1
|
Wang Y, Wu L, Wang H, Jiang M, Chen Y, Zheng X, Li L, Yin Q, Han L, Bai L, Bian Y. Ligusticum chuanxiong: a chemical, pharmacological and clinical review. Front Pharmacol 2025; 16:1523176. [PMID: 40235541 PMCID: PMC11996930 DOI: 10.3389/fphar.2025.1523176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/21/2025] [Indexed: 04/17/2025] Open
Abstract
Ethnopharmacological Relevance The dried rhizome of Ligusticum chuanxiong S.H.Qiu, Y.Q.Zeng, K.Y.Pan, Y.C.Tang and J.M.Xu (Apiaceae; including the horticultural variety Ligusticum chuanxiong Hort.) [synonym: Conioselinum anthriscoides (H.Boissieu) Pimenov and Kljuykov (The taxonomic classification has been adopted by the World Checklist of Vascular Plants)] is a traditional Chinese botanical drug renowned for its anti-inflammatory and antioxidant properties. It has been widely used to treatment various diseases, particularly cardio-cerebral vascular diseases (CCVDs). Aim of the review This review aims to summarize recent advances in Ligusticum chuanxiong (CX) research, including its chemical composition and pharmacological effects, and modern clinical applications. Materials and methods A systematic literature search was conducted using keywords such as "Chuanxiong," "traditional Chinese medicine," "chemical components," "metabolites," "CCVDs," and "pharmacological effects" to identify relevant literature published between 2014 and 2025. Databases including PubMed, Web of Science, Google Scholar, and CNKI were utilized. Chemical structures in SMILES format were retrieved from the PubChem, and two-dimensional chemical structures were generated using ChemDraw Ultra 8.0. Classical prescriptions of chuanxiong were obtained from authoritative traditional Chinese medicine databases. Results Over 100 metabolites have been isolated and identified from CX, classified into nine major classes. Key bioactive compounds include senkyunolide A, ligustilide, tetramethylpyrazine (TMP), and ligusticum CX polysaccharides (LCP). CX demonstrates significant pharmacological effects in treating CCVDs, such as atherosclerosis (AS), myocardial and cerebral ischemia-reperfusion injury, and hypertension. Its therapeutic mechanisms include antiplatelet activity, endothelial cell protection, anti-inflammatory, antioxidant, and anti-apoptotic properties. CX can be administered alone or in combination with other traditional Chinese medicines (TCMs) or chemical drugs, showing efficacy in cardiovascular, nervous system, digestive system disorders, as well as analgesia and anticancer activities. Conclusion CX holds substantial clinical value for treating multi-system diseases, with extensive evidence supporting its use in CCVDs. Further research and clinical exploration of CX are warranted to fully harness its therapeutic potential.
Collapse
Affiliation(s)
- Yin Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liuyun Wu
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hulin Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyu Jiang
- School of Pharmacy, North Sichuan Medical Collage, Nanchong, China
| | - Yu Chen
- Power China Chengdu Engineering Corporation Limited, Chengdu, China
| | - Xingyue Zheng
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lian Li
- Department of Pharmacy, The Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lizhu Han
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Shang Y, Zhu Y, Zhou S, Liu Y, Wei S, Zhou H, Jiang Y, Wang Y, Geng T, Wang Q, He J. A UPLC-MS/MS coupled with GC-MS method for quantification of twenty-one chemical ingredients from Suxiao Jiuxin pill in multiple tissue of rat and its application to tissue distribution study. J Pharm Biomed Anal 2025; 252:116461. [PMID: 39255555 DOI: 10.1016/j.jpba.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Suxiao Jiuxin pill (SJP) was a commonly-used traditional Chinese medicine for treating cardiovascular diseases. It was composed of the rhizome of Ligusticum chuanxiong Hort. and Borneolum Syntheticum. The distribution of SJP in vivo was still ambiguous. A UPLC-MS/MS coupled with GC-MS method was developed to quantify twenty-one chemical ingredients in multiple tissues from rat after administration of SJP. Protein precipitation and liquid-liquid microextraction were both utilized in sample pretreatment. All analytes were detected under acceptable specificity, linearity (correlation coefficient > 0.992), sensitivity (LLOQ < 12.5 ng/mL), precision (RSD < 14.8 %), accuracy (RE < ±14.6 %), extraction recovery (between 52.8 % and 124.1 %), matrix effect (ranged from 60.5 % and 149.7 %) and stability (RE < ±16.0 %). The established method was successfully applied in the tissue distribution study of SJP in rats. As a result, the distribution characteristics of ten analytes were clearly elucidated, including borneol, isoborneol, ligustilide, senkyunolide A, ferulic acid, senkyunolide I, levistolide A, neocnidilide, senkyunolide H and angelicide. The information provided by this research was greatly meaningful for the active chemical ingredient exploration and clinical application of SJP.
