per2Del4-6 mice). In vitro and in vivo metabolic activities of CYP2B10 were probed using cyclophosphamide (CPA) as a specific substrate. Regulatory mechanism was investigated using luciferase reporter assays. Genotyping and Western blotting demonstrated loss of wild-type Per2 transcript and markedly reduced PER2 protein in Per2Del4-6 mice. Hepatic expression of a plenty of drug-metabolizing genes (including Cyp2a4/2a5, Cyp2b10, Ugt1a1, Ugt1a9, Ugt2b36, Sult1a1 and Sult1e1) were altered (and majority were down-regulated) in Per2Del4-6 mice. Of note, Cyp2b10, Ugt1a9 and Sult1a1 were three genes considerably affected with reduced expression. Decreased expression of CYP2B10 was translated to reduced metabolism and altered pharmacokinetics of CPA as well as attenuated CPA hepatotoxicity in Per2Del4-6 mice. Positive regulation of CYP2B10 by PER2 was further confirmed in both Hepa-1c1c7 and AML-12 cells. Based on luciferase reporter assays, it was shown that PER2 regulated Cyp2b10 transcription in a REV-ERBα-dependent manner. REV-ERBα was negatively regulated by PER2 (increased REV-ERBα expression in Per2Del4-6 mice) and itself was also a repressor of CYP2B10. In conclusion, PER2 positively regulates CYP2B10 expression and activity in mouse liver through inhibiting its repressor REV-ERBα.
Collapse
Affiliation(s)
- MengLin Chen
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhigang Wang
- Department of Intensive Care Unit, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Lee A, Yang H, Kim T, Ha H, Hwang YH. Identification and pharmacokinetics of bioavailable anti-resorptive phytochemicals after oral administration of Psoralea corylifolia L. Biomed Pharmacother 2021; 144:112300. [PMID: 34653758 DOI: 10.1016/j.biopha.2021.112300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 01/16/2023] Open
Abstract
Osteoporosis and resulting bone fractures are the major health issues associated with morbidity in the aging population; however, there is no effective treatment that does not cause severe side effects. In East Asia, dried seeds of Psoralea corylifolia L. (PC) have traditionally been used as an herbal medicine to manage urinary tract, cutaneous, and gastrointestinal disorders, as well as bone health. However, the mechanism of action and active biocomponents of PC are unclear. Here, we adopted a pharmacokinetic (PK) study aiming to identify the bioavailable phytochemicals in aqueous and ethanolic extracts of PC (APC) and (EPC), respectively. In addition, we aimed to determine anti-resorptive constituents of PC, which accounted for its beneficial effects on bone health. To this end, we used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A rapid, sensitive, and reliable UPLC-MS/MS method was developed and determined the 17 PC ingredients. In the PK study, nine components (two chalcones, two coumarins, one coumestan, two flavonoids, and two isoflavonoids) were observed between 36 and 48 h after oral administration of APC or EPC. Among the bioavailable ingredients, four PC constituents (psoralidin, isobavachin, corylifol A, and neobavaisoflavone) inhibited M-CSF-and RANKL-induced osteoclast differentiation in bone marrow-derived macrophages. In addition, two chalcones and two isoflavonoids markedly inhibited cathepsin K activity, and their binding modes to cathepsin K were determined by molecular docking. In summary, our data suggest that bioavailable multicomponents of PC could contribute to the management of bone health.
