1
|
Chen YR, Yang XF, Ding XJ, Luo Y, Kuai L, Li B, Zhou M, Luo Y, Fei XY. Efficacy and safety of Kangfuxin liquid for eczema: a systematic review and meta-analysis. Arch Dermatol Res 2025; 317:608. [PMID: 40111524 DOI: 10.1007/s00403-025-03983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 03/22/2025]
Abstract
Eczema is a chronic, recurrent dermatosis with the skin repeated inflammation, itching, red and swollen. Such experience often take a physical and mental double burden on patients and their caregivers and family member. At present, the existing treatment methods have different limitations. In China, Kangfuxin liquid has been clinically used to treat eczema, and has shown good therapeutic effect. In order to conduct a more comprehensive analysis of clinical data and bring more references for clinicians and experts, this paper adopted a systematic review and meta-analysis to evaluate the effectiveness of Kangfuxin liquid in the treatment of eczema. We conducted a search in several databases, including EMBASE, PubMed, and the Cochrane Library, to identify suitable randomized controlled trials (RCTs). Following this, we gathered data from the RCTs which compared conventional therapies to Kangfuxin liquid alone or in combination with conventional therapies. We utilized RevMan 5.4 software to compute 95% confidence intervals (CIs) and risk ratios (RRs), and to carry out the meta-analysis. 17 meta-analyses involving 1725 patients were included. A meta-analysis showed that standalone Kangfuxin liquid therapy significantly improved the overall effective rate compared to nonglucocorticoid ointment therapy (Kangfuxin liquid vs nonglucocorticoid ointment: RR, 1.24; 95% CI, 1.09-1.42; P = 0.001). The total effective rate for standalone Kangfuxin liquid therapy was consistent with that of glucocorticoid ointment therapy (Kangfuxin liquid vs glucocorticoid ointment: RR, 1.09; 95% CI, 0.88-1.36; P = 0.41). In addition, the results were significantly improved when Kangfuxin liquid combined with conventional western medicine (Kangfuxin liquid + conventional Western medicine vs conventional Western medicine: RR, 1.12; 95% CI, 1.03-1.22; P = 0.009). Kangfuxin liquid can effectively treat eczema. However, further scale-up, involving more rigorous, precise, and inclusive meta-analyses are needed to make a significant difference in the treatment of eczema.
Collapse
Affiliation(s)
- Yi-Ran Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiao-Fan Yang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiao-Jie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Mi Zhou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
2
|
Wang F, Guo SQ, Su TH, Tian XJ, Wen WJ, Pan HP, Wang XF, Zhang W, Zhong JL, Dong ZS, Luo P. Bioactive-Enriched Nanovesicles from American Cockroaches Enhance Wound Healing by Promoting Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13565-13576. [PMID: 39988799 DOI: 10.1021/acsami.4c21532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Skin trauma often results from pain, swelling, and scarring and can significantly interfere with daily activities. Extracts from the American cockroach, a rapidly reproducing insect, have been recognized for therapeutic properties in wound management. Traditional extraction methods use solvents such as ethanol to obtain the active compounds, but these methods may compromise the intrinsic biological properties of American cockroach extracts. In this study, we investigated the use of nanovesicles isolated from fresh American cockroaches in skin wound treatment and focused on their biological characteristics and therapeutic efficacy. Fresh and dried American cockroach nanovesicles (F-ACNVs and D-ACNVs, respectively) were procured via ultrahigh-speed centrifugation. We found that F-ACNVs exhibited superior cell proliferation-promoting activity. By employing metabolomics, proteomics, and long noncoding RNA (lncRNA) omics, we identified a rich repertoire of metabolites, proteins, and lncRNAs within F-ACNVs. In vitro and in vivo experiments demonstrated that F-ACNVs significantly enhanced the proliferation and migration of human umbilical vein endothelial cells (HUVECs) and human skin keratinocytes (HACATs) as well as the repair of skin mechanical trauma. These effects may be mediated through the activation of angiogenic signaling pathways. Our research introduces a novel therapeutic strategy for treating skin trauma and offers insight into the medicinal potential of insects such as the American cockroach while emphasizing the importance of preserving the intrinsic biological properties of insects for optimal therapeutic outcomes.
Collapse
Affiliation(s)
- Fang Wang
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shi-Qi Guo
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Tao-Hong Su
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiu-Jia Tian
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wei-Jie Wen
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hua-Ping Pan
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiao-Fen Wang
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen Zhang
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing-Li Zhong
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zi-Shu Dong
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ping Luo
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
3
|
Al-Eitan LN, Alahmad SZ, Khair IY. The Impact of Potent Addictive Substances on Angiogenic Behavior: A Comprehensive Review. Curr Neuropharmacol 2025; 23:511-523. [PMID: 39248059 DOI: 10.2174/1570159x23666240905125037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 09/10/2024] Open
Abstract
Angiogenesis, the formation of new vasculature from preexisting vasculature, is involved in the development of several diseases as well as various physiological processes. Strict cooperation of proangiogenic and antiangiogenic factors mediates the control of angiogenesis. The fundamental steps in angiogenesis include endothelial cell proliferation, migration, and invasion. Addictive substances, which are considered therapeutic candidates in research and medicine, are classified as natural substances, such as nicotine, or synthetic substances, such as synthetic cannabinoids. Addictive substances have been shown to either enhance or suppress angiogenesis. This review article provides an overview of recent studies concerning the effects of several addictive substances on the process of angiogenesis. Google Scholar and PubMed were used to collect the scientific literature used in this review. The addictive substances addressed in this review are nicotine, opioids such as morphine and heroin, alcohol, cocaine, methamphetamine, and cannabinoids. An accurate assessment of the influence of these substances on the angiogenic process may help to construct a potentially effective therapeutic protocol to control and treat several angiogenesis-related diseases.
Collapse
Affiliation(s)
- Laith Naser Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saif Zuhair Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Iliya Yacoub Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
4
|
Shakibi R, Khayamian MA, Abadijoo H, Dashtianeh M, Kolahdouz M, Daemi H, Abdolmaleki P. Enhancing cell activities through integration of polyanionic alginate or hyaluronic acid derivatives with triboelectric nanogenerators. Carbohydr Polym 2024; 346:122629. [PMID: 39245497 DOI: 10.1016/j.carbpol.2024.122629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
The impact of electrical stimulation has been widely investigated on the wound healing process; however, its practicality is still challenging. This study explores the effect of electrical stimulation on fibroblasts in a culture medium containing different electrically-charged polysaccharide derivatives including alginate, hyaluronate, and chitosan derivatives. For this aim, an electrical stimulation, provided by a zigzag triboelectric nanogenerator (TENG), was exerted on fibroblasts in the presence of polysaccharides' solutions. The analyses showed a significant increase in cell proliferation and an improvement in wound closure (160 % and 90 %, respectively) for the hyaluronate-containing medium by a potential of 3 V after 48 h. In the next step, a photo-crosslinkable hydrogel was prepared based on hyaluronic acid methacrylate (HAMA). Then, the cells were cultured on HAMA hydrogel and treated by an electrical stimulation. Surprisingly, the results showed a remarkable increase in cell growth (280 %) and migration (82 %) after 24 h. Attributed to the electroosmosis phenomenon and an amplified transfer of soluble growth factors, a dramatic promotion was underscored in cell activities. These findings highlight the role of electroosmosis in wound healing, where TENG-based electrical stimulation is combined with bioactive polysaccharide-based hydrogels to promote wound healing.
