1
|
Zhao S, Hao S, Zhou J, Chen X, Zhang T, Qi Z, Zhang T, Jalal S, Zhai C, Yin L, Bo Y, Teng H, Wang Y, Gao D, Zhang H, Huang L. mTOR/miR-142-3p/PRAS40 signaling cascade is critical for tuberous sclerosis complex-associated renal cystogenesis. Cell Mol Biol Lett 2024; 29:125. [PMID: 39333852 PMCID: PMC11429883 DOI: 10.1186/s11658-024-00638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with tuberous sclerosis complex (TSC) develop renal cysts and/or angiomyolipomas (AMLs) due to inactive mutations of either TSC1 or TSC2 and consequential mTOR hyperactivation. The molecular events between activated mTOR and renal cysts/AMLs are still largely unknown. METHODS The mouse model of TSC-associated renal cysts were constructed by knocking out Tsc2 specifically in renal tubules (Tsc2f/f; ksp-Cre). We further globally deleted PRAS40 in these mice to investigate the role of PRAS40. Tsc2-/- cells were used as mTOR activation model cells. Inhibition of DNA methylation was used to increase miR-142-3p expression to examine the effects of miR-142-3p on PRAS40 expression and TSC-associated renal cysts. RESULTS PRAS40, a component of mTOR complex 1, was overexpressed in Tsc2-deleted cell lines and mouse kidneys (Tsc2f/f; ksp-Cre), which was decreased by mTOR inhibition. mTOR stimulated PRAS40 expression through suppression of miR-142-3p expression. Unleashed PRAS40 was critical to the proliferation of Tsc2-/- cells and the renal cystogenesis of Tsc2f/f; ksp-Cre mice. In contrast, inhibition of DNA methylation increased miR-142-3p expression, decreased PRAS40 expression, and hindered cell proliferation and renal cystogenesis. CONCLUSIONS Our data suggest that mTOR activation caused by TSC2 deletion increases PRAS40 expression through miR-142-3p repression. PRAS40 depletion or the pharmacological induction of miR-142-3p expression impaired TSC2 deficiency-associated renal cystogenesis. Therefore, harnessing mTOR/miR-142-3p/PRAS40 signaling cascade may mitigate hyperactivated mTOR-related diseases.
Collapse
Affiliation(s)
- Shuyun Zhao
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Shuai Hao
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Jiasheng Zhou
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xinran Chen
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Tianhua Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Zhaolai Qi
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Ting Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Sajid Jalal
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Chuanxin Zhai
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Lu Yin
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yufei Bo
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Hongming Teng
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yue Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Dongyan Gao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Lin Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Huschner F, Głowacka-Walas J, Mills JD, Klonowska K, Lasseter K, Asara JM, Moavero R, Hertzberg C, Weschke B, Riney K, Feucht M, Scholl T, Krsek P, Nabbout R, Jansen AC, Petrák B, van Scheppingen J, Zamecnik J, Iyer A, Anink JJ, Mühlebner A, Mijnsbergen C, Lagae L, Curatolo P, Borkowska J, Sadowski K, Domańska-Pakieła D, Blazejczyk M, Jansen FE, Janson S, Urbanska M, Tempes A, Janssen B, Sijko K, Wojdan K, Jozwiak S, Kotulska K, Lehmann K, Aronica E, Jaworski J, Kwiatkowski DJ. Molecular EPISTOP, a comprehensive multi-omic analysis of blood from Tuberous Sclerosis Complex infants age birth to two years. Nat Commun 2023; 14:7664. [PMID: 37996417 PMCID: PMC10667269 DOI: 10.1038/s41467-023-42855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
We present a comprehensive multi-omic analysis of the EPISTOP prospective clinical trial of early intervention with vigabatrin for pre-symptomatic epilepsy treatment in Tuberous Sclerosis Complex (TSC), in which 93 infants with TSC were followed from birth to age 2 years, seeking biomarkers of epilepsy development. Vigabatrin had profound effects on many metabolites, increasing serum deoxycytidine monophosphate (dCMP) levels 52-fold. Most serum proteins and metabolites, and blood RNA species showed significant change with age. Thirty-nine proteins, metabolites, and genes showed significant differences between age-matched control and TSC infants. Six also showed a progressive difference in expression between control, TSC without epilepsy, and TSC with epilepsy groups. A multivariate approach using enrollment samples identified multiple 3-variable predictors of epilepsy, with the best having a positive predictive value of 0.987. This rich dataset will enable further discovery and analysis of developmental effects, and associations with seizure development in TSC.
