1
|
Chaugule S, Constantinou CK, John AA, Micha D, Eekhoff M, Gravallese E, Gao G, Shim JH. Comprehensive Review of Osteogenesis Imperfecta: Current Treatments and Future Innovations. Hum Gene Ther 2025; 36:597-617. [PMID: 39932815 PMCID: PMC11971546 DOI: 10.1089/hum.2024.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Osteogenesis imperfecta (OI) is a rare genetic disorder characterized by bone fragility due to reduced bone quality, often accompanied by low bone mass, recurrent fractures, hearing loss, skeletal abnormalities, and short stature. Pathogenic variants in over 20 genes lead to clinical and genetic variability in OI, resulting in diverse symptoms and severity. Current management involves a multidisciplinary approach, including antiresorptive medications, physiotherapy, occupational therapy, and orthopedic surgery, which provide symptomatic relief but no cure. Advancements in gene therapy technologies and stem cell therapies offer promising prospects for long-lasting or permanent solutions. This review provides a comprehensive overview of OI's classification, pathogenesis, and current treatment options. It also explores emerging biotechnologies for stem cells and gene-targeted therapies in OI. The potential of these innovative therapies and their clinical implementation challenges are evaluated, focusing on their imminent success in treating bone disorders.
Collapse
Affiliation(s)
- Sachin Chaugule
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Aijaz Ahmad John
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam; Amsterdam Rare Bone Disease center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Marelise Eekhoff
- Department of Internal Medicine, Section Endocrinology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam; Amsterdam Rare Bone Disease center, Amsterdam Bone Center, Amsterdam Movement Sciences, Amsterdam Reproduction and Development Amsterdam, Amsterdam, Netherlands
| | - Ellen Gravallese
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Viral Vector Core, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Shuhiamy NNA, Lee W, Didi FI, Song MH, Shin CH, Cho TJ. Outcome of Locking Plate Fixation Adjunctive to Intramedullary Rodding in Osteogenesis Imperfecta Patients. J Pediatr Orthop 2025; 45:e291-e298. [PMID: 39482994 DOI: 10.1097/bpo.0000000000002860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
BACKGROUND An intramedullary rodding is the preferred fixation method in limb stabilization of OI patients. However, the intramedullary rod may not provide adequate fixation and rotational stability, especially in adolescents and adults. The incorporation of adjunctive plate fixation alongside intramedullary rodding has been introduced to enhance this stability, although its complications remain insufficiently understood. The goal of this study was to explore the outcomes of adjunctive plating in conjunction with intramedullary rodding for limb stabilization in OI patients, emphasizing the complications related to the plates during the healing phase and following plate removal. METHODS This retrospective study examined 74 limb segments from 45 patients with OI who underwent intramedullary rodding and adjunctive plating from 2008 to 2022. Criteria for inclusion comprised surgical treatment followed by a minimum of 2 years of follow-up or complication before that time point. The need for adjunctive plating arose from inadequate fixation, rotational instability, and persistent cortical gaps with intramedullary rodding alone. Medical records and follow-up radiographs were reviewed to assess the healing of the target lesion and any complications. RESULTS The study encompassed 30 males and 15 females, ranging in age from 4 to 38 years, with 51 femoral and 23 tibial segments receiving treatment. Union was successfully achieved in 63 cases (85.3%), with an average union time of 14.4 months. Plates were subsequently removed in 62 cases after an average duration of 18.0 months. Before union, 11 revision surgeries were performed in 4 peri-implant fractures, 1 screw pull-out, and 6 failure of union. One sustained peri-implant fracture after the union. Following the removal of plates, complications included 10 refractures at screw sites, 3 progressive angulations at the previously targeted lesions, and 1 osteomyelitis. Kaplan-Meier analysis revealed that half of the refractures occurred within 1.8 years postplate removal. The overall complication showed borderline significance ( P =0.056) among age groups. All the plate-related complications occurred at the diaphyseal, unicortical screws. CONCLUSIONS Plate fixation, when used as an adjunct to intramedullary rodding, effectively stabilizes limbs in OI patients when intramedullary rods alone are inadequate. Nevertheless, given the significant risks associated with plate-related complications, adjunctive plating should be employed selectively only in instances where the union is unlikely to be achieved with intramedullary rodding alone. LEVEL OF EVIDENCE Level IV-case series.
