1
|
Zhou J, Shu QJ, Wang T, Huang HD, Zhang SP, Zhang J, Zheng YQ, Zhang C. Piperlongumine induces ROS accumulation to reverse resistance of 5-FU in human colorectal cancer via targeting TrxR. Eur J Pharmacol 2025; 997:177478. [PMID: 40054719 DOI: 10.1016/j.ejphar.2025.177478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Resistance is a major concern for colorectal cancer patients undergoing chemotherapy. Piperlongumine (PL) has been proven to effectively reverse drug resistance in several types of cancers; however, the mechanisms associated with the reversal effect and the targets of PL in cancer drug resistance are still unclear. In this research, the reversal effects and associated mechanisms of PL in 5-Fluorouracil (5-FU) resistance colorectal cancer were investigated both in vitro and in vivo. Our data revealed that PL acted as a ROS inducer via binding and inhibiting TrxR (IC50 around 10.17 μM). By inducing ROS accumulation, PL reversed resistance to 5-FU in HCT-8/5-FU cells (reversal ratio: 4.9-fold) and enhanced the therapeutic effects of 5-FU through the dephosphorylation of Akt in BALB/c athymic nude mice bearing HCT-8/5-FU tumor xenografts. As a ROS inducer, PL reversed resistance to 5-FU by directly promoting inhibition of Akt phosphorylation, and further inhibited 5-FU efflux and promoted cell apoptosis through affecting the Akt/Foxo3/NRF2/P-gp and Akt/Foxo3/NRF2/BAD signaling pathway.
Collapse
Affiliation(s)
- Ji Zhou
- Center for Reproductive Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241000, PR China
| | - Qing-Ju Shu
- Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241000, PR China
| | - Tian Wang
- Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241000, PR China
| | - Hui-Dan Huang
- Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241000, PR China
| | - Sheng-Peng Zhang
- Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241000, PR China
| | - Jing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yong-Qiu Zheng
- Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241000, PR China.
| | - Chao Zhang
- Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, 241000, PR China.
| |
Collapse
|
2
|
Zhang L, Guo R, Chen M, Liu M, Liu Y, Yu Y, Zang J, Kong L, Li X. Inhibition of Ovarian Cancer Growth, Metastasis and Reverse the Tumor Microenvironment by Dual Drug-Loaded Polymer Micelle Targeting Tumor Microenvironment. Int J Nanomedicine 2025; 20:2969-2990. [PMID: 40098720 PMCID: PMC11911825 DOI: 10.2147/ijn.s507038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Ovarian cancer is a malignant tumor that arises in the female reproductive system and is associated with a very high mortality rate. This is primarily due to the highly invasive nature of metastasis and recurrence. Transforming the immune environment from an immunosuppressive state to an anti-tumor state through the phenotypic transformation of tumor-associated macrophages is crucial for inhibiting the growth, metastasis, and recurrence of ovarian cancer. Methods A polymer micelle (RC-PH-Ms) containing paclitaxel (PTX) and honokiol (HNK) was designed based on high expression of reactive oxygen species in the tumor microenvironment. Once the micelles are actively targeted to the tumor microenvironment characterized by elevated levels of reactive oxygen species, the responsive bond is cleaved, thereby exposing the secondary targeting ligand C7R. The released PTX and HNK facilitate the transformation of relevant macrophages in the tumor microenvironment from an M2 phenotype to an M1 phenotype, which in turn inhibits tumor growth, invasion and metastasis, inhibit angiogenesis and reduce tumor recurrence. Results The effects of RC-PH-Ms on modulating the immune microenvironment and inhibiting tumor growth, invasion and metastasis, vascularization and recurrence were investigated both in vivo and in vitro. Conclusion RC-PH-Ms can significantly inhibit the metastasis and recurrence of ovarian cancer, which provides a new perspective for clinical treatment.
