1
|
Zhang Y, Yang J, Gong Y, Liu Z, Yang Y, Song X, Gao Y, Xiong Y, Wang D, Fu K, Jia L, Shi X. RalB promotes lymph node metastasis in tongue squamous cell carcinoma. Genes Genomics 2025:10.1007/s13258-025-01628-9. [PMID: 40208483 DOI: 10.1007/s13258-025-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/18/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Lymph nodes metastasis is the main metastasis mode of tongue squamous cell carcinoma (TSCC). Ras related GTP binding protein B (RalB) have been recently described that it was involved in tumor growth and metastasis, but the effect in TSCC is still ill-defined. OBJECTIVE This study provides insights into the role of RALB as a prognostic factor in head and neck squamous cell carcinoma (HNSCC) and demonstrates its involvement in promoting lymph node metastasis in TSCC. METHODS Firstly, the expression level of RALB and the relationship with clinical features were examined. Subsequently, RALB knockdown Cal-27 cells orthotopic xenotransplantation in the tongue of BALB/c nude mice were established. Finally, using Connectivity Map (CMAP) database to find possible drugs. RESULTS Firstly, RALB could not only predict the cancer patients' prognosis and survival and but also act as a potential prognostic factor, particularly in HNSCC by pan-cancer bioinformatics analysis. In addition, we found that RalB promoted tumor growth and lymph node metastasis. Finally, we identified Tirabrutinib (ONO-4059) targeting RalB with good binding properties. CONCLUSIONS RalB act as a prognostic gene in HNSCC, and promote lymph node metastasis in early stage of TSCC.
Collapse
Affiliation(s)
- Yuman Zhang
- Department of Otolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, 401147, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Jiali Yang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yi Gong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
| | - Zhihan Liu
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
| | - Yanguang Yang
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xiaoyong Song
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
| | - Yuting Gao
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
| | - Yajun Xiong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
| | - Dan Wang
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China
| | - Kai Fu
- Department of Otolaryngology Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, 12# Jiankang Road, Shijiazhuang, 050000, Hebei Province, China.
| | - Lifeng Jia
- Department of Otolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, 401147, China.
- Department of Otolaryngology Head and Neck Surgery, Chongqing General Hospital, No.118 Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China.
| | - Xinli Shi
- Department of Otolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, 401147, China.
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, 030000, China.
| |
Collapse
|
2
|
Ren D, Ye X, Chen R, Jia X, He X, Tao J, Jin T, Wu S, Zhang H. Activation and evasion of inflammasomes during viral and microbial infection. Cell Mol Life Sci 2025; 82:56. [PMID: 39833559 PMCID: PMC11753444 DOI: 10.1007/s00018-025-05575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
The inflammasome is a cytoplasmic multiprotein complex that induces the maturation of the proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) or pyroptosis by activating caspases, which play critical roles in regulating inflammation, cell death, and various cellular processes. Multiple studies have shown that the inflammasome is a key regulator of the host defence response against pathogen infections. During the process of pathogenic microbe invasion into host cells, the host's innate immune system recognizes these microbes by activating inflammasomes, triggering inflammatory responses to clear the microbes and initiate immune responses. Moreover, microbial pathogens have evolved various mechanisms to inhibit or evade the activation of inflammasomes. Therefore, we review the interactions between viruses and microbes with inflammasomes during the invasion process, highlight the molecular mechanisms of inflammasome activation induced by microbial pathogen infection, and highlight the corresponding strategies that pathogens employ to evade inflammasome activity. Finally, we also discuss potential therapeutic strategies for the treatment of pathogenic microbial infections via the targeting of inflammasomes and their products.