Collapse
Affiliation(s)
- Norsaidatul N A Shuhiamy
- Faculty of Medicine, Department of Orthopaedic Surgery and Traumatology, Universiti Teknologi MARA, Selangor, Malaysia
| | - Wonik Lee
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Faris I Didi
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Mi Hyun Song
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Chang Ho Shin
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Tae-Joon Cho
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Partani E, Stephenson ML. Multidisciplinary Management of Pregnancy in Patients With Osteogenesis Imperfecta Type 3. Perm J 2024; 28:190-193. [PMID: 38980766 PMCID: PMC11404651 DOI: 10.7812/tpp/23.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Affiliation(s)
- Ekta Partani
- Department of Obstetrics and Gynecology, Kaiser Permanente, Santa Clara, CA, USA
| | - Megan L Stephenson
- Department of Maternal-Fetal Medicine, Kaiser Permanente, Santa Clara, CA, USA
| |
Collapse
|
4
|
Vasudeva A, Padavagodu Shivananda R, Handigodu Dugappa A, Bhat V. Osteogenesis Imperfecta type 1: like mother, like daughter - Challenges in the perinatal management. BMJ Case Rep 2024; 17:e258705. [PMID: 38839405 DOI: 10.1136/bcr-2023-258705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
A third gravida with osteogenesis imperfecta (OI) type 1, in her 20s, was referred from the Medical Genetics department at 12+ weeks with a prenatal diagnosis of OI type 1 in this fetus for further management. She was wheelchair-bound and keen to continue this pregnancy. She had medical termination in her two previous pregnancies for OI in the fetuses. Ultrasound at 12+ weeks revealed a short-bent femur with sparing of the long bones of the upper limb. Serial ultrasound revealed progressive affliction of the long bones with falling growth profile and polyhydramnios. She was delivered at 36 weeks by caesarean for breech in labour under regional anaesthesia.A multidisciplinary approach, patient determination, and good partner support helped in the successful management of this pregnancy.The neonate had blue sclera, dentigerous imperfecta, bowing of the femur and relatively spared upper limbs. Growth was on the third centile. The mother says she brings the girl for follow-up every 3-6 months to give injection zoledronate. The mother confirms her girl can stand with support, crawl, and speak two-syllable words. Her daughter had to undergo femur corrective osteotomy rush nailing and hip spice application for a closed fracture of the left femur.
Collapse
Affiliation(s)
- Akhila Vasudeva
- Department of Obstetrics and Gynecology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Roopa Padavagodu Shivananda
- Department of Obstetrics and Gynecology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Arun Handigodu Dugappa
- Department of Anaesthesia, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vivekananda Bhat
- Department of Medical Genetics, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
5
|
Mei Y, Jiang Y, Shen L, Meng Z, Zhang Z, Zhang H. Echocardiographic abnormalities and joint hypermobility in Chinese patients with Osteogenesis imperfecta. Orphanet J Rare Dis 2024; 19:116. [PMID: 38475860 DOI: 10.1186/s13023-024-03089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Very little is known about the characteristics of echocardiographic abnormalities and joint hypermobility in Chinese patients with osteogenesis imperfecta (OI). The aim of our study was to investigate the characteristics, prevalence and correlation of echocardiographic abnormalities and joint hypermobility in Chinese patients with OI. METHODS A cross-sectional comparative study was conducted in pediatric and adult OI patients who were matched in age and sex with healthy controls. Transthoracic echocardiography was performed in all patients and controls, and parameters were indexed for body surface area (BSA). The Beighton score was used to evaluate the degree of joint hypermobility. RESULTS A total of 48 patients with OI (25 juveniles and 23 adults) and 129 age- and sex-matched healthy controls (79 juveniles and 50 adults) were studied. Four genes (COL1A1, COL1A2, IFITM5, and WNT1) and 39 different mutation loci were identified in our study. Mild valvular regurgitation was the most common cardiac abnormality: mild mitral and tricuspid regurgitation was found in 12% and 36% of pediatric OI patients, respectively; among 23 OI adults, 13% and 17% of patients had mild mitral and tricuspid regurgitation, respectively, and 4% had mild aortic regurgitation. In multiple regression analysis, OI was the key predictor of left atrium diameter (LAD) (β=-3.670, P < 0.001) and fractional shortening (FS) (β = 3.005, P = 0.037) in juveniles, whereas for adults, OI was a significant predictor of LAD (β=-3.621, P < 0.001) and left ventricular mass (LVM) (β = 58.928, P < 0.001). The percentages of generalized joint hypermobility in OI juveniles and adults were 56% and 20%, respectively. Additionally, only in the OI juvenile group did the results of the Mann‒Whitney U test show that the degree of joint hypermobility was significantly different between the echocardiographic normal and abnormal groups (P = 0.004). CONCLUSIONS Mild valvular regurgitation was the most common cardiac abnormality in both OI juveniles and adults. Compared with OI adults, OI juveniles had more prevalent and wider joint hypermobility. Echocardiographic abnormalities may imply that the impairment of type I collagen is more serious in OI. Baseline echocardiography should be performed in OI patients as early as possible.