Collapse
Affiliation(s)
| | - Jagoda Głowacka-Walas
- Transition Technologies Science, Warsaw, Poland
- Warsaw University of Technology, The Institute of Computer Science, Warsaw, Poland
| | - James D Mills
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | | | - Kathryn Lasseter
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John M Asara
- Department of Medicine, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
- Developmental Neurology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Christoph Hertzberg
- Diagnose- und Behandlungszentrum für Kinder, Vivantes-Klinikum Neukölln, Berlin, Germany
| | - Bernhard Weschke
- Department of Child Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Martha Feucht
- Epilepsy Service, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Member of ERN EpiCARE, Vienna, Austria
| | - Theresa Scholl
- Epilepsy Service, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Member of ERN EpiCARE, Vienna, Austria
| | - Pavel Krsek
- Department of Paediatric Neurology, Motol University Hospital, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Necker-Enfants Malades Hospital, Université Paris cité, Imagine Institute, Paris, France
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bořivoj Petrák
- Department of Paediatric Neurology, Motol University Hospital, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Jackelien van Scheppingen
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Josef Zamecnik
- Department. of Pathology and Molecular Medicine, Motol University Hospital, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Anand Iyer
- Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Jasper J Anink
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Mijnsbergen
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lieven Lagae
- Department of Development and Regeneration Section Pediatric Neurology, University Hospitals KU Leuven, Leuven, Belgium
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| | - Julita Borkowska
- Department of Neurology and Epileptology, member of ERN EPICARE, The Children's Memorial Health Institute, Warsaw, Poland
| | - Krzysztof Sadowski
- Department of Neurology and Epileptology, member of ERN EPICARE, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dorota Domańska-Pakieła
- Department of Neurology and Epileptology, member of ERN EPICARE, The Children's Memorial Health Institute, Warsaw, Poland
| | - Magdalena Blazejczyk
- Department of Neurology and Epileptology, member of ERN EPICARE, The Children's Memorial Health Institute, Warsaw, Poland
| | - Floor E Jansen
- Department of Child Neurology, Brain Center University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Malgorzata Urbanska
- Department of Neurology and Epileptology, member of ERN EPICARE, The Children's Memorial Health Institute, Warsaw, Poland
| | - Aleksandra Tempes
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Kamil Sijko
- Transition Technologies Science, Warsaw, Poland
| | - Konrad Wojdan
- Transition Technologies Science, Warsaw, Poland
- Warsaw University of Technology, Institute of Heat Engineering, Warsaw, Poland
| | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, member of ERN EPICARE, The Children's Memorial Health Institute, Warsaw, Poland
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, member of ERN EPICARE, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede the Netherlands, Utrecht, The Netherlands
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | |
Collapse
|
3
|
Guo Y, Wu H, Xiong J, Gou S, Cui J, Peng T. miR-222-3p-containing macrophage-derived extracellular vesicles confer gemcitabine resistance via TSC1-mediated mTOR/AKT/PI3K pathway in pancreatic cancer. Cell Biol Toxicol 2023; 39:1203-1214. [PMID: 35974258 DOI: 10.1007/s10565-022-09736-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/20/2022] [Indexed: 01/23/2023]
Abstract
Gemcitabine resistance limits the efficacy of chemotherapy and maintains a challenge for treatment outcomes. Therefore, we aimed to clarify the downstream mechanisms underlying the role of miR-222-3p delivered by M2 macrophage-derived extracellular vesicles (M2 MDEs) in the chemoresistance of pancreatic cancer (PCa). We separated the mouse macrophages and polarized them to M2 phenotypes, from which the EVs were derived. miR-222-3p was highly expressed in M2 MDEs. M2 MDEs were internalized by PCa cells. miR-222-3p overexpressing M2 MDEs were treated with gemcitabine and co-cultured with PCa cells for in vitro experiments. Co-culture with M2 MDEs enriched with miR-222-3p suppressed the sensitivity to gemcitabine, accompanied by diminished apoptosis and promoted proliferation. Furthermore, the M2 MDEs and PCa cells were injected to mice with gemcitabine exposure for in vivo substantiation. The delivery of miR-222-3p inhibitor by M2 MDEs suppressed tumor growth and elevated sensitivity of cancer cells to gemcitabine. Moreover, miR-222-3p was indicated to target and suppress TSC1 expression, while miR-222-3p activated the PI3K/AKT/mTOR pathway. Together, miR-222-3p-containing M2 MDEs enhance chemoresistance in PCa through TSC1 inhibition and activation of the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yao Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jiongxin Xiong
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Shanmiao Gou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jing Cui
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Tao Peng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
4
|
MicroRNA Expression Profile in TSC Cell Lines and the Impact of mTOR Inhibitor. Int J Mol Sci 2022; 23:ijms232214493. [PMID: 36430972 PMCID: PMC9694073 DOI: 10.3390/ijms232214493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to assess the potential implication of microRNA on tuberous sclerosis (TSC) pathogenesis by performing microRNA profiling on cell lines silencing TSC1 or TSC2 genes using qPCR panels, before and after incubation with rapamycin. Significant differences in expression were observed between samples before and after rapamycin treatment in nineteen miRNAs in TSC1, five miRNAs in TSC2 and seven miRNAs in controls. Of miRNAs dysregulated before rapamycin treatment, three normalized after treatment in the TSC1 group (miR-21-3p, miR-433-3p, let-7g-3p) and one normalized in the TSC2 group (miR-1224-3p). Of the miRNAs dysregulated before rapamycin treatment in the TSC1 and TSC2 groups, two did not normalize after treatment (miR-33a-3p, miR-29a-3p). The results of the possible targets indicated that there are four common genes with seed regions susceptible to regulation by those miRNAs: ZBTB20, PHACTR2, PLXNC1 and ATP1B4. Our data show no changes in mRNA expression of these targets after rapamycin treatment. In conclusion, results of our study indicate the involvement of miRNA dysregulation in the pathogenesis of TSC. Some of the miRNA might be used as markers of treatment efficacy and autonomic miRNA as a target for future therapy.