Collapse
Affiliation(s)
- Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yameng Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuting Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shujie Wei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hong Zhou
- Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited NO.6 Traditional Chinese Medicine Factory, Tianjin 300401, China
| | - Yongping Jiang
- Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited NO.6 Traditional Chinese Medicine Factory, Tianjin 300401, China
| | - Yuli Wang
- Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited Traditional Chinese Pharmacy Research Institute, Tianjin, 300457, China
| | - Tong Geng
- Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited Traditional Chinese Pharmacy Research Institute, Tianjin, 300457, China
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Li Z, Wang B, Sun K, Yin G, Wang P, Yu XA, Zhang C, Tian J. An aggregation-induced emission sensor combined with UHPLC-Q-TOF/MS for fast identification of anticoagulant active ingredients from traditional Chinese medicine. Anal Chim Acta 2023; 1279:341799. [PMID: 37827639 DOI: 10.1016/j.aca.2023.341799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Xuebijing injection (XBJ) has a good therapeutic effect on the patients with severe coronavirus disease, but the material basis of XBJ with the anticoagulant effect to improve the coagulopathy and thromboembolism is still unclear. Herein, we developed a new strategy based on aggregation-induced emission (AIE) for monitoring thrombin activity and screening thrombin inhibitors from XBJ. The molecule AIE603 and the thrombin substrate peptide S-2238 were formed into AIE nanoparticle (AIENP) which emitted notable fluorescence due to the restriction of intramolecular motions. In the presence of thrombin, AIENP was specifically hydrolyzed and AIE603 was released from AIENP, leading to the decrease of fluorescence intensity. Furthermore, AIENP was combined with ultra-high performance liquid chromatography-fraction collector (UHPLC-FC) and ultra-high performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) for separation, preparation, screening and identification of the thrombin inhibitors from XBJ, a total of 58 chemical constituents were identified, among which 6 compounds possessed higher anticoagulant activity. Notably, the overall inhibition rate of the 6 mixed standards was equivalent to about 60% of the inhibition rate of XBJ. Therefore, this work provides a novel, cheap and simple method for monitoring thrombin activity and is promising to screen active substances from traditional Chinese medicines.
Collapse
Affiliation(s)
- Ziyi Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Kunhui Sun
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Guo Yin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
4
|
Li C, Liu Y, Cao B, Lin M, Wang S, Dong B, Zhang M, Li G. Improving Chuanxiong Rhizoma quality standards using an effect-constituent index based bioassay. J Pharm Biomed Anal 2023; 233:115455. [PMID: 37201235 DOI: 10.1016/j.jpba.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Chuanxiong Rhizoma is a traditional Chinese medicine (TCM) that is used to promote blood circulation. We set out to improve Chuanxiong Rhizoma quality standards using a bioassay-based Effect-constituent Index (ECI). We performed high performance liquid chromatography (HPLC) analysis to determine the chemical constituents of 10 Chuanxiong Rhizoma samples from different locations. We then constructed a direct bioassay method to investigate each sample's antiplatelet aggregation effects. To screen for active ingredients that promote antiplatelet aggregation, we carried out Pearson correlation analyses between biopotency and compounds identified in the HPLC data. We developed an ECI of platelet aggregation inhibition using a multi-indicator synthetic evaluation method based on the integration of biopotency and active constituents. To further assess the biopotency-based Chuanxiong Rhizoma quality evaluation result accuracy, we compared the ECI with the chemical indicator' method. Eight common chemical fingerprints peaks indicated notable content variation among samples. Biological evaluation showed that all 10 samples could inhibit platelet aggregation, although they had significantly different biological potencies. Using spectrum-effect relationships, we determined that Ligustilide was the significant active constituent responsible for antiplatelet aggregation. Using correlation analysis, we found that ECI correlated with the Chuanxiong Rhizoma extract's platelet aggregation inhibitory effect. Additionally, ECI proved to be a good indicator of Chuanxiong Rhizoma quality, whereas chemical indicators failed to distinguish and predict the biopotency-based quality grade. This work indicates that ECI is a useful tool for associating sample quality with chemical markers linked to TCM clinical effects. ECI also provides a paradigm for improving the quality control of other TCMs that invigorate blood circulation.