Collapse
Affiliation(s)
- Ami Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; University of Science & Technology (UST), Korean Convergence Medicine Major KIOM, Daejeon 34054, Republic of Korea
| | - Hyun Yang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Taesoo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Hyunil Ha
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; University of Science & Technology (UST), Korean Convergence Medicine Major KIOM, Daejeon 34054, Republic of Korea.
| |
Collapse
|
23
|
Li H, Hung A, Li M, Lu L, Yang AWH. Phytochemistry, pharmacodynamics, and pharmacokinetics of a classic Chinese herbal formula Danggui Beimu Kushen Wan: A review. Phytother Res 2021; 35:3673-3689. [PMID: 33751724 DOI: 10.1002/ptr.7063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/29/2021] [Accepted: 02/22/2021] [Indexed: 11/06/2022]
Abstract
Danggui Beimu Kushen Wan (DBKW) is a classic herbal formula for difficult urination and has been widely used for urinary-related disorders and cancers in current clinical practice. This study aimed to comprehensively review the phytochemistry, pharmacodynamics, and pharmacokinetics of DBKW in experimental studies. We searched 21 databases to identify experimental studies of DBKW. We also searched 11 databases to identify and summarize compounds from DBKW's ingredients. A total of 423 studies of DBKW were identified and 15 studies were included. For Angelicae Sinensis Radix (ASR) and Sophorae Flavescentis Radix (SFR), 2,425 and 2,843 studies were identified, and 42 and 33 studies were included, respectively. Eight compounds were found in the whole formula, 408 compounds from ASR, and 277 compounds from SFR. DBKW may have anticancer effects (inhibiting the growth of tumors, regulating cell proliferation, inducing tumor cell apoptosis, suppressing invasion and metastasis of cancer, enhancing the therapeutic effects of chemotherapy, and relieving toxicity of chemotherapy) and have benefits on chronic prostatitis (reducing inflammation, inhibiting oxidation, regulating sex hormone, and stimulating immune system). The pharmacokinetics of the seven primary compounds from DBKW were also summarized. DBKW contains multiple compounds that may act on more than one pathway of the conditions simultaneously.
Collapse
Affiliation(s)
- Hong Li
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Andrew Hung
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Mingdi Li
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Leyao Lu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Angela Wei Hong Yang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
24
|
Ying Y, Wan H, Zhao X, Yu L, He Y, Jin W. Pharmacokinetic-Pharmacodynamic Modeling of the Antioxidant Activity of Quzhou Fructus Aurantii Decoction in a Rat Model of Hyperlipidemia. Biomed Pharmacother 2020; 131:110646. [PMID: 32942150 DOI: 10.1016/j.biopha.2020.110646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Quzhou Fructus Aurantii (QFA) is an herb that is commonly used to alleviate inflammation in individuals dealing with obesity.To date, however, no systematic pharmacokinetic (PK) or pharmacodynamic (PD) analyses of the clinical efficacy of QFA under hyperlipemia-associated oxidative stress conditions have been conducted. The present study, was therefore designed to construct a PK-PD model for this herb, with the goal of linking QFA PK profiles to key therapeutic outlines to guide the therapeutic use of this herb in clinical settings. METHODS Rats were fed a high-fat diet in order to establish a model of hyperlipidemia, after which they were randomized into a normal control group (NCG), a normal treatment group (NTG), a model control group (MCG), and a model treated group (MTG) (n = 6 each). QAF decoction was used to treat rats in the NTG and MTG groups (25 g/kg), while equivalent volumes of physiological saline were administered to rats in the NCG and MCG groups. Plasma samples were collected from the mandibular vein for animals at appropriate time points and analyzed via high-performance liquid chromatography (HPLC). We evaluated PK properties for three QAF components and compared these dynamics between the NTG and MTG groups, while also measuring levels of lipid peroxidation (LPO) in the plasma of rats in all four treatment groups. We then constructed a PK-PD model based upon plasma neohesperidin, luteolin, and nobiletin concentrations and LPO levels using a