Collapse
|
5
|
Li H, Liu P, Li D, Wang Z, Ding Z, Zhou M, Chen X, Miao M, Ding J, Lin W, Liu Y, Zha X. STAT3/miR-130b-3p/MBNL1 feedback loop regulated by mTORC1 signaling promotes angiogenesis and tumor growth. J Exp Clin Cancer Res 2022; 41:297. [PMID: 36217202 PMCID: PMC9552455 DOI: 10.1186/s13046-022-02513-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Aberrantly activated mammalian target of rapamycin complex 1 (mTORC1) plays a vital role in tumor angiogenesis, but its precise mechanisms are still unclear. METHODS Micro-RNA-130b-3p (miR-130b-3p) expression in mTORC1-activated and control cells was examined by quantitative real-time PCR (qRT-PCR). MiR-130b-3p levels and their correlation with mTORC1 activity were evaluated by analyzing publicly available databases and in-house head and neck squamous cell carcinoma (HNSCC) tissues. The role of miR-130b-3p in mTORC1-mediated angiogenesis and tumor growth was examined using tube formation assay, chicken chorioallantoic membrane assay, cell line - derived xenograft models, and an HNSCC patient-derived xenograft (PDX) model. The regulatory mechanisms among signal transducer and activator of transcription 3 (STAT3), miR-130b-3p, and muscleblind-like protein 1 (MBNL1) were investigated via bioinformatics analyses, qRT-PCR, western blot, RNA immunoprecipitation, immunofluorescence, luciferase reporter assay, and chromatin immunoprecipitation assay. RESULTS Elevated miR-130b-3p enhanced the angiogenic and tumorigenic abilities of mTORC1-activated cells both in vitro and in vivo. STAT3, a downstream effector of mTORC1, transactivated miR-130b-3p by direct binding promoter of the miR-130b gene. MBNL1 was identified as a direct target of miR-130b-3p. MBNL1 depletion rescued the compromised angiogenesis and tumor growth caused by miR-130b-3p inhibition. MiR-130b-3p levels were significantly upregulated and positively correlated with mTORC1 signaling in multiple cancers. MiR-130b-3p inhibition attenuated tumor angiogenesis and growth in an HNSCC PDX model. MBNL1 feedback inhibited STAT3 activation in mTORC1-activated cells. CONCLUSIONS The STAT3/miR-130b-3p/MBNL1 feedback loop plays a vital role in mTORC1-mediated angiogenesis and tumor progression. This pathway could be targeted for therapeutic intervention of mTORC1-related cancers.
Collapse
Affiliation(s)
- Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Anhui Public Health Clinical Center, Hefei, 230032, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Ping Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- Anhui Public Health Clinical Center, Hefei, 230032, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Dapeng Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Zixi Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Zhao Ding
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Meng Zhou
- Department of Pharmacy, Genertec Universal Medical Maanshan Shiqiye Hospital, Maanshan, 243000, Anhui Province, China
| | - Xu Chen
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Manli Miao
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Junli Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Wei Lin
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
6
|
Kan Y, Feng L, Si Y, Zhou Z, Wang W, Yang J. Pathogenesis and Therapeutic Targets of Focal Cortical Dysplasia Based on Bioinformatics Analysis. Neurochem Res 2022; 47:3506-3521. [PMID: 35945307 DOI: 10.1007/s11064-022-03715-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Focal cortical dysplasia (FCD), a malformation of cortical development, is the most common cause of intractable epilepsy in children. However, the causes and underlying molecular events of FCD need further investigation. The microarray dataset GSE62019 and GSE97365 were obtained from Gene Expression Omnibus. To examine critical genes and signaling pathways, bioinformatics analysis tools such as protein-protein interaction (PPI) networks, miRNA-mRNA interaction networks, and immune infiltration in FCD samples were used to fully elucidate the pathogenesis of FCD. A total of 534 differentially expressed genes (DEGs) and 71 differentially expressed miRNAs (DEMs) were obtained. The DEGs obtained were enriched in ribosomal, protein targeting, and pathways of neurodegeneration multiple diseases, whereas the target genes of DEMs were enriched in signaling pathways such as transforming growth factor beta, Wnt, PI3K-Akt, etc. Finally, four hub genes (RPL11, FAU, RPS20, RPL27) and five key miRNAs (hsa-let-7b, hsa-miR-185, hsa-miR-23b, hsa-miR-222 and hsa-miR-92b) were obtained by PPI network, miRNA-mRNA network, and ROC analysis. The immune infiltration results showed that the infiltration levels of five immune cells (MDSC, regulatory T cells, activated CD8+ T cells, macrophage and effector memory CD8+ T cells) were slightly higher in FCD samples than in control samples. Moreover, the gene expressions of RPS19, RPL19, and RPS24 were highly correlated with the infiltration levels and immune characteristics of 28 immune cells. It broadens the understanding of the molecular mechanisms underlying the development of FCD and enlightens the identification of molecular targets and diagnostic biomarkers for FCD.