Collapse
Affiliation(s)
- Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People’s Republic of China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, People’s Republic of China
| | - Ruibo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People’s Republic of China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, People’s Republic of China
| | - Muhan Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People’s Republic of China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, People’s Republic of China
| | - Mo Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People’s Republic of China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, People’s Republic of China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People’s Republic of China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, People’s Republic of China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People’s Republic of China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, People’s Republic of China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, People’s Republic of China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People’s Republic of China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, People’s Republic of China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People’s Republic of China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, People’s Republic of China
| | - Xuetao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People’s Republic of China
- Shenyang Key Laboratory of Targeted Delivery of Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, People’s Republic of China
| |
Collapse
|
3
|
Li J, Jiang L, Ma Q, Zhang Z, Zheng S, Qiu J, Pang Y, Wang J. Evodiamine inhibits programmed cell death ligand 1 expression via the PI3K/AKT signaling pathway to regulate antitumor immunity in melanoma. Sci Rep 2025; 15:6649. [PMID: 39994441 PMCID: PMC11850830 DOI: 10.1038/s41598-025-91137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
Malignant melanoma, a rare and aggressive skin cancer, arises from the transformation of cutaneous melanocytes and is associated with a poor prognosis. Evodiamine (EVO), a bioactive compound derived from traditional Chinese herbal medicine, has demonstrated significant inhibitory effects on various tumor cells. In this study, we aimed to investigate the potential of EVO in regulating melanoma immunity and elucidate its underlying mechanisms. Experimental results revealed that the IC50 value of EVO in B16-F10 cells for 24, 48, and 72 h were 11.73, 5.083, and 4.604 µM, respectively. EVO inhibited the proliferation, invasion, and metastasis of B16-F10 cells by more than 50%, while promoting apoptosis of higher concentration of EVO. EVO also significantly suppressed tumor growth by more than 80% and reduced spleen damage in tumor-bearing mice. Treatment with EVO led to a marked increase in T-cell subsets in the spleen, bone marrow, and tumors, with immunohistochemical (IHC) staining in particular showing about 50% higher. Furthermore, EVO inhibited the expression of programmed cell death ligand 1 (PD-L1) and the PI3K/AKT signaling pathway-related proteins in both B16-F10 cells and tumors. These findings suggest that EVO exerts antitumor effects by enhancing the tumor immune microenvironment and indicates its potential as a therapeutic agent for melanoma.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China
| | - Li Jiang
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China
| | - Qianlong Ma
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhenglong Zhang
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China
| | - Shengping Zheng
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jing Qiu
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yunqing Pang
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China.
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Jing Wang
- Department of Periodontology, School/Hospital of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou, 730000, Gansu, People's Republic of China.
- Clinical Research Center for Oral Diseases, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
4
|
Hu L, Su L, Wang Z, Yang J, Wang Y, Wang J, Gu X, Wang H. Application of acid-activated near-infrared viscosity fluorescent probe targeting lysosomes in cancer visualization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124918. [PMID: 39096675 DOI: 10.1016/j.saa.2024.124918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The higher viscosity and lower pH in lysosomes of cancer cells highlight their potential as biomarkers for cancer. Therefore, the development of acid-activated viscosity fluorescent probes is significant for the early diagnosis and treatment of cancer. Based on this, we have designed and synthesized a near-infrared fluorescent probe based on the 2-(2-hydroxyphenyl)benzothiazole (HBT) group, namely HBTH, to monitor the viscosity changes within lysosomes. It has been demonstrated that HBTH was extremely sensitive to viscosity, with a strong linear relationship between fluorescence intensity and log(viscosity) within the range of (logη) = 0-3.06 (a correlation coefficient of 0.98), proving its capability for quantitative viscosity measurement. In particular, the most obvious fluorescence enhancement of HBTH was only efficiently triggered by the combined effect of low pH and high viscosity. Furthermore, HBTH can rapidly localize to lysosomes by wash-free procedure at a low concentration (100 nM) and achieve high-fidelity imaging within 20 s. It can also monitor the dynamic processes of lysosomes in cells, viscosity changes under drug stimuli, and lysosomal behavior during mitophagy. Importantly, HBTH is capable of identifying tumors in tumor-bearing nude mice through in vivo imaging. These features make HBTH a powerful tool for the early diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Lei Hu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Liping Su
- Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Zhiyu Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Jing Yang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Yuqing Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Jie Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Xiaoxia Gu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| | - Hui Wang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
| |
Collapse
|
5
|
Li Z, Li C, Chen B, Li B, Huang G, Huang Y, Hou Y, Zhong P, Jin J, Li D, Tsim KWK, Gan L, Chen WH, Wu R. Parabacteroides goldsteinii enriched by Pericarpium Citri Reticulatae 'Chachiensis' polysaccharides improves colitis via the inhibition of lipopolysaccharide-involved PI3K-Akt signaling pathway. Int J Biol Macromol 2024; 277:133726. [PMID: 39084973 DOI: 10.1016/j.ijbiomac.2024.133726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Epidemiological and preclinical studies have indicated a factual association between gut microbiota dysbiosis and high incidence of colitis. Dietary polysaccharides can specifically shift the composition of gut microbiome response to colitis. Here we validated the preventive role of polysaccharides from Pericarpium Citri Reticulatae 'Chachiensis' (PCRCP), a well-known traditional Chinese medicine, in colitis induced by dextrose sodium sulfate (DSS) in both rats and mice. We found that treatment with PCRCP not only significantly reduced DSS-induced colitis via down-regulating colonic inflammatory signaling pathways including PI3K-Akt, NLRs and NF-κB, but also enhanced colonic barrier integrity in rats. These protective activities of PCRCP against DSS-induced injuries in rats were in part due to the modulation of the gut microbiota revealed by both broad-spectrum antibiotic (ABX)-deleted bacterial and non-oral treatments. Furthermore, the improvement of PCRCP on colitis was impaired by intestinal neomycin-sensitive bacteria in DSS-exposed mice. Specifically, in vivo and in vitro treatment with PCRCP led to a highly sensible enrichment in the gut commensal Parabacteroides goldsteinii. Administration of Parabacteroides goldsteinii significantly alleviated typical symptoms of colitis and suppressed the activation of PI3K-Akt-involved inflammatory response in DSS-exposed mice. The anti-colitic effects of Parabacteroides goldsteinii were abolished after the activation of PI3K-Akt signaling pathway by lipopolysaccharide treatment in mice exposed to DSS. This study provides new insights into an anti-colitic mechanism driven by PCRCP and highlights the potential prebiotic of Parabacteroides goldsteinii for the prevention of ulcerative colitis.
Collapse
Affiliation(s)
- Zi Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Chengguo Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Baizhong Chen
- Guangdong Xinbaotang Biotechnology Co. Ltd., Jiangmen 529100, PR China; Guangdong Xinbaotang Pharmaceutical Co. Ltd., Jiangmen 529100, PR China
| | - Bing Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Gang Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Yuhao Huang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Yajun Hou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Pengjun Zhong
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jingwei Jin
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Dongli Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China
| | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Lishe Gan
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China.
| | - Rihui Wu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529040, PR China.
| |
Collapse
|
6
|
Zheng X, Tang P, Li H, Ye T, Zhu X, He W, Cheng L, Cheng H. Cucurbitacin E elicits apoptosis in laryngeal squamous cell carcinoma by enhancing reactive oxygen species-regulated mitochondrial dysfunction and endoplasmic reticulum stress. Am J Cancer Res 2024; 14:3905-3921. [PMID: 39267666 PMCID: PMC11387858 DOI: 10.62347/hpqq9412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a prevalent head and neck neoplasm with escalating global morbidity and mortality rates. Despite the increasing burden of LSCC, the drugs currently approved for its treatment are limited. Therefore, it is necessary to identify novel and promising drugs that target LSCC. Cucurbitacin E (CuE) is a naturally oxygenated tetracyclic triterpenoid that suppresses several cancers. However, its anti-LSCC activity and the molecular mechanisms of action remain unclear. This study explored its impact on LSCC, revealing cell viability attenuation and apoptosis enhancement in vitro. Further investigations indicated that CuE significantly decreased mitochondrial membrane potential, thereby promoting cytochrome c release, increasing cleaved-Caspase 3 and cleaved-PARP levels, and triggering mitochondria-dependent apoptosis. Concurrently, exposure of LSCC cells to CuE enhanced endoplasmic reticulum (ER) stress, mobilized the protein kinase RNA-like endoplasmic reticulum kinase/initiation factor 2a/ATF4/C-EBP homologous protein pathway, and induced LSCC cell apoptosis. Finally, CuE markedly elevated intracellular reactive oxygen species (ROS) levels. When ROS were eliminated with N-acetylcysteine, CuE-mediated mitochondrial dysfunction, ER stress, and cell apoptosis were nearly abolished. Similar outcomes were observed in murine LSCC models. Together, these results highlight that CuE suppresses proliferation while triggering apoptosis in LSCC cells via ROS-regulated mitochondrial dysfunction and the ER stress pathway. Hence, CuE may serve as a promising candidate for LCSS treatment.