Collapse
Affiliation(s)
- Reyhaneh Shakibi
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Mohammad Ali Khayamian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hamed Abadijoo
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Nano Electronic Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14399-57131, Iran
| | - Mahshid Dashtianeh
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammadreza Kolahdouz
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Biomaterials, Zharfandishan Fanavar Zistbaspar (ZFZ) Chemical Company, Tehran, Iran.
| | - Parviz Abdolmaleki
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran.
| |
Collapse
|
5
|
Li Y, Cui J, Xiao D, Cao B, Wei J, Wang Q, Zong J, Wang J, Song M. Advances in arthropod-inspired bionic materials for wound healing. Mater Today Bio 2024; 29:101307. [PMID: 39554840 PMCID: PMC11567928 DOI: 10.1016/j.mtbio.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 11/19/2024] Open
Abstract
Arthropods contain lots of valuable bionic information from the composition to the special structure of the body. In particular, the rapid self-healing ability and antibacterial properties are amazing. Biomimetic materials for arthropods have been helpful methods for wound management. Here, we have identified four major dimensions needed to create biomimetic materials for arthropods, including ingredient, behavior, structure and internal reaction. According to different dimensions, we classify and introduce the reported arthropod biomimetic materials. Antibacterial, hemostatic and healing promotion are the main functions of the active compositions of arthropods developed by humans, and most of them play a drug effect. We believe that an ideal biomimetic material of arthropod should have the effect on promoting wound healing through the advantages of structure and composition. The special macroscopic and microscopic structure of the epidermis may provide good mechanical support for biomimetic materials. The drug release regularity in the bionic materials can be referred to the aggressive and secretory behavior of arthropods. The synthesis of substances in arthropods is also noteworthy, and we can learn these special reactions to complete the fast preparation of materials. Arthropod-inspired bionic materials have broad innovation and application prospects in the field of wound repair.
Collapse
Affiliation(s)
- Yuchen Li
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Jiaming Cui
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Di Xiao
- Liuzhou Traditional Chinese Medical Hospital, Guangxi University of Chinese Medicine, Liuzhou, Guangxi, China
| | - Bixuan Cao
- Department of Orthopedics, the Third Affiliated Hospital of Anhui Medical University, the First People's Hospital of Hefei, Hefei, Anhui, China
| | - Jing Wei
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Qian Wang
- Department of Orthopaedics, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Junwei Zong
- Department of Orthopaedics, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jinwu Wang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhi Song
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Fan X, Ye J, Zhong W, Shen H, Li H, Liu Z, Bai J, Du S. The Promoting Effect of Animal Bioactive Proteins and Peptide Components on Wound Healing: A Review. Int J Mol Sci 2024; 25:12561. [PMID: 39684273 DOI: 10.3390/ijms252312561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The skin is the first line of defense to protect the host from external environmental damage. When the skin is damaged, the wound provides convenience for the invasion of external substances. The prolonged nonhealing of wounds can also lead to numerous subsequent complications, seriously affecting the quality of life of patients. To solve this problem, proteins and peptide components that promote wound healing have been discovered in animals, which can act on key pathways involved in wound healing, such as the PI3K/AKT, TGF-β, NF-κ B, and JAK/STAT pathways. So far, some formulations for topical drug delivery have been developed, including hydrogels, microneedles, and electrospinning nanofibers. In addition, some high-performance dressings have been utilized, which also have great potential in wound healing. Here, research progress on the promotion of wound healing by animal-derived proteins and peptide components is summarized, and future research directions are discussed.
Collapse
Affiliation(s)
- Xiaoyu Fan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanling Zhong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huijuan Shen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huahua Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhuyuan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jie Bai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shouying Du
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
7
|
Rao J, Li H, Zhang H, Xiang X, Ding X, Li L, Geng F, Qi H. Periplaneta Americana (L.) extract activates the ERK/CREB/BDNF pathway to promote post-stroke neuroregeneration and recovery of neurological functions in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117400. [PMID: 37952730 DOI: 10.1016/j.jep.2023.117400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Periplaneta americana (L.) (PA) has been used in traditional Chinese medicine for thousands of years for the effect of invigorating blood circulation and removing blood stasis. Modern pharmacological research shown that PA extract exhibits promising effects in promoting wound healing and regeneration, as well as in brain diseases such as Parkinson's disease (PD). However, whether it is effective for neuroregeneration and neurological function recovery after stroke still unknown. AIM OF THE STUDY This study aims to investigate the potential effect of PA extract to promote brain remodeling through the activation of endogenous neurogenesis and angiogenesis, in addition, preliminary exploration of its regulatory mechanism. METHODS Firstly, BrdU proliferation assay and immunofluorescence (IF) staining were used to evaluate the effect of PA extract on the neurogenesis and angiogenesis in vitro and in vivo. Subsequently, the effects of PA extract on brain injury in stroke rats were assessed by TTC and HE. While mNSS score, adhesive removal test, rota-rod test, and morris water maze test were used to assess the impact of PA extract on neurological function in post-stroke rats. Finally, the molecular mechanisms of PA extract regulation were explored by RNA-Seq and western blotting. RESULTS The number of BrdU+ cells in C17.2 cells, NSCs and BMECs dramatically increased, as well as the expression of astrocyte marker protein GFAP and neuronal marker protein Tuj-1 in C17.2 and NSCs. Moreover, PA extract also increased the number of BrdU+DCX+, BrdU+GFAP+, BrdU+CD31+ cells in the SGZ area of transient middle cerebral artery occlusion model (tMCAO) rats. TTC and HE staining revealed that PA extract significantly reduced the infarction volume and ameliorated the pathological damage. Behavioral tests demonstrated that treatment with PA extract reduced the mNSS score and the time required to remove adhesive tape, while increasing the time spent on the rotarod. Additionally, in the morris water maze test, the frequency of crossing platform and the time spent in the platform quadrant increased. Finally, RNA-Seq and Western blot revealed that PA extract increased the expression of p-ERK, p-CREB and BDNF. Importantly, PA extract mediated proliferation and differentiation of C17.2 and NSCs reversed by the ERK inhibitor SCH772984 and the BDNF inhibitor ANA-12, respectively. CONCLUSION Our study demonstrated that PA extract promoted neurogenesis and angiogenesis by activating the CREB/ERK signaling pathway and upregulating BDNF expression, thereby recovering neurological dysfunction in post-stroke.