three-compartment PK model together with a Sigmoid Emax PD model. This model thereby enabled us to assess the antioxidative impact of neohesperidin, luteolin, and nobiletin on hyperlipidemia in rats. RESULTS When comparing the NTG and MTG groups, we detected significant differences in the following parameters pertaining to neohesperidin, luteolin, and nobiletin:t1/2β, V1, t1/2γ, CL1 (p < 0.01) and AUC0-t, Tmax, Cmax (p < 0.05). Relative to NTG group rats, AUC0-t, TmaxandCmaxvalues significantly higher for MTG group rats (p < 0.01), while t1/2β, V1, and t1/2γ values were significantly lower in MTG group rats (p < 0.01) in MTG rats. QAF decoction also exhibited excellent PD efficacy in MTG rats, with significant reductions in plasma LPO levels relative to NTG rats (p < 0.01) following treatment. This therapeutic efficacy may be attributable to the activity of neohesperidin, luteolin, and nobiletin, as LPO levels and plasma concentrations of these compounds were negatively correlated in treated rats. Based upon Akaike Information Criterion (AIC) values, we determined that neohesperidin, luteolin, and nobiletin PK processes were consistent with a three-compartment model. Together, these findings indicated that three active components in QAF decoction (neohesperidin, luteolin, and nobiletin) may exhibit antioxidant activity in vivo. CONCLUSION Our in vivo data indicated that neohesperidin, luteolin and nobiletin components of QAF decoctions exhibit distinct PK and PD properties. Together, these findings suggest that hyperlipidemia-related oxidative stress can significantly impact QFA decoction PK and PD parameters. Our data additionally offer fundamental insights that can be used to design appropriate dosing regimens for individualized clinical QAF decoction treatment.
Collapse
Affiliation(s)
- Yuqi Ying
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Haoyu Wan
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Xixi Zhao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Li Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Weifeng Jin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
25
|
Yan C, Guo H, Ding Q, Shao Y, Kang D, Yu T, Li C, Huang H, Du Y, Wang H, Hu K, Xie L, Wang G, Liang Y. Multiomics Profiling Reveals Protective Function of Schisandra Lignans against Acetaminophen-Induced Hepatotoxicity. Drug Metab Dispos 2020; 48:1092-1103. [PMID: 32719086 DOI: 10.1124/dmd.120.000083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
The action principles of traditional Chinese medicines (TCMs) feature multiactive components, multitarget sites, and weak combination with action targets. In the present study, we performed an integrated analysis of metabonomics, proteomics, and lipidomics to establish a scientific research system on the underlying mechanism of TCMs, and Schisandra lignan extract (SLE) was selected as a model TCM. In metabonomics, several metabolic pathways were found to mediate the liver injury induced by acetaminophen (APAP), and SLE could regulate the disorder of lipid metabolism. The proteomic study further proved that the hepatoprotective effect of SLE was closely related to the regulation of lipid metabolism. Indeed, the results of lipidomics demonstrated that SLE dosing has an obvious callback effect on APAP-induced lipidic profile shift. The contents of 25 diglycerides (DAGs) and 21 triglycerides (TAGs) were enhanced significantly by APAP-induced liver injury, which could further induce liver injury and inflammatory response by upregulating protein kinase C (PKCβ, PKCγ, PKCδ, and PKCθ). The upregulated lipids and PKCs could be reversed to the normal level by SLE dosing. More importantly, phosphatidic acid phosphatase, fatty acid transport protein 5, and diacylglycerol acyltransferase 2 were proved to be positively associated with the regulation of DAGs and TAGs. SIGNIFICANCE STATEMENT: Integrated multiomics was first used to reveal the mechanism of APAP-induced acute liver failure (ALF) and the hepatoprotective role of SLE. The results showed that the ALF caused by APAP was closely related to lipid regulation and that SLE dosing could exert a hepatoprotective role by reducing intrahepatic diglyceride and triglyceride levels. Our research can not only promote the application of multicomponent technology in the study of the mechanism of traditional Chinese medicines but also provide an effective approach for the prevention and treatment of ALF.