Collapse
Affiliation(s)
- Chunyu Li
- National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, China.
| | - Yanlu Liu
- Department of Traditional Chinese Medicine, the First Medical Center, Chinese PLA General Hospital, 100039, China
| | - Bo Cao
- National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, China
| | - Mengmeng Lin
- National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, China
| | - Shiyuan Wang
- National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, China
| | - Bin Dong
- National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, China
| | - Mingyu Zhang
- National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, China
| | - Guohui Li
- National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, China.
| |
Collapse
|
5
|
Huang Y, Wu Y, Yin H, Du L, Chen C. Senkyunolide I: A Review of Its Phytochemistry, Pharmacology, Pharmacokinetics, and Drug-Likeness. Molecules 2023; 28:molecules28083636. [PMID: 37110869 PMCID: PMC10144034 DOI: 10.3390/molecules28083636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Senkyunolide I (SI) is a natural phthalide that has drawn increasing interest for its potential as a cardio-cerebral vascular drug candidate. In this paper, the botanical sources, phytochemical characteristics, chemical and biological transformations, pharmacological and pharmacokinetic properties, and drug-likeness of SI are reviewed through a comprehensive literature survey, in order to provide support for its further research and applications. In general, SI is mainly distributed in Umbelliferae plants, and it is relatively stable to heat, acid, and oxygen, with good blood-brain barrier (BBB) permeability. Substantial studies have established reliable methods for the isolation, purification, and content determination of SI. Its pharmacological effects include analgesic, anti-inflammatory, antioxidant, anti-thrombotic, anti-tumor effects, alleviating ischemia-reperfusion injury, etc. Pharmacokinetic parameters indicate that its metabolic pathway is mainly phase Ⅱ metabolism, and it is rapidly absorbed in vivo and widely distributed in the kidneys, liver, and lungs.
Collapse
Affiliation(s)
- Yan Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Wu
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Hongxiang Yin
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Leilei Du
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| |
Collapse
|
6
|
Rapid screening of natural-origin tyrosinase regulators from Vernonia anthelmintica (L.) Willd. by offline two-dimensional liquid chromatography coupled with mass spectrometry. J Pharm Biomed Anal 2022; 219:114978. [DOI: 10.1016/j.jpba.2022.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
|
7
|
Yang M, Ni L, Wang Y, Xuan Z, Wu H, Zhan W, Wan X, Wang J, Xu F. Screening bioactive compounds from Danggui-shaoyao-san for treating sodium retention in nephrotic syndrome using bio-affinity ultrafiltration. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115171. [PMID: 35259444 DOI: 10.1016/j.jep.2022.115171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui-shaoyao-san (DSS), a representative formula of Traditional Chinese Medicine (TCM) for promoting blood circulation and diuresis (Huo-Xue-Li-Shui) therapy, has been used to clinically nephrotic syndrome (NS) and relieve nephrotic edema. AIM OF THE STUDY To explore the effects and mechanisms of DSS in improving sodium retention and to identify the bioactive compounds from DSS. MATERIALS AND METHODS DSS prescriptions were disassembled into Yangxue-Huoxue (YXHX) and Jianpi-Lishui (JPLS). A nephrotic rat model was induced with puromycin aminonucleoside (PAN), and the effects on urinary sodium excretion, urinary plasmin(gen) content, and plasmin activity of DSS, YXHX, and JPLS extracts were assessed. The inhibitory effects on urokinase-type plasminogen activator (uPA) and plasmin activity of extracts were evaluated in vitro. Bio-affinity ultrafiltration and high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (BAU-UPLC-Q/TOF-MS) were used to rapidly screen and qualitatively analyze the uPA/plasmin affinity compounds from DSS extract. Additionally, uPA/plasmin inhibition assays and molecular docking were used to verify the activity and affinity mechanisms of the potential bioactive compounds. RESULTS In vivo, DSS, YXHX, and JPLS prevented sodium retention in nephrotic rats. DSS and YXHX treatment decreased urinary plasmin activity but did not alter urinary plasmin(ogen) concentration, and their extracts showed strong uPA and plasmin inhibitory activity in vitro. These results suggested that uPA and plasmin are direct targets of DSS and YXHX in intervening NS sodium retention. Using BAU-UPLC-Q/TOF-MS, gallic acids, methyl gallate, albiflorin, and 1,2,3,4,6-O-pentagalloylglucose (PGG) were screened as uPA or plasmin affinity compounds. Among them, PGG was found to be a uPA and plasmin dual inhibitor, with an IC50 of 6.861 μM against uPA and an IC50 of 149.0 μM against plasmin. The molecular docking results of PGG with uPA and plasmin were consistent with the verification results. CONCLUSION Intervening in sodium retention by inhibiting uPA-mediated plasmin generation and plasmin activity in the kidneys could be possible mechanisms for DSS, as indicated by the results in PAN-induced nephrotic rats. We conclude that PGG is a potential bioactive compound responsible for the effect of DSS on natriuresis.