Collapse
Affiliation(s)
- Dan Ren
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xiaoou Ye
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Ruiming Chen
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xiuzhi Jia
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xianhong He
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| |
Collapse
|
3
|
Xia Q, Zhang J. Interaction Between Autophagy and the Inflammasome in Human Tumors: Implications for the Treatment of Human Cancers. Cell Biochem Funct 2025; 43:e70035. [PMID: 39722223 DOI: 10.1002/cbf.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/10/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Autophagy is a physiologically regulated cellular process orchestrated by autophagy-related genes (ATGs) that, depending on the tumor type and stage, can either promote or suppress tumor growth and progression. It can also modulate cancer stem cell maintenance and immune responses. Therefore, targeted manipulation of autophagy may inhibit tumor development by overcoming tumor-promoting mechanisms. The inflammasome is another multifunctional bioprocess that induces a form of pro-inflammatory programmed cell death, called pyroptosis. Dysregulation or overactivation of the inflammasome has been implicated in tumor pathogenesis and development. Additionally, autophagy can inhibit the NLRP3 inflammasome by removing inflammatory drivers. Recent research suggests that the NLRP3 inflammasome, in turn, affects autophagy. Understanding the complex interplay between autophagy and inflammasomes could lead to more precise and effective strategies for cancer treatments. In this review, we summarize the impact of autophagy and inflammasome dysregulation on tumor progression or suppression. We then highlight their targeting for cancer treatment as monotherapy or in combination with other therapies. Furthermore, we discuss the interaction between autophagy and tumor-promoting inflammation or the NLRP3 inflammasome. Finally, based on recent findings, we review the potential of this interaction for cancer treatment.
Collapse
Affiliation(s)
- Qing Xia
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingzhou Zhang
- Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Fan X, Yan Y, Li Y, Song Y, Li B. Anti-tumor mechanism of artesunate. Front Pharmacol 2024; 15:1483049. [PMID: 39525639 PMCID: PMC11549674 DOI: 10.3389/fphar.2024.1483049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Artesunate (ART) is a classic antimalarial drug with high efficiency, low toxicity and tolerance. It has been shown to be safe and has good anti-tumor effect. Existing clinical studies have shown that the anti-tumor mechanisms of ART mainly include inducing apoptosis and autophagy of tumor cells, affecting tumor microenvironment, regulating immune response, overcoming drug resistance, as well as inhibiting tumor cell proliferation, migration, invasion, and angiogenesis. ART has been proven to fight against lung cancer, hepatocarcinoma, lymphoma, multiple myeloma, leukemia, colorectal cancer, ovarian cancer, cervical cancer, malignant melanoma, oral squamous cell carcinoma, bladder cancer, prostate cancer and other neoplasms. In this review, we highlight the effects of ART on various tumors with an emphasis on its anti-tumor mechanism, which is helpful to propose the potential research directions of ART and expand its clinical application.
Collapse
Affiliation(s)
| | | | | | | | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
5
|
Yang M, Boye-Doe A, Abosabie SAS, Barr AM, Mendez LM, Sharda AV. RalB uncoupled exocyst mediates endothelial Weibel-Palade body exocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613344. [PMID: 39345530 PMCID: PMC11429928 DOI: 10.1101/2024.09.16.613344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Ras-like (Ral) GTPases play essential regulatory roles in many cellular processes, including exocytosis. Cycling between GDP- and GTP-bound states, Ral GTPases function as molecular switches and regulate effectors, specifically the multi-subunit tethering complex exocyst. Here, we show that Ral isoform RalB controls regulated exocytosis of Weibel-Palade bodies (WPBs), the specialized endothelial secretory granules that store hemostatic protein von Willebrand factor. Remarkably, unlike typical small GTPase-effector interactions, RalB binds exocyst in its GDP-bound state in resting endothelium. Upon endothelial cell stimulation, exocyst is uncoupled from RalB-GTP resulting in WPB tethering and exocytosis. Furthermore, we report that PKC-dependent phosphorylation of the C-terminal hypervariable region (HVR) of RalB modulates its dynamic interaction with exocyst in endothelium. Exocyst preferentially interacts with phosphorylated RalB in resting endothelium. Dephosphorylation of RalB either by endothelial cell stimulation, or PKC inhibition, or expression of nonphosphorylatable mutant at a specific serine residue of RalB HVR, disengages exocyst and augments WPB exocytosis, resembling RalB exocyst-binding site mutant. In summary, it is the uncoupling of exocyst from RalB that mediates endothelial Weibel-Palade body exocytosis. Our data shows that Ral function may be more dynamically regulated by phosphorylation and may confer distinct functionality given high degree of homology and the shared set of effector protein between the two Ral isoforms.