Collapse
Affiliation(s)
- Jiangyan Rao
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Hongpu Li
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Haonan Zhang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Xiaoxia Xiang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Xinyu Ding
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Li Li
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Funeng Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, Sichuan, 610000, China.
| | - Hongyi Qi
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Ma C, Li X, Ding W, Zhang X, Chen H, Feng Y. Effects of hTERT transfection on the telomere and telomerase of Periplaneta americana cells in vitro. AMB Express 2023; 13:118. [PMID: 37864620 PMCID: PMC10590340 DOI: 10.1186/s13568-023-01624-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023] Open
Abstract
Telomere and telomerase are crucial factors in cell division and chromosome stability. Telomerase activity in most cells depends on the transcription control by the telomerase reverse transcriptase (TERT). The introduction of an exogenous human TERT (hTERT) in cultured cells could enhance telomerase activity and elongate the lifespan of various cells. Telomere elongation mechanisms vary between insects and are complex and unusual. Whether the use of exogenous hTERT can immortalize primary insect cells remains to be investigated. In this study, we used a recombinant virus expressing hTERT to infect primary cultured cells of Periplaneta americana and evaluated its effects on insect cell immortalization. We found that hTERT was successfully expressed and promoted the growth of P. americana cells, shortening their doubling time. This was due to the ability of hTERT to increase the activity of telomerase in P. americana cells, thus prolonging the telomeres. Our study lays the foundation for understanding the mechanisms of telomere elongation in P. americana, and suggests that the introduction of hTERT into insect cells could be an efficient way to establish certain insect cell lines.
Collapse
Affiliation(s)
- Chenjing Ma
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
- Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, China
| | - Xian Li
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Weifeng Ding
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Xin Zhang
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China.
| | - Hang Chen
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Ying Feng
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| |
Collapse
|
9
|
Liao Q, Su L, Pang L, Li J, Li H, Li J, Liu Y, Zhang J. Natural exosome-like nanoparticles derived from ancient medicinal insect Periplaneta americana L. as a novel diabetic wound healing accelerator. J Nanobiotechnology 2023; 21:169. [PMID: 37237376 DOI: 10.1186/s12951-023-01923-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Along with the recognized therapeutic outcomes of regenerative medicine, extracellular vesicles and their exosome subsets have become an alternative option for wound healing. Periplaneta americana L. (PA), an ancient and traditional medicinal insect, has been around for 300 million years, and displays magic formidable vitality and environmental adaptive ability. The linkage between intrinsic amputation regeneration feature and the acknowledged wound healing medicinal benefit of PA has never been revealed. Herein, inspired by the ability of exosomes to participate in the interkingdom communication, we explored whether this effect was ascribed to PA derived exosome-like nanoparticles (PA-ELNs). PA-ELNs were extracted by differential velocity centrifugation approach and characterized by DLS, NTA and TEM. Their cargoes were analyzed by LC-MS/MS proteomics and small RNA-seq analysis. The wound healing activity was verified in vivo and in vitro. PA-ELNs with a concentration of 2.33x109±6.35x107 particles/mL exhibited a lipid bilayer-bound membrane structure with an average size of 104.7 nm. Furthermore, the miRNA cargoes in PA-ELNs participate in some wound healing related signal pathways such as TGF-beta, mTOR, and autophagy. As expected, the in vitro tests indicated that PA-ELNs were apt to be internalized in HUVECs, L929 and RAW 264.7 cells and contributed to cell proliferation and migration. Most importantly, we demonstrated that the topical administration of PA-ELNs could remarkably accelerate wound healing in a diabetic mouse model, and was involved in anti-inflammatory, re-epithelialization and autophagy regulation. This study provides clear evidence for the first time that PA-ELNs, as diabetic wound healing accelerators, are the "bioactive code" of this ancient medicinal insect.
Collapse
Affiliation(s)
- Qian Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu, 611137, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lijun Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu, 611137, China
| | - Lan Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu, 611137, China
| | - Jiaxin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu, 611137, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
10
|
Munhoz LLS, Alves MTO, Alves BC, Nascimento MGFS, Sábio RM, Manieri KF, Barud HS, Esquisatto MAM, Aro AA, de Roch Casagrande L, Silveira PCL, Santos GMT, Andrade TAM, Caetano GF. Bacterial cellulose membrane incorporated with silver nanoparticles for wound healing in animal model. Biochem Biophys Res Commun 2023; 654:47-54. [PMID: 36889034 DOI: 10.1016/j.bbrc.2023.02.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
The bacterial cellulose membrane (CM) is a promising biomaterial due to its easy applicability and moist environment. Moreover, nanoscale silver compounds (AgNO3) are synthesized and incorporated into CMs to provide these biomaterials with antimicrobial activity for wound healing. This study aimed to evaluate the cell viability of CM incorporated with nanoscale silver compounds, determine the minimum inhibitory concentration (MIC) for Escherichia coli and Staphylococcus aureus, and its use on in vivo skin lesions. Wistar rats were divided according to treatment: untreated, CM (cellulose membrane), and AgCM (CM incorporated with silver nanoparticles). The euthanasia was performed on the 2nd, 7th, 14th, and 21st days to assess inflammation (myeloperoxidase-neutrophils, N-acetylglucosaminidase-macrophage, IL-1β, IL-10), oxidative stress (NO-nitric oxide, DCF-H2O2), oxidative damage (carbonyl: membrane's damage; sulfhydryl: membrane's integrity), antioxidants (superoxide dismutase; glutathione), angiogenesis, tissue formation (collagen, TGF-β1, smooth muscle α-actin, small decorin, and biglycan proteoglycans). The use of AgCM did not show toxicity, but antibacterial effect in vitro. Moreover, in vivo, AgCM provided balanced oxidative action, modulated the inflammatory profile due to the reduction of IL-1β level and increase in IL-10 level, in addition to increased angiogenesis and collagen formation. The results suggest the use of silver nanoparticles (AgCM) enhanced the CM properties by providing antibacterial properties, modulation the inflammatory phase, and consequently promotes the healing of skin lesions, which can be used clinically to treat injuries.
Collapse
Affiliation(s)
- Lauriene Luiza S Munhoz
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Miriã Tonus O Alves
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Beatriz C Alves
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | | | - Rafael M Sábio
- BioPolymer and Biomaterial Laboratory (BioPolMat), University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil; School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Karyn F Manieri
- BioPolymer and Biomaterial Laboratory (BioPolMat), University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil; School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Hernane S Barud
- BioPolymer and Biomaterial Laboratory (BioPolMat), University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Marcelo Augusto M Esquisatto
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Andrea A Aro
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Physiopathology, Graduate Program in Science of Health, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Graduate Program in Science of Health, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Glaucia Maria T Santos
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Thiago A M Andrade
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil
| | - Guilherme F Caetano
- Graduate Program in Biomedical Sciences, University Centre of Herminio Ometto Foundation, Araras, São Paulo, Brazil.
| |
Collapse
|
11
|
Li X, Liu Y, Song H, Zhao M, Song Q. Antioxidant, antibacterial, and anti-inflammatory Periplaneta americana remnant chitosan/polysaccharide composite film: In vivo wound healing application evaluation. Int J Biol Macromol 2023; 237:124068. [PMID: 36934824 DOI: 10.1016/j.ijbiomac.2023.124068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/26/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Periplaneta americana (P. americana), which is widely used for wound healing in China, produces a large amount of solid waste (P. americana remnant) after pharmaceutical production extraction. P. americana remnant chitosan (PAC) has a low molecular weight, low crystallinity, and easily modifiable structural properties. In this study, PAC and P. americana remnant polysaccharide (PAP) were used as raw materials to prepare a composite film (PAPCF). The good biocompatibility of the composite film was verified by cell proliferation assays and protein adsorption assays. The bioactivity of the composite film was assessed by antibacterial and in vivo/vitro antioxidant assays to evaluate its potential as a wound dressing. The wound healing experiment revealed that PAPCF improved wound closure and collagen deposition, decreased reactive oxygen species levels, and attenuated the inflammatory response, enabling rapid wound healing from the inflammatory phase to the proliferative phase in mice. Additionally, PAPCF was administered only once, reducing the chance of infection from multiple deliveries. In summary, this paper presents an easy-to-administer, cost-effective, and effective dressing candidate for wound treatment based on the environmental concept of resource reuse.