Collapse
Affiliation(s)
- Mo Yang
- Scientific Research & Technology Center, Anhui University of Chinese Medicine, Hefei, 230038, PR China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, PR China.
| | - Lianghou Ni
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Yunlai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, PR China.
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Huan Wu
- Scientific Research & Technology Center, Anhui University of Chinese Medicine, Hefei, 230038, PR China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, PR China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, PR China.
| | - Wenjing Zhan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China.
| | - Xinyu Wan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, PR China.
| |
Collapse
|
8
|
In Vitro Antithrombotic, Hematological Toxicity, and Inhibitor Studies of Protocatechuic, Isovanillic, and p-Hydroxybenzoic Acids from Maclura Tricuspidata (Carr.) Bur. Molecules 2022; 27:molecules27113496. [PMID: 35684431 PMCID: PMC9181887 DOI: 10.3390/molecules27113496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
In blood coagulation, circulating platelets and coagulation factors are crucial for the primary process because thrombi are generated by fibrin clotting with fibrinogen, thrombin, FXIIIa, and platelet activation. Therefore, strategies to reduce the activity of key coagulation factors, or interfere with their functions and delay the activation of platelets can be used as important tools to suppress excessive blood clot formation and platelet hyperactivation. This study examined the antithrombotic activity and hematological toxicity of PA, IVA, and 4-HA isolated from M. tricuspidata (Carr.) Bur in several in vitro experiments and inhibitor assays. We found that PA, IVA, and 4-HA attenuated the formation of fibrin polymers/clots and degraded the blood clots. These compounds inhibited the activities of procoagulant proteases and fibrinoligase, and prolonged the coagulation time. There was a significant reduction in platelet function and ATP or serotonin levels in thrombin-activated platelets. An inhibitor study showed that PA exhibited a mixed inhibition type for thrombin, an uncompetitive inhibition type for FXa, and a non-competitive inhibition type for FXIIIa and IVA, while 4-HA exhibited an uncompetitive inhibition type for thrombin and non-competitive inhibition type for FXa and FXIIIa. These three compounds (up to 50 μg/mL) were not toxic to blood cells.
Collapse
|
9
|
Wan SJ, Ren HG, Jiang JM, Xu G, Xu Y, Chen SM, Chen G, Zheng D, Yuan M, Zhang H, Xu HX. Two Novel Phenylpropanoid Trimers From Ligusticum chuanxiong Hort With Inhibitory Activities on Alpha-Hemolysin Secreted by Staphylococcus aureus. Front Chem 2022; 10:877469. [PMID: 35433627 PMCID: PMC9006876 DOI: 10.3389/fchem.2022.877469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of antibiotic resistance in Staphylococcus aureus has necessitated the development of innovative anti-infective agents acting on novel targets. Alpha-hemolysin (Hla), a key virulence factor of S. aureus, is known to cause various cell damage and death. In this study, with bioassay-guided fractionation, a pair of unusual epimeric lignan trimers, ligustchuanes A and B (1 and 2), were isolated from the rhizomes of Ligusticum chuanxiong Hort, together with two known phthalides being identified by UPLC-QTOF-MS. To the best of our knowledge, trimers with rare C8-C9″-type neolignan and ferulic acid fragments have not been identified in any natural product. Both of them were isolated as racemic mixtures, and their absolute configurations were determined by comparing experimental and calculated ECD spectra after enantioseparation. Ligustchuane B exhibited an outstanding inhibitory effect on α-hemolysin expression in both MRSA USA300 LAC and MSSA Newman strains at concentrations of 3 and 6 μM, respectively. Notably, a mouse model of infection further demonstrated that ligustchuane B could attenuate MRSA virulence in vivo.