Collapse
Affiliation(s)
- Moua Yang
- Bloodworks Northwest Research Institute, Seattle, WA 98102, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra Boye-Doe
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Salma A S Abosabie
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Alexandra M Barr
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Lourdes M Mendez
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Anish V Sharda
- Section of Hematology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Zhou ZY, Liu L, Song XM. Identification of RAS-like oncoprotein B (RALB) as a potential prognostic and therapeutic target in head and neck squamous cell carcinoma. Am J Transl Res 2024; 16:3950-3963. [PMID: 39262725 PMCID: PMC11384417 DOI: 10.62347/ndfc4209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/01/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND/PURPOSE The RAS superfamily oncogenes play significant roles in various types of malignant tumors. However, little is known about the role of RAS-like oncoprotein B (RALB) in head and neck squamous cell carcinoma (HNSCC). This study evaluated whether RALB can be a prognostic and therapeutic target for HNSCC. MATERIALS AND METHODS A total of 504 HNSCC samples from The Cancer Genome Atlas database were segregated into two groups: RALB-high and RALB-low. The clinical significance of RALB expression in HNSCC patients was investigated. Cell proliferation, migration, and invasion assays were performed in HN-1 and HN-5 cells by silencing RALB using siRNA. Gene enrichment and immune infiltration analyses were also performed. RESULTS RALB expression was elevated in HNSCC tissues compared with normal tissues and was an independent risk factor associated with poor prognosis. A nomogram including the RALB expression level was established to predict the prognosis of HNSCC patients and showed highest sensitivity and benefit in predicting the three-year survival. The inhibition of RALB expression effectively impeded the proliferation, invasion, and migration of HNSCC cells. Importantly, RALB levels were significantly correlated with T cell-mediated immune responses, especially in human papillomavirus-positive HNSCC samples. CONCLUSION This study identified RALB as a potential prognostic and therapeutic target for HNSCC, and provided insight into the relationship between RALB and revealed an innovative strategy for HNSCC immunotherapy.
Collapse
Affiliation(s)
- Zi-Yuan Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University Nanjing, Jiangsu, China
| | - Lei Liu
- Department of Orthopedics, The Affiliated Yixing Hospital of Jiangsu University Yixing, Jiangsu, China
| | - Xiao-Meng Song
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Xu Y, Wang Y, Zhang D, Zhang H, Wang Y, Wang W, Hu X. An autophagy-associated diagnostic signature based on peripheral blood for antibody-mediated rejection in renal transplantation. Transpl Immunol 2024; 84:102021. [PMID: 38452984 DOI: 10.1016/j.trim.2024.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Antibody-mediated rejection (ABMR) emerged as a major cause of graft loss in renal transplantation. Needle biopsy is the gold standard for diagnosis of ABMR in renal allografts. Thus, noninvasive diagnosis methods of ABMR with high accuracy are urgently needed to prevent unnecessary biopsies. METHODS We collected peripheral blood transcriptome data from two independent renal transplantation cohorts with patients with ABMR, stable well-functioning transplants (STA), and T-cell mediated rejection (TCMR). Differentially expressed genes (DEGs) were identified by comparing the ABMR group with the STA group. In addition, functional enrichment analysis and gene set enrichment analysis were performed to seek new key underlying mechanisms in ABMR. Subsequently, we utilized a Boruta algorithm and least absolute shrinkage and selection operator logistic algorithm to establish a diagnostic model which was then evaluated and validated in an independent cohort. RESULTS According to functional enrichment analysis, autophagy was found to be the primary upregulated biological process in ABMR. Based on algorithms, three autophagy-associated genes, ubiquitin specific peptidase 33 (USP33), Ras homolog mTORC1 binding (RHEB), and ABL proto-oncogene 2 (ABL2), were selected to establish the diagnostic model in the training cohort. This autophagy-related gene model possessed good diagnostic value in distinguishing ABMR from STA blood samples in the training cohort (AUC = 0.907) and in the validation cohort (AUC = 0.972). In addition, this model also showed good discernibility in distinguishing ABMR from TCMR in the training and validation cohorts (AUCs = 0.908 and 0.833). CONCLUSION We identified and validated an autophagy-associated diagnostic model with high accuracy for renal transplant patients with ABMR. Our study provided a new potential test for the non-invasive diagnosis of ABMR in clinical practice and highlighted the importance of autophagy in ABMR.
