1
|
Chen F, Chen R, Yang L, Shen B, Wang Y, Gao Y, Tan R, Zhao X. Magnesium-assisted hydrogen improves isoproterenol-induced heart failure. Med Gas Res 2025; 15:459-470. [PMID: 40300881 PMCID: PMC12124708 DOI: 10.4103/mgr.medgasres-d-24-00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/07/2025] [Accepted: 03/19/2025] [Indexed: 05/01/2025] Open
Abstract
Heart failure (HF) is a leading cause of mortality among patients with cardiovascular disease and is often associated with myocardial apoptosis and endoplasmic reticulum stress (ERS). While hydrogen has demonstrated potential in reducing oxidative stress and ERS, recent evidence suggests that magnesium may aid in hydrogen release within the body, further enhancing these protective effects. This study aimed to investigate the cardioprotective effects of magnesium in reducing apoptosis and ERS through hydrogen release in a rat model of isoproterenol (ISO)-induced HF. Magnesium was administered orally to ISO-induced HF rats, which improved cardiac function, reduced myocardial fibrosis and cardiac hypertrophy, and lowered the plasma levels of creatine kinase-MB, cardiac troponin-I, and N-terminal B-type natriuretic peptide precursor in ISO-induced HF rats. It also inhibited cardiomyocyte apoptosis by upregulating B-cell lymphoma-2, downregulating Bcl-2-associated X protein, and suppressing ERS markers (glucose-related protein 78, activating transcription factor 4, and C/EBP-homologous protein). Magnesium also elevated hydrogen levels in blood, plasma, and cardiac tissue, as well as in artificial gastric juice and pure water, where hydrogen release lasted for at least four hours. Additionally, complementary in vitro experiments were conducted using H9C2 cardiomyocyte injury models, with hydrogen-rich culture medium as the intervention. Hydrogen-rich culture medium improved the survival and proliferation of ISO-treated H9C2 cells, reduced the cell surface area, inhibited apoptosis, and downregulated ERS pathway proteins. However, the protective effects of hydrogen were negated by tunicamycin (an inducer of ERS) in H9C2 cells. In conclusion, magnesium exerts significant cardioprotection by mitigating ERS and apoptosis through hydrogen release effects in ISO-induced HF.
Collapse
Affiliation(s)
- Fengbao Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Ruimin Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Lili Yang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, Ji’nan, Shandong Province, China
| | - Bowen Shen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Yunting Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Yongfeng Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Rui Tan
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Xiaomin Zhao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| |
Collapse
|
2
|
Strohm L, Mihalikova D, Czarnowski A, Schwaibold Z, Daiber A, Stamm P. Sex-Specific Antioxidant and Anti-Inflammatory Protective Effects of AMPK in Cardiovascular Diseases. Antioxidants (Basel) 2025; 14:615. [PMID: 40427496 PMCID: PMC12108612 DOI: 10.3390/antiox14050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/02/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiovascular diseases such as coronary heart disease, heart failure, or stroke are the most common cause of death worldwide and are regularly based on risk factors like diabetes mellitus, hypertension, or obesity. At the same time, both diseases and risk factors are significantly influenced by sex hormones. In order to better understand this influence and also specifically improve the therapy of female patients, medical research has recently focused increasingly on gender-specific differences. The goal is to develop personalized, gender-specific therapy concepts for these diseases to further enhance health outcomes. The enzyme adenosine monophosphate-activated protein kinase (AMPK) is a central regulator of energy metabolism, protecting the cardiovascular system from energy depletion, thereby promoting vascular health and preventing cellular damage. AMPK confers cardioprotective effects by preventing endothelial and vascular dysfunction, and by controlling or regulating oxidative stress and inflammatory processes. For AMPK, sex-specific effects were reported, influencing metabolic and cardiovascular responses. Exercise and metabolic stress generally cause higher AMPK activity in males. At the same time, females exhibit protective mechanisms against insulin resistance or oxidative stress, particularly in conditions like obesity. Additionally, males subject to AMPK deficiency seem to experience greater cardiac and mitochondrial dysfunction. In contrast, females show improvement in cardiovascular function after pharmacological AMPK activation. These differences, influenced by hormones, body composition, and gene expression, highlight the potential to develop personalized, sex-specific AMPK-targeted therapeutic strategies for cardiovascular diseases in the future. Here, we discuss the most actual scientific background, focusing on the protective, gender-specific effects of AMPK, and highlight potential clinical applications.