Collapse
Affiliation(s)
- Xucai Zheng
- Department of Oncology, The Second Hospital of Anhui Medical University Hefei 230601, Anhui, China
- Department of Head, Neck and Breast Surgery, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital Hefei 230031, Anhui, China
| | - Puze Tang
- Bachelor of Science in Mathematics, University of Liverpool United Kingdom
| | - Hui Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University Hefei 230032, Anhui, China
| | - Tingbo Ye
- Department of Head, Neck and Breast Surgery, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital Hefei 230031, Anhui, China
| | - Xu Zhu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University Hefei 230032, Anhui, China
| | - Wei He
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University Hefei 230032, Anhui, China
| | - Ling Cheng
- Medical Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine Hefei 230031, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Hospital of Anhui Medical University Hefei 230601, Anhui, China
- Department of Oncology, Shenzhen Hospital of Southern Medical University Shenzhen 518000, Guangdong, China
| |
Collapse
|
7
|
Zhang XM, Huang YC, Chen BZ, Li Q, Wu PP, Chen WH, Wu RH, Li C. Water decoction of Pericarpium citri reticulatae and Amomi fructus ameliorates alcohol-induced liver disease involved in the modulation of gut microbiota and TLR4/NF-κB pathway. Front Pharmacol 2024; 15:1392338. [PMID: 38966547 PMCID: PMC11222602 DOI: 10.3389/fphar.2024.1392338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/15/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Alcohol consumption alters the diversity and metabolic activities of gut microbiota, leading to intestinal barrier dysfunction and contributing to the development of alcoholic liver disease (ALD), which is the most prevalent cause of advanced liver diseases. In this study, we investigated the protective effects and action mechanism of an aqueous extraction of Pericarpium citri reticulatae and Amomi fructus (PFE) on alcoholic liver injury. Methods C57BL/6 mice were used to establish the mouse model of alcoholic liver injury and orally administered 500 and 1,000 mg/kg/d of PFE for 2 weeks. Histopathology, immunohistochemistry, immunofluorescence, Western blotting, qRT-PCR, and 16S rDNA amplicon sequencing were used to analyze the mechanism of action of PFE in the treatment of alcohol-induced liver injury. Results Treatment with PFE significantly improved alcohol-induced liver injury, as illustrated by the normalization of serum alanine aminotransferase, aspartate aminotransferase, total triglyceride, and cholesterol levels in ALD mice in a dose-dependent manner. Administration of PFE not only maintained the intestinal barrier integrity prominently by upregulating mucous production and tight junction protein expressions but also sensibly reversed the dysregulation of intestinal microecology in alcohol-treated mice. Furthermore, PFE treatment significantly reduced hepatic lipopolysaccharide (LPS) and attenuated oxidative stress as well as inflammation related to the TLR4/NF-κB signaling pathway. The PFE supplementation also significantly promoted the production of short-chain fatty acids (SCFAs) in the ALD mice. Conclusion Administration of PFE effectively prevents alcohol-induced liver injury and may also regulate the LPS-involved gut-liver axis; this could provide valuable insights for the development of drugs to prevent and treat ALD.
Collapse
Affiliation(s)
- Xing-Min Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Yue-Chang Huang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Bai-Zhong Chen
- Guangdong Xinbaotang Biotechnology Co., Ltd., Jiangmen, China
| | - Qian Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Pan-Pan Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Ri-Hui Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Chen Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| |
Collapse
|
8
|
Samson N, Bosoi CR, Roy C, Turcotte L, Tribouillard L, Mouchiroud M, Berthiaume L, Trottier J, Silva HCG, Guerbette T, Plata-Gómez AB, Besse-Patin A, Montoni A, Ilacqua N, Lamothe J, Citron YR, Gélinas Y, Gobeil S, Zoncu R, Caron A, Morissette M, Pellegrini L, Rochette PJ, Estall JL, Efeyan A, Shum M, Audet-Walsh É, Barbier O, Marette A, Laplante M. HSDL2 links nutritional cues to bile acid and cholesterol homeostasis. SCIENCE ADVANCES 2024; 10:eadk9681. [PMID: 38820148 PMCID: PMC11141617 DOI: 10.1126/sciadv.adk9681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
In response to energy and nutrient shortage, the liver triggers several catabolic processes to promote survival. Despite recent progress, the precise molecular mechanisms regulating the hepatic adaptation to fasting remain incompletely characterized. Here, we report the identification of hydroxysteroid dehydrogenase-like 2 (HSDL2) as a mitochondrial protein highly induced by fasting. We show that the activation of PGC1α-PPARα and the inhibition of the PI3K-mTORC1 axis stimulate HSDL2 expression in hepatocytes. We found that HSDL2 depletion decreases cholesterol conversion to bile acids (BAs) and impairs FXR activity. HSDL2 knockdown also reduces mitochondrial respiration, fatty acid oxidation, and TCA cycle activity. Bioinformatics analyses revealed that hepatic Hsdl2 expression positively associates with the postprandial excursion of various BA species in mice. We show that liver-specific HSDL2 depletion affects BA metabolism and decreases circulating cholesterol levels upon refeeding. Overall, our report identifies HSDL2 as a fasting-induced mitochondrial protein that links nutritional signals to BAs and cholesterol homeostasis.