Collapse
Affiliation(s)
- Yue Xu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Yuxuan Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Di Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Hao Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Yicun Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Wei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Institute of Urology, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
8
|
Zhang XY, Li RC, Xu C, Li XM. Regulation of Dihydroartemisinin on the pathological progression of laryngeal carcinoma through the periostin/YAP/IL-6 pathway. Heliyon 2024; 10:e27494. [PMID: 38515687 PMCID: PMC10955237 DOI: 10.1016/j.heliyon.2024.e27494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Objective Laryngeal cancer (LC) is one of the most common squamous cell carcinomas of the head and neck in clinical practice, and its incidence has been increasing in recent years, but the prognosis of the patients is not favorable. Hence, it is critical to re-understand and deeply study the causes and mechanisms of LC and explore new effective treatment methods and strategies. In this study, we analyzed the effect of Dihydroartemisinin (DHA) on the pathological progression of LC through the periostin (POSTN)/Yes-associated protein (YAP)/interleukin (IL)-6 pathway, which can provide new clinical references and guidelines. Methods POSTN, YAP, and IL-6 levels in 18 pairs of fresh LC tissues and adjacent counterparts in our hospital were detected. Additionally, LC TU686 cell line was purchased for DHA treatment of various concentrations to detect changes in cell biological behavior. Finally, we built a tumor-bearing mouse model with C57BL/6 mice and intragastrically administrated DHA to the animals to observe the growth of living tumors and to measure POSTN, YAP, and IL-6 expression in tumor tissues. Results As indicated by PCR, Western blotting, and immunohistochemistry, POSTN, YAP, and IL-6 presented higher expression in LC tissues than in adjacent counterparts. In cell experiments, the cloning rate of LC cells decreased and the apoptosis rate increased after DHA intervention, with 160 μmol/L DHA contributing to the most significant effect on LC activity inhibition. Furthermore, DHA-intervened cells exhibited markedly reduced POSTN, YAP, and IL-6 levels. Finally, the tumorigenesis experiment in nude mice showed inhibited tumor growth after DHA administration. And consistently, the expressions of POSTN, YAP, and IL-6 in living tumors decreased. Conclusions DHA can inhibit POSTN/YAP/IL-6 transduction, accelerate LC cell apoptosis, and alleviate the malignant progression of LC.
Collapse
Affiliation(s)
- Xin-yu Zhang
- Graduate School of Hebei Medical University, 050000, Shijiazhuang, China
- Department of Otolaryngology, Head and Neck Surgery, NO.980 Hospital of the Chinese People's Liberation Army Joint Logistics and Security Forces, 050000, Shijiazhuang, China
- Department of Otolaryngology, Baoding No.1 Central Hospital, 071000, Baoding, China
| | - Rui-cong Li
- Department of Otolaryngology, Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, 050000, Shijiazhuang, China
| | - Cong Xu
- Department of Otolaryngology, Head and Neck Surgery, NO.980 Hospital of the Chinese People's Liberation Army Joint Logistics and Security Forces, 050000, Shijiazhuang, China
| | - Xiao-ming Li
- Department of Otolaryngology, Head and Neck Surgery, NO.980 Hospital of the Chinese People's Liberation Army Joint Logistics and Security Forces, 050000, Shijiazhuang, China
| |
Collapse
|
9
|
Lin W, Zhao Z, Du W, Ni Z, Pan C, Fang P, Li J, ZhuGe L, Jin S. Interferon-Gamma-Inducible Protein 16 Inhibits Hepatocellular Carcinoma via Interferon Regulatory Factor 3 on Chemosensitivity. Dig Dis Sci 2024; 69:491-501. [PMID: 38170337 DOI: 10.1007/s10620-023-08175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/29/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND AND AIM Previous reports have suggested IFI16 as a tumor suppressor in hepatocellular carcinoma (HC). Nonetheless, the biological significance of IFI16 and its mechanism concerning resistance to cisplatin (DDP) in HC requires further exploration. METHODS Samples of tumor and corresponding para-carcinoma tissues were acquired from patients with HC. Furthermore, DDP-resistant cell lines of HC, specifically HCC, Huh7 and Hepatoblastoma, HepG3, were generated by gradually increasing the concentration of DDP. Cell apoptosis and DNA damage were evaluated by utilizing flow cytometry assay and TUNEL staining. The interaction between IFI16 and interferon regulatory factor 3 (IRF3) proteins were analyzed using Co-Immunoprecipitation (Co-IP) assay. In vivo assays were conducted by establishing HC subcutaneous xenograft tumor models. RESULTS The study found a reduction in IFI16 expression in both HC tissues and DDP-resistant HC cell lines. The binding of IFI16 to IRF3 regulated DNA damage-associated markers in vitro. Overexpression of IFI16 heightened the susceptibility of DDP-induced apoptosis and DNA damage, which was counteracted by IRF3 knockdown, while strengthened by IRF3 overexpression. Moreover, overexpression of IFI16 diminished in vivo DDP-resistant HC tumorigenicity. CONCLUSION In summary, our findings suggest that IFI16 serves as a tumor suppressor in HC by promoting DNA damage via its interaction with IRF3, thereby reversing DDP resistance.