Collapse
Affiliation(s)
- Yazhao Mei
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Yunyi Jiang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Li Shen
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Zheying Meng
- Department of Ultrasound, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Hao Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| |
Collapse
|
6
|
Sun Y, Li L, Wang J, Liu H, Wang H. Emerging Landscape of Osteogenesis Imperfecta Pathogenesis and Therapeutic Approaches. ACS Pharmacol Transl Sci 2024; 7:72-96. [PMID: 38230285 PMCID: PMC10789133 DOI: 10.1021/acsptsci.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Osteogenesis imperfecta (OI) is an uncommon genetic disorder characterized by shortness of stature, hearing loss, poor bone mass, recurrent fractures, and skeletal abnormalities. Pathogenic variations have been found in over 20 distinct genes that are involved in the pathophysiology of OI, contributing to the disorder's clinical and genetic variability. Although medications, surgical procedures, and other interventions can partially alleviate certain symptoms, there is still no known cure for OI. In this Review, we provide a comprehensive overview of genetic pathogenesis, existing treatment modalities, and new developments in biotechnologies such as gene editing, stem cell reprogramming, functional differentiation, and transplantation for potential future OI therapy.
Collapse
Affiliation(s)
- Yu Sun
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Lin Li
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Jiajun Wang
- Medical
School of Hubei Minzu University, Enshi 445000, China
| | - Huiting Liu
- PET
Center, Chongqing University Three Gorges
Hospital, Chongqing 404000, China
| | - Hu Wang
- Department
of Neurology, Johns Hopkins University School
of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
7
|
Jiang C, Bao C, Shu S. A pregnant patient with type II osteogenesis imperfecta pregnancy. World J Emerg Med 2024; 15:75-76. [PMID: 38188553 PMCID: PMC10765072 DOI: 10.5847/wjem.j.1920-8642.2024.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/26/2023] [Indexed: 01/09/2024] Open
Affiliation(s)
- Chenyu Jiang
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Chenyi Bao
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shujuan Shu
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
8
|
Tran NT, Vo ST, Nguyen DA, Nguyen CC, Dinh LT, Tran MTT, Tran DC, Luong LAT, Doan KP, Huy Nguyen VQ, Thi Ha TM, Truong LGT, Cao PTM, Tran VTN, Nhut Trinh TH, Le QT, Nguyen VT, Hoang DTT, Nguyen MNB, Bui CT, Tran STT, Lam DT, Le HT, Nguyen MNB, Ho VT, Nguyen MT, Dao TT, Nguyen PM, Nguyen THL, Ha NP, Lu YT, Do TTT, Truong DK, Phan MD, Nguyen HN, Giang H, Tang HS. De novo variants of dominant monogenic disorders in Vietnam detected by a noninvasive prenatal test: a case series. Per Med 2023; 20:467-475. [PMID: 37937420 DOI: 10.2217/pme-2023-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Background: Noninvasive prenatal tests for monogenic diseases (NIPT-SGG) have recently been reported as helpful in early-stage antenatal screening. Our study describes the clinical and genetic features of cases identified by NIPT-SGG. Materials & methods: In a cohort pregnancy with abnormal sonograms, affected cases were confirmed by invasive diagnostic tests concurrently, with NIPT-SGG targeting 25 common dominant single-gene diseases. Results: A total of 13 single-gene fetuses were confirmed, including Noonan and Costello syndromes, thanatophoric dysplasia, achondroplasia, osteogenesis imperfecta and Apert syndrome. Two novel variants seen were tuberous sclerosis complex (TSC2 c.4154G>A) and Alagille syndrome (JAG1 c.3452del). Conclusion: NIPT-SGG and standard tests agree on the results for 13 fetuses with monogenic disorders. This panel method of screening can benefit high-risk Vietnamese pregnancies, but further research is encouraged to expand on the causative gene panel.