Collapse
Affiliation(s)
- Nolwenn Samson
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Cristina R. Bosoi
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Christian Roy
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Laurie Turcotte
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Laura Tribouillard
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Mathilde Mouchiroud
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
| | - Line Berthiaume
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
| | - Jocelyn Trottier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
| | - Heitor C. G. Silva
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Thomas Guerbette
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Ana Belén Plata-Gómez
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Aurèle Besse-Patin
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Alicia Montoni
- Axe Médecine régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec, QC, Canada
| | - Nicolò Ilacqua
- Faculté de médecine, Université Laval, Québec, QC, Canada
- Centre de recherche CERVO, Québec, QC, Canada
| | - Jennifer Lamothe
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | - Yemima R. Citron
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA, USA
| | - Yves Gélinas
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
| | | | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA, USA
| | - Alexandre Caron
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Mathieu Morissette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Luca Pellegrini
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, QC, Canada
| | - Patrick J. Rochette
- Faculté de médecine, Université Laval, Québec, QC, Canada
- Axe Médecine régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec, QC, Canada
- Département d’Ophtalmologie et ORL – chirurgie cervico-faciale, Université Laval, Québec, QC, Canada
| | - Jennifer L. Estall
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Michael Shum
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Olivier Barbier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Endocrinologie et néphrologie, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - André Marette
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Mathieu Laplante
- Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Université Laval, Québec, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, Canada
- Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Huang Y, Zhang X, Li Q, Zheng W, Wu P, Wu R, Chen WH, Li C. N- p-coumaroyloctopamine ameliorates hepatic glucose metabolism and oxidative stress involved in a PI3K/AKT/GSK3β pathway. Front Pharmacol 2024; 15:1396641. [PMID: 38725660 PMCID: PMC11079176 DOI: 10.3389/fphar.2024.1396641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Type 2 diabetes mellitus is regarded as a chronic metabolic disease characterized by hyperglycemia. Long-term hyperglycemia may result in oxidative stress, damage pancreatic β-cell function and induce insulin resistance. Herein we explored the anti-hypoglycemic effects and mechanisms of action of N-p-coumaroyloctopamine (N-p-CO) in vitro and in vivo. N-p-CO exhibited high antioxidant activity, as indicated by the increased activity of SOD, GSH and GSH-Px in HL-7702 cells induced by both high glucose (HG) and palmitic acid (PA). N-p-CO treatment significantly augmented glucose uptake and glycogen synthesis in HG/PA-treated HL-7702 cells. Moreover, administration of N-p-CO in diabetic mice induced by both high-fat diet (HFD) and streptozotocin (STZ) not only significantly increased the antioxidant levels of GSH-PX, SOD and GSH, but also dramatically alleviated hyperglycemia and hepatic glucose metabolism in a dose-dependent manner. More importantly, N-p-CO upregulated the expressions of PI3K, AKT and GSK3β proteins in both HG/PA-induced HL-7702 cells and HFD/STZ-induced mice. These findings clearly suggest that N-p-CO exerts anti-hypoglycemic and anti-oxidant effects, most probably via the regulation of a PI3K/AKT/GSK3β signaling pathway. Thus, N-p-CO may have high potentials as a new candidate for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Yuechang Huang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Xingmin Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Qian Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Wende Zheng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Panpan Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Rihui Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| | - Chen Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, China
| |
Collapse
|
10
|
Wu J, Lv Q, Yu J, Zhang Y, Wang G, Han J, Zou Z. New steroids with anti-inflammatory activity from the whole plants of Physalis minima. Nat Prod Res 2024:1-7. [PMID: 38597174 DOI: 10.1080/14786419.2024.2340048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Two new steroids, phyminiolide J (1) and phyministerol A (2), along with three known compounds (3-5) were isolated from the whole plants of Physalis minima. The structures of the new compounds were elucidated by comprehensive spectroscopic analysis and the absolute configurations were determined by using computational ECD calculations. All isolates were evaluated for their anti-inflammatory activity via inhibiting the production of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 cells, and the results indicated that 1-3 exposed moderate inhibition with IC50 values ranging from 9.73 to 23.26 μM.