Collapse
Affiliation(s)
- Ying Kan
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lijuan Feng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yukun Si
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Ziang Zhou
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wei Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
7
|
mTOR Inhibitor Treatment in Patients with Tuberous Sclerosis Complex Is Associated with Specific Changes in microRNA Serum Profile. J Clin Med 2022; 11:jcm11123395. [PMID: 35743464 PMCID: PMC9224825 DOI: 10.3390/jcm11123395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to determine the serum profiles of miRNAs in patients with tuberous sclerosis (TSC) upon sirolimus treatment and compare them with those previously treated with everolimus in a similarly designed experiment. Serum microRNA profiling was performed in ten TSC patients before sirolimus therapy and again after 3–6 months using qPCR panels (Exiqon). Of 752 tested miRNAs, 28 showed significant differences in expression between TSC patients before and after sirolimus treatment. Of these, 11 miRNAs were dysregulated in the same directions as in the sirolimus groupcompared with the previously described everolimus group, miR-142-3p, miR-29c-3p, miR-150-5p, miR-425-5p, miR-376a-3p, miR-376a-3p, miR-532-3p, and miR-136-5p were upregulated, while miR-15b-3p, miR-100-5p, and miR-185-5p were downregulated. The most significant changes of expression, with fold changes exceeding 1.25 for both treatments, were noted for miR-136-5p, miR-376a-3p, and miR-150-5p. The results of a pathway analysis of the possible target genes for these miRNAs indicated the involvement of the Ras and MAPK signaling pathway. Upregulation of miR-136, miR-376a-3p, and miR-150-5p was noted in TSC patients treated with mTOR inhibitors, indicating a role in the downregulation of the mTOR pathway. Further studies are needed to determine the relationship between upregulated microRNAs and treatment efficacy.
Collapse
|
8
|
Thomas A, Sumughan S, Dellacecca ER, Shivde RS, Lancki N, Mukhatayev Z, Vaca CC, Han F, Barse L, Henning SW, Zamora-Pineda J, Akhtar S, Gupta N, Zahid JO, Zack SR, Ramesh P, Jaishankar D, Lo AS, Moss J, Picken MM, Darling TN, Scholtens DM, Dilling DF, Junghans RP, Le Poole IC. Benign tumors in TSC are amenable to treatment by GD3 CAR T cells in mice. JCI Insight 2021; 6:e152014. [PMID: 34806651 PMCID: PMC8663788 DOI: 10.1172/jci.insight.152014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Mutations underlying disease in tuberous sclerosis complex (TSC) give rise to tumors with biallelic mutations in TSC1 or TSC2 and hyperactive mammalian target of rapamycin complex 1 (mTORC1). Benign tumors might exhibit de novo expression of immunogens, targetable by immunotherapy. As tumors may rely on ganglioside D3 (GD3) expression for mTORC1 activation and growth, we compared GD3 expression in tissues from patients with TSC and controls. GD3 was overexpressed in affected tissues from patients with TSC and also in aging Tsc2+/- mice. As GD3 overexpression was not accompanied by marked natural immune responses to the target molecule, we performed preclinical studies with GD3 chimeric antigen receptor (CAR) T cells. Polyfunctional CAR T cells were cytotoxic toward GD3-overexpressing targets. In mice challenged with Tsc2-/- tumor cells, CAR T cells substantially and durably reduced the tumor burden, correlating with increased T cell infiltration. We also treated aged Tsc2+/- heterozygous (>60 weeks) mice that carry spontaneous Tsc2-/- tumors with GD3 CAR or untransduced T cells and evaluated them at endpoint. Following CAR T cell treatment, the majority of mice were tumor free while all control animals carried tumors. The outcomes demonstrate a strong treatment effect and suggest that targeting GD3 can be successful in TSC.