Collapse
Affiliation(s)
- Caixia Yan
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Huimin Guo
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Qingqing Ding
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Yuhao Shao
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Dian Kang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Tengjie Yu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Changjian Li
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Haoran Huang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Yisha Du
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - He Wang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Kangrui Hu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Lin Xie
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Guangji Wang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Yan Liang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| |
Collapse
|
26
|
Is combined medication with natural medicine a promising therapy for bacterial biofilm infection? Biomed Pharmacother 2020; 128:110184. [DOI: 10.1016/j.biopha.2020.110184] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022] Open
|
27
|
Qin Z, Jia M, Yang J, Xing H, Yin Z, Yao Z, Zhang X, Yao X. Multiple circulating alkaloids and saponins from intravenous Kang-Ai injection inhibit human cytochrome P450 and UDP-glucuronosyltransferase isozymes: potential drug-drug interactions. Chin Med 2020; 15:69. [PMID: 32655683 PMCID: PMC7339578 DOI: 10.1186/s13020-020-00349-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Kang-Ai injection is widely used as an adjuvant therapy drug for many cancers, leukopenia, and chronic hepatitis B. Circulating alkaloids and saponins are believed to be responsible for therapeutic effects. However, their pharmacokinetics (PK) and excretion in vivo and the risk of drug-drug interactions (DDI) through inhibiting human cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes remain unclear. METHODS PK and excretion of circulating compounds were investigated in rats using a validated ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS) method. Further, the inhibitory effects of nine major compounds against eleven CYP and UGT isozymes were assayed using well-accepted specific substrate for each enzyme. RESULTS After dosing, 9 alkaloids were found with C max and t 1/2 values of 0.17-422.70 μmol/L and 1.78-4.33 h, respectively. Additionally, 28 saponins exhibited considerable systemic exposure with t 1/2 values of 0.63-7.22 h, whereas other trace saponins could be negligible or undetected. Besides, over 90% of alkaloids were excreted through hepatobiliary and renal excretion. Likewise, astragalosides and protopanaxatriol (PPT) type ginsenosides also involved in hepatobiliary and/or renal excretion. Protopanaxadiol (PPD) type ginsenosides were mainly excreted to urine. Furthermore, PPD-type ginsenosides were extensively bound (f u-plasma approximately 1%), whereas astragalosides and PPT-type ginsenosides displayed f u-plasma values of 12.35% and 60.23-87.36%, respectively. Moreover, matrine, oxymatrine, astragaloside IV, ginsenoside Rg1, ginsenoside Re, ginsenoside Rd, ginsenoside Rc, and ginsenoside Rb1 exhibited no inhibition or weak inhibition against several common CYP and UGT enzymes IC50 values between 8.81 and 92.21 μM. Through kinetic modeling, their inhibition mechanisms towards those CYP and UGT isozymes were explored with obtained Ki values. In vitro-in vivo extrapolation showed the inhibition of systemic clearance for CYP or UGT substrates seemed impossible due to [I]/Ki no more than 0.1. CONCLUSIONS We summarized the PK behaviors, excretion characteristics and protein binding rates of circulating alkaloids, astragalosides and ginsenosides after intravenous Kang-Ai injection. Furthermore, weak inhibition or no inhibition towards these CYP and UGT activities could not trigger harmful DDI when Kang-Ai injection is co-administered with clinical drugs primarily cleared by these CYP or UGT isozymes.