Collapse
Affiliation(s)
- Wei Lin
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, #1111 of Wenzhou Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, China.
| | - Zhiguang Zhao
- Department of Pathology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjun Du
- Department of Liver Diseases, Shandong Public Health Clinical Center, Shangdong University, Jinan, Shangdong, China
| | - Zhonglin Ni
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenwei Pan
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, #1111 of Wenzhou Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, China
| | - Peipei Fang
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, #1111 of Wenzhou Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, China
| | - Jie Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, #1111 of Wenzhou Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, China
| | - Lu ZhuGe
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, #1111 of Wenzhou Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, China
| | - Shuanghong Jin
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, #1111 of Wenzhou Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Yang J, Xia T, Zhou S, Liu S, Pan T, Li Y, Luo Z. Anticancer Effect of Dihydroartemisinin via Dual Control of ROS-induced Apoptosis and Protective Autophagy in Prostate Cancer 22Rv1 Cells. Curr Pharm Biotechnol 2024; 25:1321-1332. [PMID: 37605406 DOI: 10.2174/1389201024666230821155243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Dihydroartemisinin (DHA), a natural agent, exhibits potent anticancer activity. However, its biological activity on prostate cancer (PCa) 22Rv1 cells has not been previously investigated. OBJECTIVES In this study, we demonstrate that DHA induces anticancer effects through the induction of apoptosis and autophagy. METHODS Cell viability and proliferation rate were assessed using the CCK-8 assay and cell clone formation assay. The generation of reactive oxygen species (ROS) was detected by flow cytometry. The molecular mechanism of DHA-induced apoptosis and autophagy was examined using Western blot and RT-qPCR. The formation of autophagosomes and the changes in autophagy flux were observed using transmission electron microscopy (TEM) and confocal microscopy. The effect of DHA combined with Chloroquine (CQ) was assessed using the EdU assay and flow cytometry. The expressions of ROS/AMPK/mTOR-related proteins were detected using Western blot. The interaction between Beclin-1 and Bcl-2 was examined using Co-IP. RESULTS DHA inhibited 22Rv1 cell proliferation and induced apoptosis. DHA exerted its antiprostate cancer effects by increasing ROS levels. DHA promoted autophagy progression in 22Rv1 cells. Inhibition of autophagy enhanced the pro-apoptotic effect of DHA. DHA-induced autophagy initiation depended on the ROS/AMPK/mTOR pathway. After DHA treatment, the impact of Beclin- 1 on Bcl-2 was weakened, and its binding with Vps34 was enhanced. CONCLUSION DHA induces apoptosis and autophagy in 22Rv1 cells. The underlying mechanism may involve the regulation of ROS/AMPK/mTOR signaling pathways and the interaction between Beclin-1 and Bcl-2 proteins. Additionally, the combination of DHA and CQ may enhance the efficacy of DHA in inhibiting tumor cell activity.
Collapse
Affiliation(s)
- Jiaxin Yang
- Laboratory of Medical Experiment Technology, Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Tong Xia
- Laboratory of Medical Experiment Technology, Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Sijie Zhou
- Laboratory of Medical Experiment Technology, Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Sihao Liu
- Laboratory of Medical Experiment Technology, Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Tingyu Pan
- Laboratory of Medical Experiment Technology, Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ying Li
- Laboratory of Medical Experiment Technology, Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ziguo Luo
- Laboratory of Medical Experiment Technology, Institute of Life Science, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Li J, Gu A, Nong XM, Zhai S, Yue ZY, Li MY, Liu Y. Six-Membered Aromatic Nitrogen Heterocyclic Anti-Tumor Agents: Synthesis and Applications. CHEM REC 2023; 23:e202300293. [PMID: 38010365 DOI: 10.1002/tcr.202300293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Cancer stands as a serious malady, posing substantial risks to human well-being and survival. This underscores the paramount necessity to explore and investigate novel antitumor medications. Nitrogen-containing compounds, especially those derived from natural sources, form a highly significant category of antitumor agents. Among these, antitumor agents with six-membered aromatic nitrogen heterocycles have consistently attracted the attention of chemists and pharmacologists. Accordingly, we present a comprehensive summary of synthetic strategies and clinical implications of these compounds in this review. This entails an in-depth analysis of synthesis pathways for pyridine, quinoline, pyrimidine, and quinazoline. Additionally, we explore the historical progression, targets, mechanisms of action, and clinical effectiveness of small molecule inhibitors possessing these structural features.