Collapse
Affiliation(s)
- Lea Strohm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| | - Dominika Mihalikova
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| | - Alexander Czarnowski
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| | - Zita Schwaibold
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
- German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, 55131 Mainz, Germany
| | - Paul Stamm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (L.S.); (D.M.); (A.C.); (Z.S.)
| |
Collapse
|
3
|
Chen W, Luo X, Li W, Li X, Wang Y, Zhang R, Liu B, Zhu L, Liu Z, Cheng Y. Uncovering the active ingredients of Xinbao pill against chronic heart failure: A chemical profiling, pharmacokinetics and pharmacodynamics integrated study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119418. [PMID: 39880064 DOI: 10.1016/j.jep.2025.119418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/04/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xinbao pill (XBP) is a renowned Chinese patent medicine, primarily efficacious in warming and nourishing the heart and kidneys, supplementing Qi to boost Yang, and promoting blood circulation to remove blood stasis. XBP has been utilized for the treatment of chronic heart failure (CHF) for nearly 30 years, but the lack of clarity regarding the active ingredients of XBP against CHF has hindered its clinical application and further promotion. AIM OF THE STUDY To comprehensively elucidate the efficacy-specific ingredients and potential mechanism of XBP against CHF. METHODS The efficacy, chemical profiling and pharmacokinetics of XBP was assessed in a CHF model rat. The anti-CHF mechanism of the mixture of the likely active ingredients was clarified by targeted metabolomics and western blotting analysis. RESULTS XBP alleviated CHF by enhancing cardiac function, reducing NT-pro BNP, mitigating myocardial damage and degrading extracellular collagen. Following XBP administration, ginsenosides exposed relatively abundant in sham or CHF rats. Ginsenoside Rg1 and notoginsenoside R1 showed downward trends in AUC0-t values in CHF group, accompanied by increasing trends in CL/F values. Moreover, CHF rats presented significantly elevated levels of ginsenoside Rg1, ginsenoside Rg2 and notoginsenoside R1 in heart. The mixture of ginsenoside Rg1, ginsenoside Rg2 and notoginsenoside R1 demonstrated remarkable efficacy in ameliorating CHF as XBP did. Notably, these three compounds were predominantly localized in mitochondria and exhibited significant potential to enhance mitochondrial homeostasis by inhibiting heme synthesis pathway-mediated decomposition of succinyl CoA. CONCLUSIONS Our research provides valuable insights that ginsenoside Rg1, ginsenoside Rg2 and notoginsenoside R1 may constitute the anti-CHF active ingredients of XBP for facilitating mitochondrial homeostasis by the suppression of heme synthesis to increase succinyl CoA.
Collapse
Affiliation(s)
- Weiying Chen
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiang Luo
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wentao Li
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaocui Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Wang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Zhang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bo Liu
- The Second Clinical Medicial College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lijun Zhu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Zhongqiu Liu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuanyuan Cheng
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Ning ZH, Wang XH, Tang HF, Hu HJ. The role of SGLT1 in atrial fibrillation and its relationship with endothelial-mesenchymal transition. Biochem Biophys Res Commun 2025; 748:151338. [PMID: 39823893 DOI: 10.1016/j.bbrc.2025.151338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Atrial fibrillation (AF) is a prevalent arrhythmia closely associated with atrial fibrosis, posing significant challenges to cardiovascular health. Recent studies have identified the sodium-glucose co-transporter 1 (SGLT1) as a potential key player in the pathophysiology of heart diseases, particularly in the context of AF and atrial fibrosis. This review aims to synthesize current knowledge regarding the mechanisms by which SGLT1 influences the development of AF and atrial fibrosis, with a specific focus on its relationship with endothelial-mesenchymal transition (EMT). By analyzing the latest research findings, this paper discusses how SGLT1 may modulate structural and functional changes in the atria, thereby enhancing our understanding of the underlying mechanisms driving AF.
Collapse
Affiliation(s)
- Zhi-Hong Ning
- The First Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xiu-Heng Wang
- The First Affiliated Hospital, Department of Medical-record, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Hui-Fang Tang
- The First Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Heng-Jing Hu
- The First Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Cardiovascular Disease and Key Lab for Atherosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|