Collapse
Affiliation(s)
- Zifei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052 China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632 China
| | - Mengmeng Jia
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052 China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052 China
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhao Yin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhihong Yao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632 China
- College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052 China
| | - Xinsheng Yao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632 China
- College of Pharmacy, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
28
|
Hao DC, Xiao PG. Impact of Drug Metabolism/Pharmacokinetics and their Relevance Upon Traditional Medicine-based Cardiovascular Drug Research. Curr Drug Metab 2020; 20:556-574. [PMID: 31237211 DOI: 10.2174/1389200220666190618101526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/09/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND The representative cardiovascular herbs, i.e. Panax, Ligusticum, Carthamus, and Pueraria plants, are traditionally and globally used in the prevention and treatment of various cardiovascular diseases. Modern phytochemical studies have found many medicinal compounds from these plants, and their unique pharmacological activities are being revealed. However, there are few reviews that systematically summarize the current trends of Drug Metabolism/Pharmacokinetic (DMPK) investigations of cardiovascular herbs. METHODS Here, the latest understanding, as well as the knowledge gaps of the DMPK issues in drug development and clinical usage of cardiovascular herbal compounds, was highlighted. RESULTS The complicated herb-herb interactions of cardiovascular Traditional Chinese Medicine (TCM) herb pair/formula significantly impact the PK/pharmacodynamic performance of compounds thereof, which may inspire researchers to develop a novel herbal formula for the optimized outcome of different cardiovascular diseases. While the Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME/T) of some compounds has been deciphered, DMPK studies should be extended to more cardiovascular compounds of different medicinal parts, species (including animals), and formulations, and could be streamlined by versatile omics platforms and computational analyses. CONCLUSION In the context of systems pharmacology, the DMPK knowledge base is expected to translate bench findings to clinical applications, as well as foster cardiovascular drug discovery and development.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
29
|
Li Y, Meng Q, Yang M, Liu D, Hou X, Tang L, Wang X, Lyu Y, Chen X, Liu K, Yu AM, Zuo Z, Bi H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B 2019; 9:1113-1144. [PMID: 31867160 PMCID: PMC6900561 DOI: 10.1016/j.apsb.2019.10.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice.
Collapse
Affiliation(s)
- Yuhua Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Mengbi Yang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyu Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanfeng Lyu
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ai-Ming Yu
- UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Zhong Zuo
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
30
|
Efferth T, Xu AL, Lee DYW. Combining the wisdoms of traditional medicine with cutting-edge science and technology at the forefront of medical sciences. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153078. [PMID: 31505440 DOI: 10.1016/j.phymed.2019.153078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND A central topic is to bring traditional medicine to a new horizon by integrating the latest advances in genomic, metabolomic, and system biological approaches, in order to re-examine the wisdom and knowledge of traditional Chinese medicine (TCM) and other traditional medicines. PURPOSE A new consortium has been formed at a conference of the Harvard Medical School, Boston, on October 29-30, 2018. The main goal was to build a collaborative platform for the scientific investigation of traditional medicine with cutting edge sciences and technologies at the forefront of biomedicine. RESULTS Traditional medicines are largely experience-based, but the scientific basis is largely non-satisfactory. Therefore, the transformation from experience-based to evidence-based medicine would be an important step forward. The consortium covers three main fields: TCM diagnostics, acupuncture and TCM pharmacology. Diseases occur because of regulatory imbalances of holistic physiological display and genetic information/expression related to systems biology and energy consumption/release (e.g. cold and hot) within body. As organs are interconnected by meridians, affecting the meridians by acupuncture and medicinal herbs restores healthy organ function and body balance. There are two concepts in herbal medicine: The traditional way is based on complex herbal mixtures. The second concept is related to Western pharmacological drug development including the isolation of bioactive phytochemicals, which are subjected to preclinical and clinical investigations. CONCLUSION Development of collaborative scientific project to integrate the best of both worlds - Western and Eastern medicine into a "One World Integrative Medicine" for the sake of patients worldwide.
Collapse
Affiliation(s)
- Thomas Efferth
- Johannes Gutenberg University, Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Mainz, Germany.
| | - An-Long Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| | - David Y W Lee
- Harvard Medical School, McLean Hospital, Boston, MA, USA.