Collapse
Affiliation(s)
- Nhat-Thang Tran
- University of Medicine & Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 70000, Vietnam
- University Medical Center, Ho Chi Minh City, 70000, Vietnam
| | - Son Ta Vo
- Vinmec Health Care System, Hanoi City, 10000, Vietnam
| | - Duy-Anh Nguyen
- Hanoi Obstetrics & Gynecology Hospital, Hanoi City, 10000, Vietnam
- Hanoi Medical University, Hanoi City, 10000, Vietnam
| | - Canh-Chuong Nguyen
- Hanoi Obstetrics & Gynecology Hospital, Hanoi City, 10000, Vietnam
- Hanoi Medical University, Hanoi City, 10000, Vietnam
| | - Linh Thuy Dinh
- Hanoi Obstetrics & Gynecology Hospital, Hanoi City, 10000, Vietnam
| | | | - Danh-Cuong Tran
- National Hospital of Obstetrics & Gynecology, Hanoi City, 10000, Vietnam
| | | | - Kim-Phuong Doan
- Hanoi Medical University Hospital, Hanoi City, 10000, Vietnam
| | | | - Thi Minh Thi Ha
- University of Medicine & Pharmacy, Hue University, 49100, Vietnam
| | | | - Phuong Thi-Mai Cao
- University of Medicine & Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 70000, Vietnam
- University Medical Center, Ho Chi Minh City, 70000, Vietnam
| | | | | | | | | | | | | | - Chi-Thuong Bui
- Gia Dinh People's Hospital, Ho Chi Minh City, 70000, Vietnam
| | - Son-Tra Thi Tran
- Vietnam-Cuba Friendship Dong Hoi Hospital, Dong Hoi City, 47100, Vietnam
| | - Duc-Tam Lam
- Can Tho University of Medicine & Pharmacy, Can Tho, 94000, Vietnam
| | - Hong-Thinh Le
- Can Tho Obstetrics & Gynecology Hospital, Can Tho, 94000, Vietnam
| | | | - Viet-Thang Ho
- University of Medicine & Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 70000, Vietnam
| | | | - Trang Thi Dao
- Hanoi Medical University, Hanoi City, 10000, Vietnam
| | - Phuong Minh Nguyen
- Medical Genetics Institute, Ho Chi Minh City, 70000, Vietnam
- Gene Solutions, Ho Chi Minh City, 70000, Vietnam
| | - Thu-Hang Le Nguyen
- Medical Genetics Institute, Ho Chi Minh City, 70000, Vietnam
- Gene Solutions, Ho Chi Minh City, 70000, Vietnam
| | - Nhung Phuong Ha
- Medical Genetics Institute, Ho Chi Minh City, 70000, Vietnam
- Gene Solutions, Ho Chi Minh City, 70000, Vietnam
| | - Y-Thanh Lu
- Medical Genetics Institute, Ho Chi Minh City, 70000, Vietnam
- Gene Solutions, Ho Chi Minh City, 70000, Vietnam
| | | | | | - Minh-Duy Phan
- Medical Genetics Institute, Ho Chi Minh City, 70000, Vietnam
- Gene Solutions, Ho Chi Minh City, 70000, Vietnam
| | - Hoai-Nghia Nguyen
- Medical Genetics Institute, Ho Chi Minh City, 70000, Vietnam
- Gene Solutions, Ho Chi Minh City, 70000, Vietnam
| | - Hoa Giang
- Medical Genetics Institute, Ho Chi Minh City, 70000, Vietnam
- Gene Solutions, Ho Chi Minh City, 70000, Vietnam
| | - Hung-Sang Tang
- Medical Genetics Institute, Ho Chi Minh City, 70000, Vietnam
- Gene Solutions, Ho Chi Minh City, 70000, Vietnam
| |
Collapse
|
9
|
Paduano F, Fischetto R, Moretti B, De Vito D, Tatullo M. Expanding the genetic and clinical spectrum of osteogenesis imperfecta: identification of novel rare pathogenic variants in type I collagen-encoding genes. Front Endocrinol (Lausanne) 2023; 14:1254695. [PMID: 37929041 PMCID: PMC10623311 DOI: 10.3389/fendo.2023.1254695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous skeletal disorder. The majority of affected cases are attributed to autosomal dominant pathogenic variants (PVs) found in the COL1A1 and COL1A2 genes, which encode type I collagen. However, PVs in other genes involved in collagen posttranslational modification, processing, crosslinking, osteoblast differentiation, and