Collapse
Affiliation(s)
- Jiangping Wu
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuyue Lv
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Jie Yu
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Yu Zhang
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Guodong Wang
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
- Anhui College of Traditional Chinese Medicine, Wuhu, China
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Wang L, Xu H, Li X, Chen H, Zhang H, Zhu X, Lin Z, Guo S, Bao Z, Rui H, He W, Zhang H. Cucurbitacin E reduces IL-1β-induced inflammation and cartilage degeneration by inhibiting the PI3K/Akt pathway in osteoarthritic chondrocytes. J Transl Med 2023; 21:880. [PMID: 38049841 PMCID: PMC10696753 DOI: 10.1186/s12967-023-04771-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Osteoarthritis is a degenerative joint disease. Cartilage degeneration is the earliest and most important pathological change in osteoarthritis, and persistent inflammation is one of the driving factors of cartilage degeneration. Cucurbitacin E, an isolated compound in the Cucurbitacin family, has been shown to have anti-inflammatory effects, but its role and mechanism in osteoarthritic chondrocytes are unclear. METHODS For in vitro experiments, human chondrocytes were stimulated with IL-1β, and the expression of inflammatory genes was measured by Western blotting and qPCR. The expression of extracellular matrix proteins was evaluated by immunofluorescence staining, Western blotting and saffron staining. Differences in gene expression between cartilage from osteoarthritis patients and normal cartilage were analysed by bioinformatics methods, and the relationship between Cucurbitacin E and its target was analysed by a cellular thermal shift assay, molecular docking analysis and molecular dynamics simulation. For in vivo experiments, knee osteoarthritis was induced by DMM in C57BL/6 mouse knee joints, and the effect of Cucurbitacin E on knee joint degeneration was evaluated. RESULTS The in vitro experiments confirmed that Cucurbitacin E effectively inhibited the production of the inflammatory cytokine interleukin-1β(IL-1β) and cyclooxygenase-2 (COX-2) by IL-1β-stimulated chondrocytes and alleviates extracellular matrix degradation. The in vivo experiments demonstrated that Cucurbitacin E had a protective effect on the knee cartilage of C57BL/6 mice with medial meniscal instability in the osteoarthritis model. Mechanistically, bioinformatic analysis of the GSE114007 and GSE117999 datasets showed that the PI3K/AKT pathway was highly activated in osteoarthritis. Immunohistochemical analysis of PI3K/Akt signalling pathway proteins in pathological slices of human cartilage showed that the level of p-PI3K in patients with osteoarthritis was higher than that in the normal group. PI3K/Akt were upregulated in IL-1β-stimulated chondrocytes, and Cucurbitacin E intervention reversed this phenomenon. The cellular thermal shift assay, molecular docking analysis and molecular dynamics experiment showed that Cucurbitacin E had a strong binding affinity for the inhibitory target PI3K. SC79 activated Akt phosphorylation and reversed the effect of Cucurbitacin E on IL-1β-induced chondrocyte degeneration, demonstrating that Cucurbitacin E inhibits IL-1β-induced chondrocyte inflammation and degeneration by inhibiting the PI3K/AKT pathway. CONCLUSION Cucurbitacin E inhibits the activation of the PI3K/AKT pathway, thereby alleviating the progression of OA. In summary, we believe that Cucurbitacin E is a potential drug for the treatment of OA.
Collapse
Affiliation(s)
- Lin Wang
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Hui Xu
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xin Li
- School of Basic Medicine Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Hongwei Chen
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Haigang Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xunpeng Zhu
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhijie Lin
- Anhui Medical University, Hefei, Anhui Province, China
| | - Shilei Guo
- Anhui Medical University, Hefei, Anhui Province, China
| | - Zhibo Bao
- Anhui Medical University, Hefei, Anhui Province, China
| | - Haicheng Rui
- Anhui Medical University, Hefei, Anhui Province, China
| | - Wei He
- School of Basic Medicine Sciences, Anhui Medical University, Hefei, Anhui Province, China.