Collapse
Affiliation(s)
- Xuehua Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yali Liu
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Hongrong Song
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Meiting Zhao
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Qin Song
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China.
| |
Collapse
|
12
|
Gong Y, Jiang Y, Huang J, He Z, Tang Q. Moist exposed burn ointment accelerates diabetes-related wound healing by promoting re-epithelialization. Front Med (Lausanne) 2023; 9:1042015. [PMID: 36703885 PMCID: PMC9871640 DOI: 10.3389/fmed.2022.1042015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Background The incidence of diabetes-related wounds is widespread, and the treatment is challenging. We found that Moist Exposed Burn Ointment (MEBO) promotes the healing of diabetes-related wounds, but the mechanism is not clear. Methods This study aimed to explore the mechanism of MEBO on diabetic wound healing, which may be related to the promotion of re-epithelialization. A full-thickness skin resection model was established in streptozotocin (STZ)-induced diabetic mice. MEBO and Kangfuxin (KFX) were applied to the wound area, and the wound healing rate was analyzed by photographing. The granulation tissue and epidermal thickness, the collagen remodeling rate, and the expression of cytokeratin 10 (CK10), cytokeratin 14 (CK14), Ki67, Collagen I, and Collagen III in the regenerated skin were detected by H&E staining, Masson staining, and immunofluorescence staining, respectively. MEBO and KFX were applied to human immortalized keratinocytes (HaCaT), mouse dermal fibrolasts (MDF) cells, and cell viability, cell migration, and differentiation were determined by CCK-8, scratching assay, RT-qPCR, and Western blot (WB), respectively. Results We found that MEBO significantly promoted the formation of wound granulation tissue and collagen remodeling in diabetic mice. The application of MEBO to diabetic wounds not only promoted the formation of hair follicles and sebaceous glands but also promoted the expression of Ki67, CK10, and CK14 in epidermal cells. MEBO had no significant effect on the differentiation process of keratinocytes. Conclusion Our study further proved that MEBO plays a positive role in diabetic wound healing, and its excellent ability to promote re-epithelialization may be an important reason for promoting wound healing.
Collapse
Affiliation(s)
- Yuanxun Gong
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yan Jiang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Baise, China
| | - Jinmei Huang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Zuofen He
- Graduate School, YouJiang Medical University for Nationalities, Baise, China
| | - Qianli Tang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China,*Correspondence: Qianli Tang,
| |
Collapse
|
13
|
Li M, Wu H, Wang S, Wu S, Han J, Han Y. Development of microparticles for oral administration of Periplaneta americana extract to treat ulcerative colitis. Drug Deliv 2022; 29:2723-2733. [PMID: 35982644 PMCID: PMC9521608 DOI: 10.1080/10717544.2022.2112115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic disease, which can result the inflammation of the rectum, mucosa of the colon, and submucosa. The active component such as polypeptide in Periplaneta americana, which is one of the most common insects in the nature, can be extracted to treat UC. However, the active components in Periplaneta americana extract (PAE) can be degraded in the stomach due to its extreme acidic environment and enzyme. In this study, we developed a pH-dependent drug delivery method using polymer cellulose acetate (Eudragit S100) as a carrier to deliver high concentration PAE to inflamed colon. Both in vitro and in vivo results showed the PAE-Eudragit-S100 could treat UC through delivering active drug components to colon without degradation.
Collapse
Affiliation(s)
- Meng Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liao Ning, China
| | - Hao Wu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liao Ning, China
| | - Shuang Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liao Ning, China
| | - Shengshun Wu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liao Ning, China
| | - Jing Han
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Liao Ning, China
| | - Yang Han
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Liao Ning, China
| |
Collapse
|
14
|
Guo J, Wang T, Yan Z, Ji D, Li J, Pan H. Preparation and evaluation of dual drug-loaded nanofiber membranes based on coaxial electrostatic spinning technology. Int J Pharm 2022; 629:122410. [DOI: 10.1016/j.ijpharm.2022.122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
15
|
Comparison of Glucose-Lowering Drugs as Second-Line Treatment for Type 2 Diabetes: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11185435. [PMID: 36143082 PMCID: PMC9504435 DOI: 10.3390/jcm11185435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Multiple glucose-lowering drugs are available as add-ons to metformin for a second-line treatment for type 2 diabetes. However, no systematic and comparative data are available for them in China. We aimed to compare the effects of glucose-lowering drugs added to metformin in China. Methods: PubMed, Embase, Web of Science, CNKI, WanFang Data, and Chongqing VIP from 1 January 2000 until 31 December 2020 were systematically searched for randomized controlled trials comparing a glucose-lowering drug added to metformin with metformin in Chinese type 2 diabetes patients. Drug classes included sulfonylureas (SUs), glinides (NIDEs), thiazolidinediones (TZDs), α-glucosidase inhibitors (AGIs), dipeptidyl peptidase-4 inhibitors (DPP-4is), sodium-glucose cotransporter-2 inhibitors (SGLT2is), glucagon-like peptide-1 receptor agonists (GLP-1RAs), and insulins (INSs). Two reviewers independently screened studies, extracted data, and appraised the risk of bias. Results: 315 trials were included. In patients receiving metformin alone, the addition of NIDEs produced the greatest additional HbA1c reductions (1.29%; 95% CI 0.97, 1.60); while INSs yielded both the largest additional FPG reductions (1.58 mmol/L; 95% CI 1.22, 1.94) and 2 hPG reductions (2.52 mmol/L; 95% CI 1.83, 3.20). INS add-ons also conferred the largest additional HDL-C increases (0.40 mmol/L; 95% CI 0.16, 0.64), whereas AGI add-ons generated the greatest TC reductions (1.08 mmol/L; 95% CI 0.78, 1.37). The greatest incremental SBP reductions (6.65 mmHg; 95% CI 4.13, 9.18) were evident with SGLT2i add-ons. GLP-1RA add-ons had the greatest BMI reductions (1.96 kg/m2, 95% CI 1.57, 2.36), meanwhile with the lowest (0.54 time) hypoglycemia risk. Overall, only the GLP-1RA add-ons demonstrated a comprehensive beneficial effect on all outcomes. Furthermore, our results corroborated intraclass differences among therapies. Given the limited evidence, we could not reach a conclusion about the optimal therapies regarding mortality and vascular outcomes. Conclusion: The results suggested a potential treatment hierarchy for clinicians and patients, with the GLP-1RA add-ons being most preferred based on their favorable efficacy and safety profiles; and provided a unified hierarchy of evidence for conducting country-specific cost-effectiveness analyses.