Collapse
Affiliation(s)
- Ancy Thomas
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | | | | | | | - Nicola Lancki
- Quantitative Data Sciences Core, Robert H. Lurie Comprehensive Cancer Center; and
| | | | | | - Fei Han
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | - Levi Barse
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Jesus Zamora-Pineda
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Suhail Akhtar
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Nikhilesh Gupta
- Robert H. Lurie Comprehensive Cancer Center
- Illinois Mathematics and Science Academy, Aurora, Illinois, USA
| | - Jasmine O. Zahid
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Stephanie R. Zack
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | | | | | - Agnes S.Y. Lo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Maria M. Picken
- Department of Pathology, Loyola University, Maywood, Illinois, USA
| | - Thomas N. Darling
- Department of Dermatology, School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Denise M. Scholtens
- Quantitative Data Sciences Core, Robert H. Lurie Comprehensive Cancer Center; and
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel F. Dilling
- Department of Medicine, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Richard P. Junghans
- Department of Hematology/Oncology, School of Medicine, Boston University, Boston, Massachusetts, USA
| | - I. Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Kumar P, Zadjali F, Yao Y, Siroky B, Astrinidis A, Gross KW, Bissler JJ. Tsc Gene Locus Disruption and Differences in Renal Epithelial Extracellular Vesicles. Front Physiol 2021; 12:630933. [PMID: 34262466 PMCID: PMC8273388 DOI: 10.3389/fphys.2021.630933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/29/2021] [Indexed: 12/31/2022] Open
Abstract
In tuberous sclerosis complex (TSC), Tsc2 mutations are associated with more severe disease manifestations than Tsc1 mutations and the role of extracellular vesicles (EVs) in this context is not yet studied. We report a comparative analysis of EVs derived from isogenic renal cells except for Tsc1 or Tsc2 gene status and hypothesized that in spite of having similar physical characteristics, EVs modulate signaling pathways differently, thus leading to TSC heterogenicity. We used mouse inner medullary collecting duct (mIMCD3) cells with the Tsc1 (T1G cells) or Tsc2 (T2J cells) gene disrupted by CRISPR/CAS9. EVs were isolated from the cell culture media by size-exclusion column chromatography followed by detailed physical and chemical characterization. Physical characterization of EVs was accessed by tunable resistive pulse sensing and dynamic light scattering, revealing similar average sizes and zeta potentials (at pH 7.4) for EVs from mIMCD3 (123.5 ± 5.7 nm and −16.3 ± 2.1 mV), T1G cells (131.5 ± 8.3 nm and −19.8 ± 2.7 mV), and T2J cells (127.3 ± 4.9 nm and −20.2 ± 2.1 mV). EVs derived from parental mIMCD3 cells and both mutated cell lines were heterogeneous (>90% of EVs < 150 nm) in nature. Immunoblotting detected cilial Hedgehog signaling protein Arl13b; intercellular proteins TSG101 and Alix; and transmembrane proteins CD63, CD9, and CD81. Compared to Tsc2 deletion, Tsc1 deletion cells had reduced EV production and release rates. EVs from Tsc1 mutant cells altered mTORC1, autophagy, and β-catenin pathways differently than EVs from Tsc2-mutated cells. Quantitative PCR analysis revealed the down regulation of miR-212a-3p and miR-99a-5p in EVs from Tsc2-mutated cells compared to EVs from Tsc1-mutant cells. Thus, EV-derived miR-212-3p and mIR-99a-5p axes may represent therapeutic targets or biomarkers for TSC disease.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Fahad Zadjali
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States.,Department of Clinical Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ying Yao
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Brian Siroky
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Aristotelis Astrinidis
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Kenneth W Gross
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - John J Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States.,Department of Pediatrics, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
10
|
Identification of clinically relevant biomarkers of epileptogenesis - a strategic roadmap. Nat Rev Neurol 2021; 17:231-242. [PMID: 33594276 DOI: 10.1038/s41582-021-00461-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 01/31/2023]
Abstract
Onset of many forms of epilepsy occurs after an initial epileptogenic insult or as a result of an identified genetic defect. Given that the precipitating insult is known, these epilepsies are, in principle, amenable to secondary prevention. However, development of preventive treatments is difficult because only a subset of individuals will develop epilepsy and we cannot currently predict which individuals are at the highest risk. Biomarkers that enable identification of these individuals would facilitate clinical trials of potential anti-epileptogenic treatments, but no such prognostic biomarkers currently exist. Several putative molecular, imaging, electroencephalographic and behavioural biomarkers of epileptogenesis have been identified, but clinical translation has been hampered by fragmented and poorly coordinated efforts, issues with inter-model reproducibility, study design and statistical approaches, and difficulties with validation in patients. These challenges demand a strategic roadmap to facilitate the identification, characterization and clinical validation of biomarkers for epileptogenesis. In this Review, we summarize the state of the art with respect to biomarker research in epileptogenesis and propose a five-phase roadmap, adapted from those developed for cancer and Alzheimer disease, that provides a conceptual structure for biomarker research.
Collapse
|
11
|
Ren FJ, Yao Y, Cai XY, Fang GY. Emerging Role of MiR-192-5p in Human Diseases. Front Pharmacol 2021; 12:614068. [PMID: 33708127 PMCID: PMC7940509 DOI: 10.3389/fphar.2021.614068] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNAs that play an essential role in numerous biological processes by regulating the post-transcriptional expression of target genes. Recent studies have demonstrated that miR-192-5p, a member of the miR-192 family, partakes in several human diseases, especially various cancers, including cancers of the lung, liver, and breast. Importantly, the levels of miR-192-5p are abundant in biofluids, including the serum and urine, and the exosomal levels of miR-192-5p in circulation can aid in the diagnosis and prognosis of various diseases, such as chronic hepatitis B (CHB) infection disease. Notably, recent studies suggest that miR-192-5p is regulated by long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there are no comprehensive overviews on the role of miR-192-5p in human diseases. This review discusses the significant studies on the role of miR-192-5p in various human diseases, with special emphasis on the diseases of the respiratory and digestive systems.