bone mineralization have also been associated with OI. Methods In this study, we present the results of next-generation sequencing (NGS) analysis using a custom panel of 11 genes known to be associated with OI. This clinical study enrolled a total of 10 patients, comprising 7 male and 3 female patients from 7 families, all from the Puglia Region in South Italy, providing a detailed overview of their age, gender, family history, OI type, and non-skeletal features. Results The genetic analysis revealed 5 PVs in the COL1A1 gene and 2 PVs in the COL1A2 gene. Importantly, three of these PVs have not been previously reported in the literature. These include two novel heterozygous frameshift PVs in COL1A1 (c.2890_2893del and c.3887del) and one novel heterozygous missense PV in COL1A2 (c.596G>T). Discussion The identification of these previously unreported PVs expands the variant spectrum of the COL1A1 and COL1A2 genes and may have implications for accurate diagnosis, genetic counselling, and potential therapeutic interventions in affected individuals and their families.
Collapse
Affiliation(s)
- Francesco Paduano
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Rita Fischetto
- Metabolic and Genetic Diseases Unit, “Giovanni XXIII” Hospital, Bari, Italy
| | - Biagio Moretti
- Orthopaedic and Traumathogic Unit General Hospital Policlinico, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro” of Bari, Bari, Italy
| | - Danila De Vito
- Department of Translational Biomedicine and Neuroscience, Medical School, University ”Aldo Moro” of Bari, Bari, Italy
| | - Marco Tatullo
- Department of Translational Biomedicine and Neuroscience, Medical School, University ”Aldo Moro” of Bari, Bari, Italy
| |
Collapse
|
10
|
Yin J, Qi TF, Yang YY, Vera-Colón M, Zur Nieden NI, Wang Y. Temporal Profiling of Epitranscriptomic Modulators during Osteogenic Differentiation of Human Embryonic Stem Cells. J Proteome Res 2023; 22:2179-2185. [PMID: 37348120 PMCID: PMC10330632 DOI: 10.1021/acs.jproteome.3c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Osteogenesis is modulated by multiple regulatory networks. Recent studies showed that RNA modifications and their reader, writer, and eraser (RWE) proteins are involved in regulating various biological processes. Few studies, however, were conducted to investigate the functions of RNA modifications and their RWE proteins in osteogenesis. By using LC-MS/MS in parallel-reaction monitoring (PRM) mode, we performed a comprehensive quantitative assessment of 154 epitranscriptomic RWE proteins throughout the entire time course of osteogenic differentiation in H9 human embryonic stem cells (ESCs). We found that approximately half of the 127 detected RWE proteins were down-regulated during osteogenic differentiation, and they included mainly proteins involved in RNA methylation and pseudouridylation. Protein-protein interaction (PPI) network analysis unveiled significant associations between the down-regulated epitranscriptomic RWE proteins and osteogenesis-related proteins. Gene set enrichment analysis (GSEA) of publicly available RNA-seq data obtained from osteogenesis imperfecta patients suggested a potential role of METTL1 in osteogenesis through the cytokine network. Together, this is the first targeted profiling of epitranscriptomic RWE proteins during osteogenic differentiation of human ESCs, and our work unveiled potential regulatory roles of these proteins in osteogenesis. LC-MS/MS data were deposited on ProteomeXchange (PXD039249).