Collapse
|
16
|
Zhang JN, Sun MZ, Liu H, Zhang HC, Xiao H, Zhao Y, Zhang C, Zhao HR. The ethanol extract of Periplaneta Americana L. improves ulcerative colitis induced by a combination of chronic stress and TNBS in rats. Acta Cir Bras 2022; 37:e370505. [PMID: 35976342 PMCID: PMC9377204 DOI: 10.1590/acb370505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose: To investigate the effects of Periplaneta americana L. on ulcerative colitis (UC) induced by a combination of chronic stress (CS) and 2,4,6-trinitrobenzene sulfonic acid enema (TNBS) in rats. Methods: The experiment UC model with CS was established in rats by a combination of chronic restraint stress, excess failure, improper, and TNBS. The body weight, disease activity index (DAI), colonic mucosal injury index (CMDI), histopathological score (HS) and pro-inflammatory mediators were measured. The content of corticotropin-releasing hormone (CRH) in hypothalamus or adrenocorticotropic hormone (ACTH) and corticosteroids (CORT) in plasma were evaluated by enzyme-linked immunosorbent assay. The proportion of T lymphocyte subsets was detected by flow cytometry, and gut microbiota was detected by 16S rDNA amplicon sequencing. Results: Weight loss, DAI, CMDI, HS and proinflammatory mediators were reversed in rats by P. americana L. treatment after UC with CS. Increased epidermal growth factor (EGF) was observed in P. americana L. groups. In addition, P. americana L. could reduce the content of CRH and ACTH and regulate the ratio of CD3+, CD3+CD8+ and CD3+CD4+CD25+/CD4+ in spleen. Comparably, P. americana L. changes composition of gut microbiota. Conclusions: The ethanol extract of Periplaneta Americana L. improves UC induced by a combination of CS and TNBS in rats.
Collapse
Affiliation(s)
- Jing-Na Zhang
- MM. Dali University - The First Affiliated Hospital - Genetic Testing Center - Yunnan, China
| | - Min-Zhe Sun
- MM. Dali University - Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D - Yunnan, China
| | - Heng Liu
- PhD. Dali University - Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, and National-Local Joint Engineering Research Center of Entomoceutics - Yunnan, China
| | - Han-Chao Zhang
- MM. Dali University - Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D - Yunnan, China
| | - Huai Xiao
- PhD. Dali University ( - Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D - Yunnan, China
| | - Yu Zhao
- PhD. Dali University - National-Local Joint Engineering Research Center of Entomoceutics - Yunnan, China
| | - Chenggui Zhang
- PhD. Dali University - Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, and National-Local Joint Engineering Research Center of Entomoceutics - Yunnan, China
| | - Hai-Rong Zhao
- PhD. Dali University - The First Affiliated Hospital - Genetic Testing Center - and Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D - Yunnan, China
| |
Collapse
|
17
|
Gao Q, Shang Y, Zhou W, Deng S, Peng C. Marine collagen peptides: A novel biomaterial for the healing of oral mucosal ulcers. Dent Mater J 2022; 41:850-859. [PMID: 35934799 DOI: 10.4012/dmj.2021-323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to analyze the therapeutic effects of marine collagen peptides (MCPs) from tilapia skin on oral mucosal ulcers in a rat model. CCK-8 and wound healing assays were performed in vitro to evaluate proliferation and migration of L929 cells after treatment with MCPs. The effects of MCPs on the healing of oral mucosal ulcers in a rat model were macroscopically and microscopically analyzed in vivo. Results showed that MCPs promoted proliferation and migration of L929 cells. Moreover, 75%MCPs enhanced the ulcer healing process, suppressed inflammatory response and up-regulated the expression levels of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). MCPs are potentially used as a new therapeutic strategy for oral mucosal ulceration.
Collapse
Affiliation(s)
- Qiuying Gao
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| | - Yuli Shang
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| | - Weiwei Zhou
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| | - Shu Deng
- Henry M Goldman School of Dental Medicine, Boston University
| | - Cheng Peng
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| |
Collapse
|
18
|
The Regulating Effect of CII-3 and Its Active Components from Periplaneta americana on M1/M2 Macrophage Polarization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144416. [PMID: 35889289 PMCID: PMC9323847 DOI: 10.3390/molecules27144416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
CII-3 is the effective part of Periplaneta americana for application in oncotherapy. This study investigated its main chemical components for macrophage polarization regulation activity. Compounds were separated and purified, and their structures were elucidated based on NMR and HR-ESI-MS analyses. After inducing the M1 and M2 phenotype macrophages, CII-3 and testing components were added and co-incubated to evaluate their effects on the relevant markers of macrophages. Then, gradient concentrations of CII-3 and active monomers were further investigated for their effects on M2 macrophages. The effects were detected by RT-PCR, ELISA, flow cytometry, and immunofluorescence. Twelve compounds were identified from CII-3. CII-3 and pericanaside (5) had no obvious effect on M1 macrophages, while they significantly reduced the expression levels of M2 macrophage markers. Specifically, they significantly reduced the levels of TGF-β and IL-10 and the mRNA expression levels of ARG-1 and CD206 in the M2 phenotypes of RAW264.7 and Ana-1 macrophages. The conditioned medium of CII-3 and pericanaside (5) could inhibit the migration capacity of CT26.WT tumor cells. Macrophage M1/M2 polarization is a dynamic equilibrium, and the M2 phenotype, which can promote the growth of tumor cells, is relatively highly expressed in the tumor microenvironment. CII-3 and pericanaside could significantly reduce the phenotype of M2-type macrophages, indicating that the anti-tumor activity of CII-3 could be related to the inhibitory effect on M2 polarization, and pericanaside was one of the active components.
Collapse
|
19
|
Zaghloul EH, Ibrahim MIA. Production and Characterization of Exopolysaccharide From Newly Isolated Marine Probiotic Lactiplantibacillus plantarum EI6 With in vitro Wound Healing Activity. Front Microbiol 2022; 13:903363. [PMID: 35668753 PMCID: PMC9164304 DOI: 10.3389/fmicb.2022.903363] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022] Open
Abstract
Because of its safety, biological activities, and unique properties, exopolysaccharide (EPS) from lactic acid bacteria (LAB) has been developed as a potential biopolymer. A few studies have investigated the EPS produced by marine LAB. This study reports the wound healing activity of an EPS produced by a marine isolate identified as Lactiplantibacillus plantarum EI6, in addition to assessing L. plantarum EI6's probiotic properties. EI6 demonstrated promising antimicrobial activity against different pathogenic bacteria, as well as the ability to withstand stomach pH 3, tolerate 0.3% bile salt concentration, and exhibit no signs of hemolysis. Furthermore, EI6 was able to produce 270 mg/L of EPS upon growth for 48 h at 37°C in an MRS medium enriched with 1.0% of sucrose. The chemical features of the novel EI6-EPS were investigated: the UV-vis estimated a high carbohydrate content of ~91.5%, and the FTIR emphasized its polysaccharide nature by the characteristic hydroxyl, amide I, II, & III, and glycosidic linkage regions. The GC-MS and NMR analyses revealed the existence of five monosaccharides, namely, rhamnose, galactose, mannose, glucose, and arabinose, existing mainly in the pyranose form and linked together by α- and β-glycosidic linkages. EI6-EPS was found to be safe (IC50 > 100 μg/ml) and induced human skin fibroblasts (HSF) proliferation and migration. These findings imply that EI6 can be used as a safe source of bioactive polymer in wound care.