| | - Hui Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
12
|
Li P, Yu G, Liu F. Meta-analysis of the traditional Chinese medicine care model in relieving postoperative pain in patients with anorectal diseases. Heliyon 2023; 9:e22310. [PMID: 38053898 PMCID: PMC10694313 DOI: 10.1016/j.heliyon.2023.e22310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Objective To explore the effect of traditional Chinese medicine (TCM) nursing on relieving postoperative pain in patients with anorectal diseases. Method Three English and three Chinese databases (PubMed, Embase, the Cochrane Library, the China National Knowledge Internet, Wanfang Data and the China Science and Technology Journal Database) were systematically searched for case-controlled or prospective studies evaluating the impact of TCM nursing on postoperative pain in patients with anorectal diseases from the date of library construction until June 20, 2022. The Newcastle-Ottawa Scale was adopted to evaluate the quality of the observational studies. The effect of TCM care on pain based on the Visual Analogue Scale (VAS), the effective pain relief rate, the wound healing time and the length of hospital stay were systematically analysed. Result After a systematic search and screening, a total of 15 documents were included in this study. The systematic evaluation showed that TCM care reduced the VAS score (mean difference (MD): 1.15(95 % Confidence Interval (CI): 1.96, -1.06; P < 0.00001) compared with conventional postoperative care methods. As TCM nursing time increased, there was a trend towards decreased VAS scores. Furthermore, TCM care was effective in providing pain relief (OR: 4.78; 95 % CI: 2.93,7.79; P < 0.00001) and reducing wound healing time (MD: 4.44; 95 % CI: 5.60, -3.27; P < 0.00001) and length of hospital stay (MD: 4.87; 95 % CI: 5.93, -3.82; P < 0.00001). Conclusion Traditional Chinese medicine nursing has a positive effect on the postoperative clinical results of patients with anorectal diseases, especially in relieving postoperative pain. The effect of traditional Chinese medicine nursing in relieving short-term postoperative pain in patients with anorectal diseases is obvious. However, there is no uniform standard for TCM nursing projects, which may lead to heterogeneity.
Collapse
Affiliation(s)
- Peiyao Li
- Department of International Coloproctology, China - Japan Friendship Hospital, China
| | - Guoshuang Yu
- Department of International Coloproctology, China - Japan Friendship Hospital, China
| | - Fuyan Liu
- Department of International Coloproctology, China - Japan Friendship Hospital, China
| |
Collapse
|
13
|
Üremiş MM, Üremiş N, Türköz Y. Cucurbitacin E shows synergistic effect with sorafenib by inducing apoptosis in hepatocellular carcinoma cells and regulates Jak/Stat3, ERK/MAPK, PI3K/Akt/mTOR signaling pathways. Steroids 2023; 198:109261. [PMID: 37355001 DOI: 10.1016/j.steroids.2023.109261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVE Cucurbitacin E (CuE), a natural compound found in medicinal plants such as Ecballium Elaterium, has demonstrated antiproliferative and apoptotic effects in various cancer cell types due to its tetracyclic triterpenoid structure. Sorafenib, a multi-tyrosine kinase inhibitor, is commonly used in hepatocellular carcinoma (HCC) treatment. This study aimed to investigate the anticancer effect of CuE alone and in combination with sorafenib on HepG2 cells. METHODS CuE was extracted from Ecballium Elaterium fruit juice and quantitatively evaluated using HPLC. The effect of sorafenib and CuE on cell growth inhibition was determined using the MTT test. Cell cycle progression and apoptosis were assessed using flow cytometry. Mitochondrial damage was evaluated with ΔΨm, and DNA damage was assessed using the comet assay. The expression of Jak2/Stat3, PI3K/Akt/mTOR, MAPK, and Bcl-2 family-related genes and proteins were analyzed using western blot and qRT-PCR, respectively. RESULTS Both CuE (0.1-5 µM) and sorafenib (0.5-10 µM) exhibited dose- and time-dependent antiproliferative and cytotoxic effects against the HepG2 cell line. Both compounds induced apoptosis in HepG2 cells and halted the cell cycle in the G2/M phase while causing mitochondrial and DNA damage. Both compounds down-regulated Jak2/Stat3, PI3K/Akt/mTOR, MAPK signaling pathway proteins, and Bcl-xL levels, while up-regulated Caspase-9 and Bax protein levels. CONCLUSION Based on the results of this study, it can be concluded that CuE alone or in combination with sorafenib has the potential to be an effective therapeutic option for the treatment of HCC by inducing apoptosis and regulating multiple signaling pathways.