Collapse
Affiliation(s)
- Shi-Jie Wan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Han-Gui Ren
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Jia-Ming Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Si-Min Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Gan Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Dan Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai JiaoTong University Affiliated Sixth People’S Hospital, Shanghai, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
- *Correspondence: Hong-Xi Xu, ; Hong Zhang,
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hong-Xi Xu, ; Hong Zhang,
| |
Collapse
|
10
|
Xi Y, Miao Y, Zhou R, Wang M, Zhang F, Li Y, Zhang Y, Yang H, Guo F. Exploration of the Specific Pathology of HXMM Tablet Against Retinal Injury Based on Drug Attack Model to Network Robustness. Front Pharmacol 2022; 13:826535. [PMID: 35401181 PMCID: PMC8990835 DOI: 10.3389/fphar.2022.826535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Retinal degenerative diseases are related to retinal injury because of the activation of the complement cascade, oxidative stress-induced cell death mechanisms, dysfunctional mitochondria, chronic neuroinflammation, and production of the vascular endothelial growth factor. Anti-VEGF therapy demonstrates remarkable clinical effects and benefits in retinal degenerative disease patients. Hence, new drug development is necessary to treat patients with severe visual loss. He xue ming mu (HXMM) tablet is a CFDA-approved traditional Chinese medicine (TCM) for retinal degenerative diseases, which can alleviate the symptoms of age-related macular degeneration (AMD) and diabetic retinopathy (DR) alone or in combination with anti-VEGF agents. To elucidate the mechanisms of HXMM, a quantitative evaluation algorithm for the prediction of the effect of multi-target drugs on the disturbance of the disease network has been used for exploring the specific pathology of HXMM and TCM precision positioning. Compared with anti-VEGF agents, the drug disturbance of HXMM on the functional subnetwork shows that HXMM reduces the network robustness on the oxidative stress subnetwork and inflammatory subnetwork to exhibit the anti-oxidation and anti-inflammation activity. HXMM provides better protection to ARPE-19 cells against retinal injury after H2O2 treatment. HXMM can elevate GSH and reduce LDH levels to exhibit antioxidant activity and suppress the expression of IL-6 and TNF-α for anti-inflammatory activity, which is different from the anti-VEGF agent with strong anti-VEGF activity. The experimental result confirmed the accuracy of the computational prediction. The combination of bioinformatics prediction based on the drug attack on network robustness and experimental validation provides a new strategy for precision application of TCM.
Collapse
Affiliation(s)
- Yujie Xi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Medicine Research Institute, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Miao
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Maolin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Medicine Research Institute, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Medicine Research Institute, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Feifei Guo, ; Hongjun Yang,
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Feifei Guo, ; Hongjun Yang,
| |
Collapse
|
11
|
Yan H, Zhou Y, Tang F, Wang C, Wu J, Hu C, Xie X, Peng C, Tan Y. A comprehensive investigation on the chemical diversity and efficacy of different parts of Ligusticum chuanxiong. Food Funct 2022; 13:1092-1107. [PMID: 35083993 DOI: 10.1039/d1fo02811a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ligusticum chuanxiong Hort. (CX) is a medicinal and edible plant with a wide range of constituents of biological interest. Since the biomass of the non-medicinal parts of CX is huge, discarding them will cause a waste of resources. To expand the medicinal uses of CX, we comprehensively investigated the chemical diversity and efficacy of its different parts (rhizomes, fibrous roots, stems and leaves). 75 compounds in the volatile oil and 243 compounds in the methanol extracts (including 95 phthalides) obtained from CX were characterized by GC-MS and UHPLC/Q-Orbitrap MS analysis, respectively. Of 95 phthalides, 14 potential new compounds and 5 phthalide trimers were identified from CX for the first time. Phthalide monomers were more abundant in rhizomes and fibrous roots, and phthalide dimers or even phthalide trimers mainly in stems and leaves. By multivariate and univariate analyses, 22 and 24 different compounds were found in the volatile oils and the methanol extracts, respectively. In the bioactivity evaluation of different parts, stems and leaves showed the best antioxidant activity, fibrous roots showed the strongest vasodilator activity, and rhizomes showed the most significant anticoagulant activity, which was related to the different metabolites in different parts. Ultimately, this work revealed the similarities and differences of phytochemicals and bioactivities in different anatomical parts of CX. It might provide helpful evidence for the rational application of non-medicinal resources.
Collapse
Affiliation(s)
- Hongling Yan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yinlin Zhou
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chengjiu Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing Wu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Changjiang Hu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. .,Key Laboratory of Quality Control and Efficacy Evaluation of Traditional Chinese Medicine Formula Granules, Sichuan New Green Medicine Science and Technology Development Co. Ltd, Pengzhou 611930, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
12
|
Screening of Potential Thrombin and Factor Xa Inhibitors from the Danshen-Chuanxiong Herbal Pair through a Spectrum-Effect Relationship Analysis. Molecules 2021; 26:molecules26237293. [PMID: 34885877 PMCID: PMC8658787 DOI: 10.3390/molecules26237293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 02/05/2023] Open
Abstract
In this study; a spectrum–effect relationship analysis combined with a high-performance liquid chromatography–mass spectrometry (LC–MS) analysis was established to screen and identify active components that can inhibit thrombin and factor Xa (THR and FXa) in Salviae Miltiorrhizae Radix et Rhizoma–Chuanxiong Rhizoma (Danshen–Chuanxiong) herbal pair. Ten potential active compounds were predicted through a canonical correlation analysis (CCA), and eight of them were tentatively identified through an LC–MS analysis. Furthermore; the enzyme inhibitory activity of six available compounds; chlorogenic acid; Z-ligustilide; caffeic acid; ferulic acid; tanshinone I and tanshinone IIA; were tested to verify the feasibility of the method. Among them; chlorogenic acid was validated to possess a good THR inhibitory activity with IC50 of 185.08 µM. Tanshinone I and tanshinone IIA are potential FXa inhibitors with IC50 of 112.59 µM and 138.19 µM; respectively. Meanwhile; molecular docking results show that tanshinone I and tanshinone IIA; which both have binding energies of less than −7.0 kcal·mol−1; can interact with FXa by forming H-bonds with residues of SER214; GLY219 and GLN192. In short; the THR and FXa inhibitors in the Danshen–Chuanxiong herbal pair have been successfully characterized through a spectrum–effect relationship analysis and an LC–MS analysis.