Collapse
|
20
|
Ma C, Zhang X, Li X, Ding W, Feng Y. An embryonic cell line from the American cockroach Periplaneta americana L. (Blattaria: Blattidae) exhibits susceptibility to AcMNPV. In Vitro Cell Dev Biol Anim 2022; 58:278-288. [PMID: 35460045 DOI: 10.1007/s11626-021-00628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/13/2021] [Indexed: 11/05/2022]
Abstract
Although the baculovirus expression vector system (BEVS) is widely used in the production of recombinant proteins, only a few lepidopteran insect cell lines have been successfully used so far. This study aimed at evaluating the characteristics of an embryonic cell line from the American cockroach Periplaneta americana L., RIRI-PA1, and determining whether it could be used in recombinant protein expression. Wild type Autographa californica multiple nucleopolyhedrovirus (AcMNPV-wt) and green fluorescent protein (GFP)-replicating recombinant baculoviruses (AcMNPV-GFP) were used to infect RIRI-PA1 respectively, demonstrating that RIRI-PA1 cells could be infected by AcMNPV and express recombinant proteins. Within 24 h of infection with AcMNPV-GFP, the GFP expression was higher than that in Sf21 cells. Furthermore, the infection of RIRI-PA1 cells increased gradually (multiplicity of infection, 10) within 24 h, while in Sf21 cells, the infection only began to increase within 48 h. However, after exposure for 96-168 h, the virus progeny and recombinant protein production of RIRI-PA1 cells was lower than those of Sf21 cells. Western blotting revealed that RIRI-PA1 cells could express recombinant GFP, and the protein expression level positively correlated with the multiplicity of infection. In conclusion, this is the first report that a cell line from P. americana has shown susceptibility to infection from a baculovirus and likewise express recombinant protein. Although the yield of recombinant GFP was not as high as that of Sf21 cells, the results nonetheless showed that RIRI-PA1 had an infection rate advantage in the short term (within 24 h of infection), which is of great value for further development and utilization.
Collapse
Affiliation(s)
- Chenjing Ma
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Xin Zhang
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China.
| | - Xian Li
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Weifeng Ding
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| | - Ying Feng
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan Province, 650224, China
| |
Collapse
|
21
|
Oyebode OA, Houreld NN. Photobiomodulation at 830 nm Stimulates Migration, Survival and Proliferation of Fibroblast Cells. Diabetes Metab Syndr Obes 2022; 15:2885-2900. [PMID: 36172056 PMCID: PMC9510698 DOI: 10.2147/dmso.s374649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Photobiomodulation (PBM) promotes diabetic wound healing by favoring cell survival and proliferation. This study aimed to investigate the potential of PBM in stimulating cellular migration, viability, and proliferation using the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway. METHODS The study explored the in vitro effects of near infrared (NIR) light on cell viability (survival) and proliferation as well as the presence of TGF-β1, phosphorylated TGF-β receptor type I (pTGF-βR1) and phosphorylated mothers against decapentaplegic-homolog (Smad)-2/3 (p-Smad2/3) in different fibroblast cell models. RESULTS Results show a significant increase in cellular migration in wounded models, and increased viability and proliferation in irradiated cells compared to their respective controls. An increase in the presence of TGF-β1 in the culture media, a reduction in pTGF-βR1 and a slight presence of p-Smad2/3 was observed in the cells. CONCLUSION These findings show that PBM at 830 nm using a fluence of 5 J/cm2 could induce cell viability, migration and proliferation to favor successful healing of diabetic wounds. This study contributes to the growing body of knowledge on the molecular and cellular effect of PBM and showcases the suitability of PBM at 830 nm in managing diabetic wounds.
Collapse
Affiliation(s)
- Olajumoke Arinola Oyebode
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Gauteng, South Africa
- Correspondence: Olajumoke Arinola Oyebode, Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Gauteng, South Africa, Tel + 27781519058, Email
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Gauteng, South Africa
| |
Collapse
|
22
|
Potential value and chemical characterization of gut microbiota derived nitrogen containing metabolites in feces from Periplaneta americana (L.) at different growth stages. Sci Rep 2021; 11:21191. [PMID: 34707100 PMCID: PMC8551289 DOI: 10.1038/s41598-021-00182-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022] Open
Abstract
The American cockroach, Periplaneta americana (L.), is able to highly survive in various complicated environments around the globe, and often considered as a pest. In contrast, billions of P. americana have been massively reared in China and extensively used as a medicinal insect, due to its function for preventing and treating ulceration and heart failure. Considering the possibility that microbiota-derived metabolites could be an effective source to identify promising candidate drugs, we attempted to establish a rapid method for simultaneous determination of gut microbiota metabolites from medicinal insects. In this study, network pharmacology approach and ultra-performance liquid chromatography (UPLC) technique were employed to reveal the potential pharmacological activity and dynamics variation of nitrogen-containing metabolites (NCMs) originated from the gut microbiota of breeding P. americana at different growth stages. A metabolites-targets-diseases network showed that NCMs are likely to treat diseases such as ulceration and cancer. The analysis of NCMs' content with the growth pattern of P. americana indicated that the content of NCMs declined with P. americana aging. Both principal component analysis and orthogonal partial least squares discriminant analysis suggested that 8-hydroxy-2-quinolinecarboxylic acid and 8-hydroxy-3,4-dihydro-2(1H)-quinolinone are the potential differential metabolic markers for discriminating between nymphs and adults of P. americana. Moreover, the developed UPLC method showed an excellent linearity (R2 > 0.999), repeatability (RSD < 2.6%), intra- and inter-day precisions (RSD < 2.2%), and recovery (95.5%–99.0%). Collectively, the study provides a valuable strategy for analyzing gut microbiota metabolites from insects and demonstrates the prospects for discovering novel drug candidates from the feces of P. americana.