Collapse
Affiliation(s)
- Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Xiao-Mei Nong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| |
Collapse
|
12
|
Zhou X, Suo F, Haslinger K, Quax WJ. Artemisinin-Type Drugs in Tumor Cell Death: Mechanisms, Combination Treatment with Biologics and Nanoparticle Delivery. Pharmaceutics 2022; 14:395. [PMID: 35214127 PMCID: PMC8875250 DOI: 10.3390/pharmaceutics14020395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Artemisinin, the most famous anti-malaria drug initially extracted from Artemisia annua L., also exhibits anti-tumor properties in vivo and in vitro. To improve its solubility and bioavailability, multiple derivatives have been synthesized. However, to reveal the anti-tumor mechanism and improve the efficacy of these artemisinin-type drugs, studies have been conducted in recent years. In this review, we first provide an overview of the effect of artemisinin-type drugs on the regulated cell death pathways, which may uncover novel therapeutic approaches. Then, to overcome the shortcomings of artemisinin-type drugs, we summarize the recent advances in two different therapeutic approaches, namely the combination therapy with biologics influencing regulated cell death, and the use of nanocarriers as drug delivery systems. For the former approach, we discuss the superiority of combination treatments compared to monotherapy in tumor cells based on their effects on regulated cell death. For the latter approach, we give a systematic overview of nanocarrier design principles used to deliver artemisinin-type drugs, including inorganic-based nanoparticles, liposomes, micelles, polymer-based nanoparticles, carbon-based nanoparticles, nanostructured lipid carriers and niosomes. Both approaches have yielded promising findings in vitro and in vivo, providing a strong scientific basis for further study and upcoming clinical trials.
Collapse
Affiliation(s)
| | | | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| |
Collapse
|
13
|
Yu R, Jin G, Fujimoto M. Dihydroartemisinin: A Potential Drug for the Treatment of Malignancies and Inflammatory Diseases. Front Oncol 2021; 11:722331. [PMID: 34692496 PMCID: PMC8529146 DOI: 10.3389/fonc.2021.722331] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Dihydroartemisinin (DHA) has been globally recognized for its efficacy and safety in the clinical treatment of malaria for decades. Recently, it has been found that DHA inhibits malignant tumor growth and regulates immune system function in addition to anti-malaria. In parasites and tumors, DHA causes severe oxidative stress by inducing excessive reactive oxygen species production. DHA also kills tumor cells by inducing programmed cell death, blocking cell cycle and enhancing anti-tumor immunity. In addition, DHA inhibits inflammation by reducing the inflammatory cells infiltration and suppressing the production of pro-inflammatory cytokines. Further, genomics, proteomics, metabolomics and network pharmacology of DHA therapy provide the basis for elucidating the pharmacological effects of DHA. This review provides a summary of the recent research progress of DHA in anti-tumor, inhibition of inflammatory diseases and the relevant pharmacological mechanisms. With further research of DHA, it is likely that DHA will become an alternative therapy in the clinical treatment of malignant tumors and inflammatory diseases.