Collapse
|
13
|
Jiang YP, Jin Y, Bao J, Wang S, Lai WD, Wen CP, Xu ZH, Yu J. Inconsistent Time-Dependent Effects of Tetramethylpyrazine on Primary Neurological Disorders and Psychiatric Comorbidities. Front Pharmacol 2021; 12:708517. [PMID: 34489702 PMCID: PMC8417558 DOI: 10.3389/fphar.2021.708517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to investigate the time dependent effects of tetramethylpyrazine (TMP, main activity compound of Ligusticum chuanxiong Hort) on two neurological disorders and their neuropsychiatric comorbidities. 6 Hz corneal rapid kindling was used to induce epileptogenesis and the inflammatory pain was induced by intra-articular Complete Freund's adjuvant (CFA) injection. The mechanical pain thresholds were measured using von Frey hair (D4, D11, D18, D25 after CFA first injection), and the vertical rearings of the mice was observed. To test the neuropsychiatric comorbidities, anxiety-like behaviors of mice were examined by open field and elevated plus maze tests. Two behavioral despair models, tail suspension test and forced swimming test were also used to evaluate the depressive like behaviors. The results showed that TMP administered from the initial day (D1-D35 in kindling model, D0-D14 and D0-D28 in CFA model) of modeling retarded both the developments of 6 Hz corneal rapid kindling epileptogenesis and the CFA induced inflammatory pain. In comparison, late periods administration of TMP (D21-D35 in kindling and D14-D28 in CFA model) showed no effect on the epileptogenesis and the generalized seizures (GS) of kindling, but alleviated maintenance of CFA induced inflammatory pain. Furthermore, we also found all TMP treatments from the initial day of modeling alleviated the co-morbid depressive and anxiety-like behaviors in both models; however, late periods treatments did not, either in kindling or the CFA induced inflammatory pain. BDNF/ERK signaling impairment was also tested by western blot, and the results showed that TMP administered from the initial day of modeling increased the hippocampal BDNF/ERK expression, whereas late period administration showed no effects. Overall, our findings reveal the inconsistent time dependent effects of Tetramethylpyrazine on neurological disorders and their relative neuropsychiatric comorbidities, and provide novel insight into the early application of TMP that might enhance hippocampal BDNF/ERK signaling to alleviate neuropsychiatric comorbidities in neurological diseases.
Collapse
Affiliation(s)
- Yue-Peng Jiang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Jin
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Bao
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Song Wang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Dong Lai
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cheng-Ping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng-Hao Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
14
|
Yang Q, Shen F, Zhang F, Bai X, Zhang Y, Zhang H. The combination of two natural medicines, Chuanxiong and Asarum: A review of the chemical constituents and pharmacological activities. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211039130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traditional Chinese medicine has been clinically used in China for many years, with experimental studies and clinical trials having demonstrated that it is safe and valid. Among many traditional natural medicines, Chuanxiong and Asarum have been proven to be effective in the treatment of relieving pain. Actually, as well as analgesic, they have common attributes, such as anti-inflammatory, cardiovascular benefits, and anticancer activities, with volatile oils being their major components. Furthermore, Chuanxiong and Asarum have been combined as drug pairs in the same prescription for thousands of years, with examples being Chuanxiong Chatiao San and Chuanxiongxixintang. More interestingly, their combination has better therapeutic effects on diseases than a single drug. After the combination of Chuanxiong and Asarum forms a blend, a series of changes take place in their chemical components, such as the contents of the main active ingredients, ferulic acid and ligustilide, increased significantly after this progress. At the same time, the pharmacological effects of the combination appearing to be more powerful, such as synergistic analgesic. This review focuses on the chemical constituents and pharmacological activities of Chuanxiong, Asarum, and Chuanxiong Asarum compositions.