Collapse
|
23
|
The Unexplored Wound Healing Activity of Urtica dioica L. Extract: An In Vitro and In Vivo Study. Molecules 2021; 26:molecules26206248. [PMID: 34684829 PMCID: PMC8540079 DOI: 10.3390/molecules26206248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
Wound healing is a great challenge in many health conditions, especially in non-healing conditions. The search for new wound healing agents continues unabated, as the use of growth factors is accompanied by several limitations. Medicinal plants have been used for a long time in would healing, despite the lack of scientific evidence veryfying their efficacy. Up to now, the number of reports about medicinal plants with wound healing properties is limited. Urtica dioica L. is a well-known plant, widely used in many applications. Reports regarding its wound healing potential are scant and sparse. In this study, the effect of an Urtica dioica L. extract (containing fewer antioxidant compounds compared to methanolic or hydroalcoholic extracts) on cell proliferation, the cell cycle, and migration were examined. Additionally, antioxidant and anti-inflammatory properties were examined. Finally, in vivo experiments were carried out on full-thickness wounds on Wistar rats. It was found that the extract increases the proliferation rate of HEK-293 and HaCaT cells up to 39% and 30% after 24 h, respectively, compared to control cells. The extract was found to increase the population of cells in the G2/M phase by almost 10%. Additionally, the extract caused a two-fold increase in the cell migration rate of both cell lines compared to control cells. Moreover, the extract was found to have anti-inflammatory properties and moderate antioxidant properties that augment its overall wound healing potential. Results from the in vivo experiments showed that wounds treated with an ointment of the extract healed in 9 days, while wounds not treated with the extract healed in 13 days. Histopathological examination of the wound tissue revealed, among other findings, that inflammation was significantly reduced compared to the control. Urtica dioica L. extract application results in faster wound healing, making the extract ideal for wound healing applications and a novel drug candidate for wound healing.
Collapse
|
24
|
Al-Daghistani HI, Mohammad BT, Kurniawan TA, Singh D, Rabadi AD, Xue W, Avtar R, Othman MHD, Shirazian S. Characterization and applications of Thermomonas hydrothermalis isolated from Jordan's hot springs for biotechnological and medical purposes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Wang T, Lu H, Li F, Zhang Q. Effect of Kangfuxin Liquid enema combined with mesalazine on gestational outcomes and quality of life in child-bearing female with active ulcerative colitis: A protocol for randomized, double-blind, controlled trial. Medicine (Baltimore) 2021; 100:e23915. [PMID: 33592844 PMCID: PMC7870172 DOI: 10.1097/md.0000000000023915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In recent years, the incidence of ulcerative colitis (UC) is on the rise, and most of them are young adults. As the peak of the disease overlaps with the childbearing age, it has a great impact on the fertility of female patients. We, therefore, conduct a randomized and controlled trial to evaluate the efficacy and safety of mesalazine enteric-coated tablets combined with Kangfuxin Liquid (KFX) enema for the child-bearing period female with active UC. METHODS In this randomized controlled study, a total of 236 eligible patients will be assigned to the experimental group (n = 118) or the control group (n = 118) in a 1:1 ratio. The control group will be taken mesalazine enteric-coated tablets combined with placebo enema and the experimental group will be taken mesalazine enteric-coated tablets combined with KFX enema. Participants will receive 8 weeks of intervention treatment and 3 months of maintenance treatment before pregnancy. The primary assessment is the Mayo score. Secondary outcomes include mucosal healing, faecal calprotectin (FC), Inflammatory Bowel Disease Quality (IBDQ), and pregnancy outcome. DISCUSSION This study will provide evidence regarding the efficacy and safety of KFX enema used before pregnancy on halting active UC, reducing the relapse rate during pregnancy, improving pregnancy outcome, and the quality of life. TRIAL REGISTRATION Chinese Clinical Trials Register identifier, ChiCTR2000039161, registered on October 20, 2020.
Collapse
Affiliation(s)
- Tong Wang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine
| | - Hua Lu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P.R. China
| | - Fangyuan Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine
| | - Qi Zhang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine
| |
Collapse
|
26
|
Kim JH, Kim EY, Chung KJ, Lee JH, Choi HJ, Chung TW, Kim KJ. Mealworm Oil (MWO) Enhances Wound Healing Potential through the Activation of Fibroblast and Endothelial Cells. Molecules 2021; 26:molecules26040779. [PMID: 33546205 PMCID: PMC7913324 DOI: 10.3390/molecules26040779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mealworm and mealworm oil (MWO) have been reported to affect antioxidant, anti-coagulation, anti-adipogenic and anti-inflammatory activities. However, the function of MWO in wound healing is still unclear. In this study, we found that MWO induced the migration of fibroblast cells and mRNA expressions of wound healing factors such as alpha-smooth muscle actin (α-SMA), collagen-1 (COL-1) and vascular endothelial growth factor (VEGF) in fibroblast cells. The tube formation and migration of endothelial cells were promoted through the activation of VEGF/VEGF receptor-2 (VEGFR-2)-mediated downstream signals including AKT, extracellular signal-regulated kinase (ERK) and p38 by MWO-stimulated fibroblasts for angiogenesis. Moreover, we confirmed that MWO promoted skin wound repair by collagen synthesis, re-epithelialization and angiogenesis in an in vivo excisional wound model. These results demonstrate that MWO might have potential as a therapeutic agent for the treatment of skin wounds.
Collapse
Affiliation(s)
- Joung-Hee Kim
- Department of Biomedical Laboratory Science, TaeKyeung University, 65, Danbuk 1-gil, Jain-myeon, Gyeongsan-si, Gyeongsangbuk-do 38547, Korea;
| | - Eun-Yeong Kim
- APROGEN, Inc., 545, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do 13215, Korea;
| | - Kyu Jin Chung
- Department of Plastic and Reconstructive Surgery, Yeungnam University College of Medicine, 170, Hyeonchung-ro, Nam-gu, Daegu 42415, Korea;
| | - Jung-Hee Lee
- JIN BioCell Co., Ltd., #118-119, National Clinical Research Center for Korean Medicine, Pusan National University Korean Medicine Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Korea; (J.-H.L.); (H.-J.C.)
| | - Hee-Jung Choi
- JIN BioCell Co., Ltd., #118-119, National Clinical Research Center for Korean Medicine, Pusan National University Korean Medicine Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Korea; (J.-H.L.); (H.-J.C.)
| | - Tae-Wook Chung
- Department of Biomedical Laboratory Science, TaeKyeung University, 65, Danbuk 1-gil, Jain-myeon, Gyeongsan-si, Gyeongsangbuk-do 38547, Korea;
- JIN BioCell Co., Ltd., #118-119, National Clinical Research Center for Korean Medicine, Pusan National University Korean Medicine Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Korea; (J.-H.L.); (H.-J.C.)