Collapse
Affiliation(s)
- Fu-Jia Ren
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Guo-Ying Fang
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
12
|
Guo XB, Zhang XC, Chen P, Ma LM, Shen ZQ. miR‑378a‑3p inhibits cellular proliferation and migration in glioblastoma multiforme by targeting tetraspanin 17. Oncol Rep 2019; 42:1957-1971. [PMID: 31432186 PMCID: PMC6775804 DOI: 10.3892/or.2019.7283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor and patients with this disease tend to have poor clinical outcome. MicroRNAs (miRs) are important regulators of a number of key pathways implicated in tumor pathogenesis. Recently, the expression of miR‑378 was shown to be dysregulated in several different types of cancer, including gastric cancer, colorectal cancer and oral carcinoma. Additional studies have demonstrated that miR‑378 may serve as a potential therapeutic target against human breast cancer. However, the underlying mechanisms and potential targets of miR‑378a‑3p involved in GBM remain unknown. The aim of the present of was to determine the effects of miR‑378a‑3p and its potential targets. Tetraspanin 17 (TSPAN17) is involved in the neoplastic events in GBM and is a member of the tetraspanin family of proteins. The tetraspanins are involved in the regulation of cell growth, migration and invasion of several different types of cancer cell lines, and may potentially act as an oncogene associated with GBM pathology. The results of the present study showed that high miR‑378a‑3p and low TSPAN17 expression levels were associated with improved survival in patients with GBM. Additionally, high levels of TSPAN17 were linked to the poor prognosis of patients with GBM aged 50‑60, larger tumor sizes (≥5 cm) and an advanced World Health Organization stage. TSPAN17 was identified and confirmed as a direct target of miR‑378a‑3p using a luciferase reporter assay in human glioma cell lines. Overexpression of miR‑378a‑3p in either of U87MG or MT‑330 cells decreased the expression of TSPAN17, promoted apoptosis and decreased proliferation, migration and invasion. Overexpression of TSPAN17 attenuated the aforementioned effects induced by miR‑378a‑3p overexpression. The present study indicated that miR‑378a‑3p suppresses the progression of GBM by reducing TSPAN17 expression, and may thus serve as a potential therapeutic target for treating patients with GBM.
Collapse
Affiliation(s)
- Xiao-Bing Guo
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiao-Chao Zhang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Peng Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Li-Mei Ma
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhi-Qiang Shen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
13
|
Enright N, Simonato M, Henshall DC. Discovery and validation of blood microRNAs as molecular biomarkers of epilepsy: Ways to close current knowledge gaps. Epilepsia Open 2018; 3:427-436. [PMID: 30525113 PMCID: PMC6276772 DOI: 10.1002/epi4.12275] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2018] [Indexed: 12/24/2022] Open
Abstract
There is a major unmet need for biomarkers of epilepsy. Biofluids such as blood offer a potential source of molecular biomarkers. MicroRNAs (miRNAs) fulfill several key requirements for a blood‐based molecular biomarker being enriched in the brain and dysregulated in epileptic brain tissue, and manipulation of miRNAs can have seizure‐suppressive and disease‐modifying effects in preclinical models. Biofluid miRNAs also possess qualities that are favorable for translation, including stability and easy and cheap assay techniques. Herein we review findings from both clinical and animal models. Studies have featured a mix of unbiased profiling and hypothesis‐driven efforts. Blood levels of several brain‐enriched miRNAs are altered in patients with epilepsy and in patients with drug‐resistant compared to drug‐responsive seizures, with encouraging receiver‐operating characteristic (ROC) curve analyses, both in terms of sensitivity and specificity. Both focal and generalized epilepsies are associated with altered blood miRNA profiles, and associations with clinical parameters including seizure burden have been reported. Results remain preliminary, however. There is a need for continued discovery and validation efforts that include multicenter studies and attention to study design, sample collection methodology, and quality control. Studies focused on epileptogenesis as well as associations with covariables such as sex, etiology, and timing of sampling remain limited. We identify 10 knowledge gaps and propose experiments to close these. If adequately addressed, biofluid miRNAs may be an important future source of diagnostic biomarkers that could also support forthcoming trials of antiepileptogenesis or disease‐modifying therapies.