Collapse
Affiliation(s)
- Qingcheng Yang
- College of Pharmacy, Dali University, Dali, P.R. China
- Department of Pharmacy, The First People’s Hospital of Kunming, Kunming, P.R. China
| | - Fangli Shen
- College of Pharmacy, Dali University, Dali, P.R. China
- Department of Pharmacy, The First People’s Hospital of Kunming, Kunming, P.R. China
| | - Fengqin Zhang
- College of Pharmacy, Dali University, Dali, P.R. China
| | - Xue Bai
- College of Pharmacy, Dali University, Dali, P.R. China
| | - Yanru Zhang
- College of Pharmacy, Dali University, Dali, P.R. China
| | - Haizhu Zhang
- College of Pharmacy, Dali University, Dali, P.R. China
- Western Yunnan Traditional Chinese Medicine and Ethnic Drug Engineering Center, Dali, P.R. China
| |
Collapse
|
15
|
Huang Q, Tang J, Chai X, Ren W, Wang J, Gan Q, Shi J, Wang M, Yang S, Liu J, Ma L. Affinity ultrafiltration and UPLC-HR-Orbitrap-MS based screening of thrombin-targeted small molecules with anticoagulation activity from Poecilobdella manillensis. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122822. [PMID: 34147951 DOI: 10.1016/j.jchromb.2021.122822] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023]
Abstract
This study aims to screen potential anticoagulant components from leeches, a representative animal-sourced traditional Chinese medicine using thrombin (THR)-targeted ultrafiltration combined with ultrahigh performance liquid chromatography and high-resolution Orbitrap mass spectrometry (UPLC-HR-Orbitrap-MS). As a result, five small molecules in leech extract were discovered to interact with THR for the first time. Among them, two new compounds were isolated and their structures were identified by IR, HR-MS and NMR data. Furthermore, their THR inhibitory activity was confirmed with IC50 values of 4.74 and 8.31 μM, respectively. In addition, molecular docking analysis showed that the active (catalytic) site of THR might be the possible binding site of the two hits. Finally, reverse screening analysis indicated that LTA4-H, ACE and ALOX5AP were potential anticoagulant targets of the two new compounds. This study will broaden our understanding of the medicinal substance basis in leeches and further contribute to the discovery and development of clinical anticoagulant drugs from leeches.
Collapse
Affiliation(s)
- Qiuyang Huang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaoxin Chai
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wei Ren
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - JiaBo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Qichao Gan
- Chongqing Duoputai Pharmaceutical Co., Ltd, Chongqing 400800, China
| | - Jingyan Shi
- Chongqing Duoputai Pharmaceutical Co., Ltd, Chongqing 400800, China
| | - Manyuan Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Sijin Yang
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jingfang Liu
- Public Technology Service Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
16
|
Hu Y, Wang Z, Xia F, Yang W, Liu YC, Wan JB. Simultaneous quantification of bioactive components in Chinese herbal spirits by ultra-high performance liquid chromatography coupled to triple-quadrupole mass spectrometry (UHPLC-QQQ-MS/MS). Chin Med 2021; 16:26. [PMID: 33712054 PMCID: PMC7953818 DOI: 10.1186/s13020-021-00435-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/02/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The Chinese medicinal wine made from herbal medicines became prevalent among Chinese people. The Chinese herbal spirit is composed of several herbal extracts, and has the certain health functions, such as anti-fatigue and immune regulation. The quality evaluation of Chinese herbal spirit is greatly challenged by the enormous and complex components with great structural diversity and wide range of concentration distribution. METHODS An ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS) with multiple reaction monitoring (MRM) method was developed to simultaneously determine forty-three bioactive components in the Chinese herbal spirits produced by year 2014 and 2018. RESULTS Quantitative results showed that 11 components, i.e.., puerarin (5), purpureaside C (7), daidzin (8), echinacoside (9), acteoside (15), epimedin B (22), epimedin C (23), icariin (24), eugenol (27), chikusetsusaponin iva (30) and Z-ligustilide (40), significantly decreased along with the increasing years of storage, while 5 compounds, i.e.., geniposidic acid (1), protocatechuic acid (2), crustecdysone (14), daidzein (18) and icariside I (35), were basically stable in all samples across the years. CONCUSION The established method allowing to simultaneously determined 43 components with wide structural diversity and trace amounts will facilitate the quality control research of Chinese herbal spirits.