Collapse
Affiliation(s)
- Ran Yu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Laboratory of Cutaneous Immunology, Osaka University Immunology Frontier Research Center, Osaka, Japan
| |
Collapse
|
14
|
Wang X, Song W, Zhang F, Huang R. Dihydroartemisinin Inhibits TGF-β-Induced Fibrosis in Human Tenon Fibroblasts via Inducing Autophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:973-981. [PMID: 33688170 PMCID: PMC7937381 DOI: 10.2147/dddt.s280322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Background The formation of hypertrophic scars (HS) can result in the failure of glaucoma surgery, and fibrosis is known to be closely associated with the progression of HS. Dihydroartemisinin (DHA) has been reported to inhibit the progression of fibrosis; however, whether DHA can alleviate the formation of HS remains unclear. Methods In the present study, in order to examine the effects of DHA on the progression of HS, human Tenon's capsule fibroblasts (HTFs) were isolated from patients who underwent glaucoma surgery. In addition, Western blot analysis, microtubule associated protein 1 light chain 3 α staining and reverse transcription-quantitative PCR were performed to detect protein and mRNA expression levels in the HTFs, respectively. Cell proliferation was detected by Ki67 staining. Flow cytometry was used to examine apoptosis and reactive oxygen species (ROS) levels in the HTFs. Results The results revealed that TGF-β promoted the proliferation and fibrosis of HTFs; however, DHA significantly reversed the effects of TGF-β by increasing cell autophagy. In addition, DHA notably induced the apoptosis of TGF-β-stimulated HTFs by increasing the ROS levels, while these increases were partially reversed by 3-methyladenine. Furthermore, DHA notably increased the expression of microRNA (miR)-145-5p in HTFs in a dose-dependent manner. Conclusion The present study demonstrated that DHA inhibits the TGF-β-induced fibrosis of HTFs by inducing autophagy. These findings may aid in the development of novel agents for the prevention of the formation of HS following glaucoma surgery.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Wuqi Song
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Renping Huang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| |
Collapse
|
15
|
Wang Y, Zheng Y, Chen Q, Dai Y, Li T. MicroRNA-139 inhibits pancreatic-cancer carcinogenesis by suppressing RalB via the Ral/RAC/PI3K pathway. Arch Biochem Biophys 2020; 704:108719. [PMID: 33290747 DOI: 10.1016/j.abb.2020.108719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023]
Abstract
Micro-ribonucleic acids (miRNAs) are a class of conserved small non-coding RNAs (sncRNAs) that post-transcriptionally regulate their downstream target genes. Existing evidence indicates that abnormal expression of mRNAs results in the occurrence and development of pancreatic cancer (PC). In this study, we explored the potential role of miRNA-139 (miR-139) as a biomarker in the monitoring and treatment of PC. We demonstrated that expression of miR-139 was significantly downregulated in PC cells and tissues. In addition, both in vitro and in vivo experiments showed that miR-139 significantly inhibited the growth, migration, and invasion of PC cells. We carried out microarray analysis and transcriptome sequencing to find the potential target of miR-139 in PC cells, and the results showed that miR-139 targeted Ras-like proto-oncogene B (RalB). Luciferase reporter experiments verified that high level of RalB could reverse the proliferation and invasion of PC cells overexpressing miR-139. Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we found that miR-139 likely affected PC cell cycle by targeting RalB via the Ral/protein kinase B (Akt) serine/threonine kinase 1 (RAC)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, thus affecting cell proliferation. This presumption was further confirmed in our in vitro and in vivo experiments. Our examination of PC tissues suggested that the expression of miR-139 was negatively correlated with that of RalB. Taken together, our results implied that miR-139 could suppress tumor growth and metastasis in PC by targeting RalB, revealing the potential role of miR-139 as a biomarker for the monitoring and treatment of PC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Oncology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Yan Zheng
- Department of Oncology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Qiao Chen
- Department of Oncology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Yongmei Dai
- Department of Oncology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Ting Li
- Department of Oncology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
16
|
Xu C, Zhang H, Mu L, Yang X. Artemisinins as Anticancer Drugs: Novel Therapeutic Approaches, Molecular Mechanisms, and Clinical Trials. Front Pharmacol 2020; 11:529881. [PMID: 33117153 PMCID: PMC7573816 DOI: 10.3389/fphar.2020.529881] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Artemisinin and its derivatives have shown broad-spectrum antitumor activities in vitro and in vivo. Furthermore, outcomes from a limited number of clinical trials provide encouraging evidence for their excellent antitumor activities. However, some problems such as poor solubility, toxicity and controversial mechanisms of action hamper their use as effective antitumor agents in the clinic. In order to accelerate the use of ARTs in the clinic, researchers have recently developed novel therapeutic approaches including developing novel derivatives, manufacturing novel nano-formulations, and combining ARTs with other drugs for cancer therapy. The related mechanisms of action were explored. This review describes ARTs used to induce non-apoptotic cell death containing oncosis, autophagy, and ferroptosis. Moreover, it highlights the ARTs-caused effects on cancer metabolism, immunosuppression and cancer stem cells and discusses clinical trials of ARTs used to treat cancer. The review provides additional insight into the molecular mechanism of action of ARTs and their considerable clinical potential.
Collapse
Affiliation(s)
- Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Huihui Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Lingli Mu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|