Collapse
Affiliation(s)
- Noelle Enright
- Department of Physiology & Medical Physics Royal College of Surgeons in Ireland (RCSI) Dublin Ireland.,FutureNeuro Research Centre RCSI Dublin Ireland.,Temple St. Children's University Hospital Dublin Ireland
| | - Michele Simonato
- Department of Medical Sciences University of Ferrara Ferrara Italy.,School of Medicine University Vita-Salute San Raffaele Milan Italy
| | - David C Henshall
- Department of Physiology & Medical Physics Royal College of Surgeons in Ireland (RCSI) Dublin Ireland.,FutureNeuro Research Centre RCSI Dublin Ireland
| |
Collapse
|
14
|
Tiwari D, Peariso K, Gross C. MicroRNA-induced silencing in epilepsy: Opportunities and challenges for clinical application. Dev Dyn 2018; 247:94-110. [PMID: 28850760 PMCID: PMC5740004 DOI: 10.1002/dvdy.24582] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/20/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs are master regulators of gene expression. Single microRNAs influence multiple proteins within diverse molecular pathways and networks. Therefore, changes in levels or activity of microRNAs can have profound effects on cellular function. This makes dysregulated microRNA-induced silencing an attractive potential disease mechanism in complex disorders like epilepsy, where numerous cellular pathways and processes are affected simultaneously. Indeed, several years of research in rodent models have provided strong evidence that acute or recurrent seizures change microRNA expression and function. Moreover, altered microRNA expression has been observed in brain and blood from patients with various epilepsy disorders, such as tuberous sclerosis. MicroRNAs can be easily manipulated using sense or antisense oligonucleotides, opening up opportunities for therapeutic intervention. Here, we summarize studies using these techniques to identify microRNAs that modulate seizure susceptibility, describe protein targets mediating some of these effects, and discuss cellular pathways, for example neuroinflammation, that are controlled by epilepsy-associated microRNAs. We critically assess current gaps in knowledge regarding target- and cell-specificity of microRNAs that have to be addressed before clinical application as therapeutic targets or biomarkers. The recent progress in understanding microRNA function in epilepsy has generated strong momentum to encourage in-depth mechanistic studies to develop microRNA-targeted therapies. Developmental Dynamics 247:94-110, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Durgesh Tiwari
- Cincinnati Children’s Hospital Medical Center, Division of Neurology, Cincinnati, Ohio
| | - Katrina Peariso
- Cincinnati Children’s Hospital Medical Center, Division of Neurology, Cincinnati, Ohio
- University of Cincinnati, Department of Pediatrics, Cincinnati, Ohio
| | - Christina Gross
- Cincinnati Children’s Hospital Medical Center, Division of Neurology, Cincinnati, Ohio
- University of Cincinnati, Department of Pediatrics, Cincinnati, Ohio
| |
Collapse
|
15
|
Bagla S, Cukovic D, Asano E, Sood S, Luat A, Chugani HT, Chugani DC, Dombkowski AA. A distinct microRNA expression profile is associated with α[ 11C]-methyl-L-tryptophan (AMT) PET uptake in epileptogenic cortical tubers resected from patients with tuberous sclerosis complex. Neurobiol Dis 2018; 109:76-87. [PMID: 28993242 PMCID: PMC6070303 DOI: 10.1016/j.nbd.2017.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/09/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is characterized by hamartomatous lesions in various organs and arises due to mutations in the TSC1 or TSC2 genes. TSC mutations lead to a range of neurological manifestations including epilepsy, cognitive impairment, autism spectrum disorders (ASD), and brain lesions that include cortical tubers. There is evidence that seizures arise at or near cortical tubers, but it is unknown why some tubers are epileptogenic while others are not. We have previously reported increased tryptophan metabolism measured with α[11C]-methyl-l-tryptophan (AMT) positron emission tomography (PET) in epileptogenic tubers in approximately two-thirds of patients with tuberous sclerosis and intractable epilepsy. However, the underlying mechanisms leading to seizure onset in TSC remain poorly characterized. MicroRNAs are enriched in the brain and play important roles in neurodevelopment and brain function. Recent reports have shown aberrant microRNA expression in epilepsy and TSC. In this study, we performed microRNA expression profiling in brain specimens obtained from TSC patients undergoing epilepsy surgery for intractable epilepsy. Typically, in these resections several non-seizure onset tubers are resected together with the seizure-onset tubers because of their proximity. We directly compared seizure onset tubers, with and without increased tryptophan metabolism measured with PET, and non-onset tubers to assess the role of microRNAs in epileptogenesis associated with these lesions. Whether a particular tuber was epileptogenic or non-epileptogenic was determined with intracranial electrocorticography, and tryptophan metabolism was measured with AMT PET. We identified a set of five microRNAs (miR-142-3p, 142-5p, 223-3p, 200b-3p and 32-5p) that collectively distinguish among the three primary groups of tubers: non-onset/AMT-cold (NC), onset/AMT-cold (OC), and onset/AMT-hot (OH). These microRNAs were significantly upregulated in OH tubers compared to the other two groups, and microRNA expression was most significantly associated with AMT-PET uptake. The microRNAs target a group of genes enriched for synaptic signaling and epilepsy risk, including SLC12A5, SYT1, GRIN2A, GRIN2B, KCNB1, SCN2A, TSC1, and MEF2C. We confirmed the interaction between miR-32-5p and SLC12A5 using a luciferase reporter assay. Our findings provide a new avenue for subsequent mechanistic studies of tuber epileptogenesis in TSC.