Collapse
Affiliation(s)
- Yan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Zhe Wang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co.,Ltd., Hubei, China
| | - Fangbo Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Wen Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co.,Ltd., Hubei, China
| | - Yuan-Cai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co.,Ltd., Hubei, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
17
|
Nipun TS, Khatib A, Ibrahim Z, Ahmed QU, Redzwan IE, Saiman MZ, Supandi F, Primaharinastiti R, El-Seedi HR. Characterization of α-Glucosidase Inhibitors from Psychotria malayana Jack Leaves Extract Using LC-MS-Based Multivariate Data Analysis and In-Silico Molecular Docking. Molecules 2020; 25:molecules25245885. [PMID: 33322801 PMCID: PMC7763559 DOI: 10.3390/molecules25245885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 01/15/2023] Open
Abstract
Psychotria malayana Jack has traditionally been used to treat diabetes. Despite its potential, the scientific proof in relation to this plant is still lacking. Thus, the present study aimed to investigate the α-glucosidase inhibitors in P.malayana leaf extracts using a metabolomics approach and to elucidate the ligand–protein interactions through in silico techniques. The plant leaves were extracted with methanol and water at five various ratios (100, 75, 50, 25 and 0% v/v; water–methanol). Each extract was tested for α-glucosidase inhibition, followed by analysis using liquid chromatography tandem to mass spectrometry. The data were further subjected to multivariate data analysis by means of an orthogonal partial least square in order to correlate the chemical profile and the bioactivity. The loading plots revealed that the m/z signals correspond to the activity of α-glucosidase inhibitors, which led to the identification of three putative bioactive compounds, namely 5′-hydroxymethyl-1′-(1, 2, 3, 9-tetrahydro-pyrrolo (2, 1-b) quinazolin-1-yl)-heptan-1′-one (1), α-terpinyl-β-glucoside (2), and machaeridiol-A (3). Molecular docking of the identified inhibitors was performed using Auto Dock Vina software against the crystal structure of Saccharomyces cerevisiae isomaltase (Protein Data Bank code: 3A4A). Four hydrogen bonds were detected in the docked complex, involving several residues, namely ASP352, ARG213, ARG442, GLU277, GLN279, HIE280, and GLU411. Compound 1, 2, and 3 showed binding affinity values of −8.3, −7.6, and −10.0 kcal/mol, respectively, which indicate the good binding ability of the compounds towards the enzyme when compared to that of quercetin, a known α-glucosidase inhibitor. The three identified compounds that showed potential binding affinity towards the enzymatic protein in molecular docking interactions could be the bioactive compounds associated with the traditional use of this plant.
Collapse
Affiliation(s)
- Tanzina Sharmin Nipun
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia;
- Correspondence: (A.K.); (M.Z.S.)
| | - Zalikha Ibrahim
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
| | - Irna Elina Redzwan
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia; (T.S.N.); (Z.I.); (Q.U.A.); (I.E.R.)
| | - Mohd Zuwairi Saiman
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Center for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (A.K.); (M.Z.S.)
| | - Farahaniza Supandi
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | | | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, SE-751 23 Uppsala, Sweden;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
18
|
Huo SX, Wang Q, Liu XM, Ge CH, Gao L, Peng XM, Yan M. The Effect of Butin on the Vitiligo Mouse Model Induced by Hydroquinone. Phytother Res 2017; 31:740-746. [PMID: 28321929 DOI: 10.1002/ptr.5794] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/03/2017] [Accepted: 02/09/2017] [Indexed: 11/09/2022]
Abstract
Vernonia anthelmintica (L.) Willd has been traditionally used in the treatment of vitiligo in Uyghur medicine. This study used butin, the main component of V. anthelmintica, to study the influence on hydroquinone-induced vitiligo in mice. The animals were randomly divided into six groups: control, model, 8-methoxypsoralen (8-MOP, 4.25 mg/kg), and butin (0.425, 4.25, and 42.5 mg/kg) groups. The number of melanin-containing hair follicles, basal layer melanocytes, melanin-containing epidermal cells, the expression of tyrosinase (TYR) and tyrosinase-related protein-1 (TRP-1), the malondialdehyde (MDA), and cholinesterase (CHE) activity in serum were measured. Our results indicated that compared with the model group, the melanin-containing hair follicles, the expression of TYR and TRP-1 increased, the activity of CHE decreased after treatment with 8-MOP and all doses of butin (p < 0.05, p < 0.01), the basal layer melanocytes and melanin-containing epidermal cells increased significantly after treatment with butin 4.25 and 42.5 mg/kg (p < 0.05, p < 0.01), and the MDA activity decreased after using butin 4.25 and 42.5 mg/kg and 8-MOP (p < 0.05, p < 0.01). Our results support the use of butin on vitiligo, and its possible mechanisms may be related to increase the TYR and TRP-1 protein expression and decrease the activity of MDA and CHE in hydroquinone-induced vitiligo model in mice. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shi-Xia Huo
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Qiong Wang
- Preclinical Medicine Research Center/School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xin-Min Liu
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830049, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Chun-Hui Ge
- Institute of Soil and Fertilizer & Agricultural Water Conservation, Xinjiang Academy of Agricultural Science, Urumqi, 830011, China
| | - Li Gao
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Xiao-Ming Peng
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Ming Yan
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830049, China
| |
Collapse
|