- Correspondence: (T.-W.C.); (K.-J.K.)
| | - Keuk-Jun Kim
- Department of Biomedical Laboratory Science, TaeKyeung University, 65, Danbuk 1-gil, Jain-myeon, Gyeongsan-si, Gyeongsangbuk-do 38547, Korea;
- Correspondence: (T.-W.C.); (K.-J.K.)
| |
Collapse
|
27
|
Xue NN, He M, Li Y, Wu JZ, Du WW, Wu XM, Yang ZZ, Zhang CG, Li QY, Xiao H. Periplaneta americana extract promotes intestinal mucosa repair of ulcerative colitis in rat. Acta Cir Bras 2020; 35:e202001002. [PMID: 33237174 PMCID: PMC7709898 DOI: 10.1590/s0102-865020200100000002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To investigate the mechanism of Periplaneta americana extract promoting intestinal mucosal repair of OXZ-induced colitis in rat. METHODS All experiments used an equal number of male and female SD rats (n=48). We injected OXZ into the colon to induce UC rat model. To determine the optimal concentration of P. Americana's extract (PA-40), it was classified into low (L), medium (M), and high (H) doses. After OXZ treatment, each drug was administered by enema for 7 consecutive days. Rats were divided into the following 6 groups: (1) Saline treatment group (NC), (2) OXZ treatment UC model group (MC), (3) OXZ + budesonide group (BUN), (4) OXZ + PA-40 L group, (5) OXZ + PA-40 M group, (6) OXZ + PA-40 H group. Disease activity index (DAI) scores, colon length, histopathological score, serum cytokine level (IL-4, IL-10, iNOS, tNOS), and amount of MPO, EGF, IL-13 in colonic mucosa were measured. RESULTS PA treatment had a significant healing effect on the OXZ-colitis model and significantly reduced the lesioned area, especially in the PA-40H groups. PA treatment did not alter the expression of IL-10 and MPO level, but increased EGF (epidermal growth factor) and decrease IL-13 in the colonic tissue. PA inhibited the rise of NOSs (nitric oxide synthase) and decreased the serum IL-4 level. CONCLUSIONS The data suggest that Periplaneta americana extract may be a potential compound for the treatment of colonic lesions. The mechanism may be related to inhibiting the secretion of IL-13 and promoting the formation of EGF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qi-yan Li
- The First People's Hospital of Yunnan Province, China
| | | |
Collapse
|
28
|
Comparison of botulinum toxin type A and aprotinin monotherapy with combination therapy in healing of burn wounds in an animal model. Mol Biol Rep 2020; 47:2693-2702. [PMID: 32146683 DOI: 10.1007/s11033-020-05367-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/29/2020] [Indexed: 12/19/2022]
Abstract
Burns are one of the most common injuries that are complicated by many challenges including infection, severe inflammatory response, excessive expression of proteases, and scar formation. The aim of this study was to investigate the effect of botulinum toxin type A (BO) and aprotinin (AP) separately or in combination (BO-AP) in healing process. Four burn wounds were created in each rat and randomly filled with silver sulfadiazine (SSD), BO, AP and BO-AP. The rats were euthanized after 7, 14, and 28 days, and their harvested wound samples were evaluated by gross pathology, histopathology, gene expression, biochemical testing, and scanning electron microscopy. Both BO and AP significantly reduced expression of interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) at the 7th post wounding day. Moreover, they inhibited scar formation by reducing the TGF-β1 level and increasing basic fibroblast growth factor (bFGF) at the 28th day. AP by decreasing protease production showed more effective role than BO in wound regeneration. AP increased tissue organization and maturation and improved cosmetic appearance of wounds, at 28 days. The best results gained when combination of BO and AP were used in healing of burn wounds. Treatment by BO-AP significantly subsided inflammation compared to the BO, AP, and SSD treated wounds. Treatment with BO-AP also reduced collagen density and led to minimal scar formation. Combination of botulinum toxin type A and aprotinin considerably increased structural and functional properties of the healing wounds by reducing scar formation and decreasing production of proteases.
Collapse
|
29
|
Ozawa N, Onda T, Hayashi K, Honda H, Shibahara T. Effects of Topical Hangeshashinto (TJ-14) on Chemotherapy-Induced Oral Mucositis. Cancer Manag Res 2020; 12:1069-1078. [PMID: 32104087 PMCID: PMC7024791 DOI: 10.2147/cmar.s238306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/31/2020] [Indexed: 01/11/2023] Open
Abstract
Purpose Hangeshashinto (TJ-14), a Kampo medicine comprising seven types of herbs, has been used in Japan to alleviate the side effects associated with anticancer drug treatments. However, the pharmacological effects of this medicine currently remain unclear. The present study aimed to demonstrate the efficacy of TJ-14 against anticancer drug-induced stomatitis, the pain associated with which may have a negative impact on mastication and swallowing. Methods Mucositis was induced in Sprague-Dawley rats by cancer chemotherapy. Changes in body weight, stomatitis grades, histopathological scores, and oral bacterial counts were examined among TJ-14-treated, saline-treated, and Control (no treatment) rats. In vitro studies, including cell proliferation and wound healing assays, using epidermal keratinocyte and fibroblast cell lines were conducted. Results The local application of TJ-14 exerted strong antibacterial effects and attenuated oral chemotherapy-induced stomatitis in rats. TJ-14 also increased the viability and invasion of epidermal keratinocytes and fibroblasts. Conclusion The present results demonstrated the potential of TJ-14 to attenuate chemotherapy-induced stomatitis.
Collapse
Affiliation(s)
- Natsuo Ozawa
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba 261-8502, Japan
| | - Takeshi Onda
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba 261-8502, Japan
| | - Kamichika Hayashi
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba 261-8502, Japan
| | - Hirona Honda
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba 261-8502, Japan
| | - Takahiko Shibahara
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Chiba 261-8502, Japan.,Oral Cancer Center, Tokyo Dental College, Chiba 272-8513, Japan
| |
Collapse
|
30
|
Gao M, Jia X, Huang X, Wang W, Yao G, Chang Y, Ouyang H, Li T, He J. Correlation between Quality and Geographical Origins of Cortex Periplocae, Based on the Qualitative and Quantitative Determination of Chemical Markers Combined with Chemical Pattern Recognition. Molecules 2019; 24:E3621. [PMID: 31597295 PMCID: PMC6804018 DOI: 10.3390/molecules24193621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/01/2022] Open
Abstract
Quality assessment of Cortex Periplocae remains a challenge, due to its complex chemical profile. This study aims to investigate the chemical components of Cortex Periplocae, including its non-volatile and volatile constituents, via liquid chromatograph-mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) assays. The established strategy manifested that Cortex Periplocae from different producing areas was determined by identifying 27 chemical markers with ultra-high-performance liquid chromatography, coupled with quadrupole tandem time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS), including four main groups of cardiac glycosides, organic acids, aldehydes, and oligosaccharides. These groups' variable importance in the projection (VIP) were greater than 1. Simultaneously, the samples were divided into four categories, combined with multivariate statistical analysis. In addition, in order to further understand the difference in the content of samples from different producing areas, nine chemical markers of Cortex Periplocae from 14 different producing areas were determined by high performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS), and results indicated that the main effective constituents of Cortex Periplocae varied with places of origin. Furthermore, in GC-MS analysis, samples were divided into three groups with multivariate statistical analysis; in addition, 22 differential components whose VIP were greater than 1 were identified, which were principally volatile oils and fatty acids. Finally, the relative contents of seven main volatile constituents were obtained, which varied extremely with the producing areas. The results showed that the LC-MS/MS and GC-MS assays, combined with multivariate statistical analysis for Cortex Periplocae, provided a comprehensive and effective means for its quality evaluation.
Collapse
Affiliation(s)
- Mengyuan Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaohua Jia
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xuhua Huang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Guangzhe Yao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yanxu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Huizi Ouyang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Tianxiang Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jun He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|