Collapse
Affiliation(s)
- Shruti Bagla
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Daniela Cukovic
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eishi Asano
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sandeep Sood
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Aimee Luat
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Harry T Chugani
- Department of Neurology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Diane C Chugani
- Research Department, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Communication Sciences and Disorders Department, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Alan A Dombkowski
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
16
|
Abstract
INTRODUCTION Lymphangioleiomyomatosis (LAM) is a destructive lung disease affecting primarily women. LAM is caused by inactivating mutations in the tuberous sclerosis complex (TSC) genes, resulting in hyperactivation of mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Over the past five years, there have been remarkable advances in the diagnosis and therapy of LAM, including the identification of vascular endothelial growth factor D (VEGF-D) as a diagnostic biomarker and the US Food and Drug Administration approval of sirolimus as therapy for LAM. In appropriate clinical situations VEGF-D testing can make lung biopsy unnecessary to diagnose LAM. However, there remains an urgent unmet need for additional biomarkers of disease activity and/or response to therapy. Areas covered: This work reviews VEGF-D, an established LAM biomarker, and discusses emerging biomarkers, including circulating LAM cells, imaging, lipid, and metabolite biomarkers, focusing on those with the highest potential impact for LAM patients. Expert commentary: Ongoing research priorities include the development of validated biomarkers to 1) noninvasively diagnose LAM in women whose VEGF-D levels are not diagnostic, 2) accurately predict the likelihood of disease progression and 3) quantitatively measure disease activity and LAM cell burden. These biomarkers would enable personalized, precision clinical care and fast-track clinical trial implementation, with high clinical impact.
Collapse
Affiliation(s)
- Julie Nijmeh
- a Pulmonary and Critical Care Medicine, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Souheil El-Chemaly
- a Pulmonary and Critical Care Medicine, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Elizabeth P Henske
- a Pulmonary and Critical Care Medicine, Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| |
Collapse
|
17
|
Rivera-Barahona A, Fulgencio-Covián A, Pérez-Cerdá C, Ramos R, Barry MA, Ugarte M, Pérez B, Richard E, Desviat LR. Dysregulated miRNAs and their pathogenic implications for the neurometabolic disease propionic acidemia. Sci Rep 2017; 7:5727. [PMID: 28720782 PMCID: PMC5516006 DOI: 10.1038/s41598-017-06420-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022] Open
Abstract
miRNome expression profiling was performed in a mouse model of propionic acidemia (PA) and in patients’ plasma samples to investigate the role of miRNAs in the pathophysiology of the disease and to identify novel biomarkers and therapeutic targets. PA is a potentially lethal neurometabolic disease with patients developing neurological deficits and cardiomyopathy in the long-term, among other complications. In the PA mouse liver we identified 14 significantly dysregulated miRNAs. Three selected miRNAs, miR-34a-5p, miR-338-3p and miR-350, were found upregulated in brain and heart tissues. Predicted targets involved in apoptosis, stress-signaling and mitochondrial function, were inversely found down-regulated. Functional analysis with miRNA mimics in cellular models confirmed these findings. miRNA profiling in plasma samples from neonatal PA patients and age-matched control individuals identified a set of differentially expressed miRNAs, several were coincident with those identified in the PA mouse, among them miR-34a-5p and miR-338-3p. These two miRNAs were also found dysregulated in childhood and adult PA patients’ cohorts. Taken together, the results reveal miRNA signatures in PA useful to identify potential biomarkers, to refine the understanding of the molecular mechanisms of this rare disease and, eventually, to improve the management of patients.
Collapse
Affiliation(s)
- Ana Rivera-Barahona
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Alejandro Fulgencio-Covián
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Celia Pérez-Cerdá
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Ricardo Ramos
- Genomic Facility, Parque Científico de Madrid, Madrid, Spain
| | | | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain.,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Universidad Autónoma, Madrid, Spain. .,Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain. .,Instituto de Investigación Sanitaria Hospital La Paz (IdiPaz), ISCIII, Madrid, Spain.
| |
Collapse
|
18
|
Rivera-Barahona A, Pérez B, Richard E, Desviat LR. Role of miRNAs in human disease and inborn errors of metabolism. J Inherit Metab Dis 2017; 40:471-480. [PMID: 28229250 DOI: 10.1007/s10545-017-0018-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that regulate gene expression posttranscriptionally by base pairing with target messenger RNAs (mRNAs). They are estimated to target ∼60% of all human protein-coding genes and are involved in regulating key physiological processes and intracellular signaling pathways. They also exhibit tissue specificity, and their dysregulation is linked to the progression of pathology. Identifying disease associated miRNAs and their respective targets provides novel molecular insight into disease, enabling the design of new therapeutic strategies. Notably, miRNAs are present in stable form in biological fluids, making them amenable to routine clinical processing and analysis, which has paved the way for their use as novel biomarkers of disease and response to therapy. One of the most relevant findings in miRNA research concerns the therapeutic modulation of specific miRNA levels in vitro and in vivo, which has led to miRNA-based drugs entering clinical trials. Most studies relative to miRNA profiling, association with pathology, and therapeutical modulation have been conducted for cancer, cardiovascular and neurodegenerative diseases. However, for different monogenic diseases, including inborn errors of metabolism (IEM), research contributing to alterations to physiopathology caused by miRNAs is steadily increasing. Herein, we review the biogenesis pathway and mode of miRNA action, their known roles in disease states, and use of circulating miRNAs as biomarkers, describing the available research tools for basic and clinical studies. In addition, we summarize recent literature on miRNA studies in inherited metabolic diseases.
Collapse
Affiliation(s)
- Ana Rivera-Barahona
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), CIBERER, IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Belén Pérez
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), CIBERER, IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), CIBERER, IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), CIBERER, IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|