| |
Collapse
|
31
|
Li J, Olaleye OE, Yu X, Jia W, Yang J, Lu C, Liu S, Yu J, Duan X, Wang Y, Dong K, He R, Cheng C, Li C. High degree of pharmacokinetic compatibility exists between the five-herb medicine XueBiJing and antibiotics comedicated in sepsis care. Acta Pharm Sin B 2019; 9:1035-1049. [PMID: 31649852 PMCID: PMC6804443 DOI: 10.1016/j.apsb.2019.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Managing the dysregulated host response to infection remains a major challenge in sepsis care. Chinese treatment guideline recommends adding XueBiJing, a five-herb medicine, to antibiotic-based sepsis care. Although adding XueBiJing further reduced 28-day mortality via modulating the host response, pharmacokinetic herb–drug interaction is a widely recognized issue that needs to be studied. Building on our earlier systematic chemical and human pharmacokinetic investigations of XueBiJing, we evaluated the degree of pharmacokinetic compatibility for XueBiJing/antibiotic combination based on mechanistic evidence of interaction risk. Considering both XueBiJing‒antibiotic and antibiotic‒XueBiJing interaction potential, we integrated informatics-based approach with experimental approach and developed a compound pair-based method for data processing. To reflect clinical reality, we selected for study XueBiJing compounds bioavailable for drug interactions and 45 antibiotics commonly used in sepsis care in China. Based on the data of interacting with drug metabolizing enzymes and transporters, no XueBiJing compound could pair, as perpetrator, with the antibiotics. Although some antibiotics could, due to their inhibition of uridine 5′-diphosphoglucuronosyltransferase 2B15, organic anion transporters 1/2 and/or organic anion-transporting polypeptide 1B3, pair with senkyunolide I, tanshinol and salvianolic acid B, the potential interactions (resulting in increased exposure) are likely desirable due to these XueBiJing compounds' low baseline exposure levels. Inhibition of aldehyde dehydrogenase by 7 antibiotics probably results in undesirable reduction of exposure to protocatechuic acid from XueBiJing. Collectively, XueBiJing/antibiotic combination exhibited a high degree of pharmacokinetic compatibility at clinically relevant doses. The methodology developed can be applied to investigate other drug combinations.
Collapse
Key Words
- 4-MU, 4-methylumbelliferone
- 4-MUG, 4-methylumbelliferyl-β-d-glucuronide
- ABC transporter, ATP-binding cassette transporter
- ADR, adverse drug reaction
- ALDH, aldehyde dehydrogenase
- AMP, adenosine monophosphate
- AQ, amodiaquine
- ATP, adenosine triphosphate
- Antibiotic
- BCRP, breast cancer resistance protein
- BSEP, bile salt export pump
- CLR, renal clearance
- CLtot,p, total plasma clearance
- COMT, catechol-O-methyltransferase
- Cmax, maximum plasma concentration
- Combination drug therapy
- DDI, drug‒drug interaction
- DEAQ, desethylamodiaquine
- E2, β-estradiol
- E217βG, estradiol-17β-d-glucuronide
- E23βG, β-estradiol-3-β-d-glucuronide
- GF, glomerular filtration
- GFR, glomerular filtration rate
- HEK-293, human embryonic kidney 293 cell line
- Herb‒drug interaction
- IC50, half-maximal inhibitory concentration
- Km, Michaelis constant
- MATE, multidrug and toxin extrusion protein
- MDR1, multidrug resistance transporter 1
- MRP, multidrug resistance protein
- NAD+, nicotinamide adenine dinucleotide
- OAT, organic anion transporter
- OATP, organic anion-transporting polypeptide
- OCT, organic cation transporter
- PAH, para-aminohippuric acid
- PK, pharmacokinetic
- PKC, pharmacokinetic compatibility
- Pharmacokinetic compatibility
- SLC transporter, solute carrier transporter
- Sepsis
- TEA, tetraethylammonium
- TFP, trifluoperazine
- TFPG, trifluoperazine-N-β-d-glucuronide
- TS, tubular secretion
- UGT, uridine 5′-diphosphoglucuronosyltransferases
- VSS, apparent volume of distribution at steady state
- XueBiJing
- fe-U, fraction of dose excreted unchanged into urine
- fu-p, unbound fraction in plasma
- t1/2, elimination half-life
Collapse
|