Collapse
Affiliation(s)
- Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey.
| | - Nuray Üremiş
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Yusuf Türköz
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
14
|
Kumar A, Sharma B, Sharma U, Parashar G, Parashar NC, Rani I, Ramniwas S, Kaur S, Haque S, Tuli HS. Apoptotic and antimetastatic effect of cucurbitacins in cancer: recent trends and advancement. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1867-1878. [PMID: 37010571 DOI: 10.1007/s00210-023-02471-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
The Cucurbitaceae family produces a class of secondary metabolites known as cucurbitacins. The eight cucurbitacin subunits are cucurbitacin B, D, E, I, IIa, L glucoside, Q, and R with the most significant anticancer activity. They are reported to inhibit cell proliferation, invasion, and migration; induce apoptosis; and encourage cell cycle arrest, as some of their modes of action. The JAK-STAT3, Wnt, PI3K/Akt, and MAPK signaling pathways, which are essential for the survival and apoptosis of cancer cells, have also been shown to be suppressed by cucurbitacins. The goal of the current study is to summarize potential molecular targets that cucurbitacins could inhibit in order to suppress various malignant processes. The review is noteworthy since it presents all putative molecular targets for cucurbitacins in cancer on a single podium.
Collapse
Affiliation(s)
- Ajay Kumar
- Punjab Biotechnology Incubator (PBTI), Phase VIII, Mohali, 160071, India
| | - Bunty Sharma
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Gaurav Parashar
- Division of Biomedical and Life Sciences, School of Science, Navrachana University Vadodara, Gujrat, 391410, India
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Isha Rani
- Department of Biochemistry, maharishi markendashwar college of medical sciences and Research (MMCMSR), Sadopur, Ambala, 134007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
15
|
Guo K, Wang L, Zhong Y, Gao S, Jing R, Ye J, Zhang K, Fu M, Hu Z, Zhao W, Xu N. Cucurbitacin promotes hair growth in mice by inhibiting the expression of fibroblast growth factor 18. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1104. [PMID: 36388783 PMCID: PMC9652544 DOI: 10.21037/atm-22-4423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/08/2022] [Indexed: 08/03/2023]
Abstract
BACKGROUND The inhibition of fibroblast growth factor 18 (FGF18) promotes the transition of hair follicles (HFs) from the telogen phase to the anagen phase. Cucurbitacin has been shown to have a good effect in promoting hair cell growth. This study explored the potential effect of cucurbitacin on hair growth and its effect on FGF18 expression in mice. METHODS Male C57BL/6J mice were randomly divided into the following two groups: (I) the vehicle group; and (II) the cucurbitacin group. Matrix cream and cucurbitacin cream were applied to the depilated skin on the back of the vehicle group mice and the cucurbitacin group mice, respectively. On days 3, 6, 9, 12, 15, and 18, the hair growth in the depilated dorsal skin of the mice was recorded with a digital camera and a HF detector, and the HF cycle status of the mice was observed by hematoxylin and eosin (H&E) staining. In addition, the level of FGF18 messenger ribonucleic acid (mRNA) in the dorsal skin was measured on days 15 and 18 by quantitative real-time polymerase chain reaction (qRT-PCR), while the level of FGF18 protein was measured by western blot and immunofluorescence staining. RESULTS The dorsal skin to which the cucurbitacin cream was applied began to darken on day 6 and grew hairs on day 9, which was 3 days earlier than the dorsal skin to which the matrix cream was applied. The H&E staining revealed a transition from the telogen phase to the anagen phase 3 days earlier for the cucurbitacin cream-treated skin than the matrix cream-treated skin. In addition, the skin treated with cucurbitacin cream also showed a significant decrease in FGF18 mRNA as seen by qRT-PCR, and reduced FGF18 protein levels as detected by western blot and immunofluorescence staining compared to the skin treated with matrix cream only. CONCLUSIONS Cucurbitacin significantly reduced the levels of FGF18 mRNA and protein in the dorsal skin of mice to accelerate the HFs to enter the anagen phase earlier, thereby promoting the regeneration of hair. Thus, cucurbitacin can be considered a new and valuable agent for the development of anti-hair loss products.
Collapse
Affiliation(s)
- Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Lusheng Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Yulan Zhong
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Shuang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rongrong Jing
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jiabin Ye
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Kaini Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Mengli Fu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Zhenlin Hu
- School of Medicine, Shanghai University, Shanghai, China
| | - Wengang Zhao
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|