Collapse
Affiliation(s)
- Jiekai Yin
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California 92521-0403, United States
| | - Tianyu F Qi
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California 92521-0403, United States
| | - Yen-Yu Yang
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Madeline Vera-Colón
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California 92521-0403, United States
| | - Nicole I Zur Nieden
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California 92521-0403, United States
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
11
|
Panzaru MC, Florea A, Caba L, Gorduza EV. Classification of osteogenesis imperfecta: Importance for prophylaxis and genetic counseling. World J Clin Cases 2023; 11:2604-2620. [PMID: 37214584 PMCID: PMC10198117 DOI: 10.12998/wjcc.v11.i12.2604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous monogenic disease characterized by decreased bone mass, bone fragility, and recurrent fractures. The phenotypic spectrum varies considerably ranging from prenatal fractures with lethal outcomes to mild forms with few fractures and normal stature. The basic mechanism is a collagen-related defect, not only in synthesis but also in folding, processing, bone mineralization, or osteoblast function. In recent years, great progress has been made in identifying new genes and molecular mechanisms underlying OI. In this context, the classification of OI has been revised several times and different types are used. The Sillence classification, based on clinical and radiological characteristics, is currently used as a grading of clinical severity. Based on the metabolic pathway, the functional classification allows identifying regulatory elements and targeting specific therapeutic approaches. Genetic classification has the advantage of identifying the inheritance pattern, an essential element for genetic counseling and prophylaxis. Although genotype-phenotype correlations may sometimes be challenging, genetic diagnosis allows a personalized management strategy, accurate family planning, and pregnancy management decisions including options for mode of delivery, or early antenatal OI treatment. Future research on molecular pathways and pathogenic variants involved could lead to the development of genotype-based therapeutic approaches. This narrative review summarizes our current understanding of genes, molecular mechanisms involved in OI, classifications, and their utility in prophylaxis.
Collapse
Affiliation(s)
- Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Andreea Florea
- Department of Medical Genetics - Medical Genetics resident, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
12
|
Lang E, Semon JA. Mesenchymal stem cells in the treatment of osteogenesis imperfecta. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:7. [PMID: 36725748 PMCID: PMC9892307 DOI: 10.1186/s13619-022-00146-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Osteogenesis imperfecta (OI) is a disease caused by mutations in different genes resulting in mild, severe, or lethal forms. With no cure, researchers have investigated the use of cell therapy to correct the underlying molecular defects of OI. Mesenchymal stem cells (MSCs) are of particular interest because of their differentiation capacity, immunomodulatory effects, and their ability to migrate to sites of damage. MSCs can be isolated from different sources, expanded in culture, and have been shown to be safe in numerous clinical applications. This review summarizes the preclinical and clinical studies of MSCs in the treatment of OI. Altogether, the culmination of these studies show that MSCs from different sources: 1) are safe to use in the clinic, 2) migrate to fracture sites and growth sites in bone, 3) engraft in low levels, 4) improve clinical outcome but have a transient effect, 5) have a therapeutic effect most likely due to paracrine mechanisms, and 6) have a reduced therapeutic potential when isolated from patients with OI.
Collapse
Affiliation(s)
- Erica Lang
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| | - Julie A. Semon
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| |
Collapse
|
13
|
Claeys L, Zhytnik L, Wisse LE, van Essen HW, Eekhoff EMW, Pals G, Bravenboer N, Micha D. Exploration of the skeletal phenotype of the Col1a1 +/Mov13 mouse model for haploinsufficient osteogenesis imperfecta type 1. Front Endocrinol (Lausanne) 2023; 14:1145125. [PMID: 36967771 PMCID: PMC10031054 DOI: 10.3389/fendo.2023.1145125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
INTRODUCTION Osteogenesis Imperfecta is a rare genetic connective tissue disorder, characterized by skeletal dysplasia and fragile bones. Currently only two mouse models have been reported for haploinsufficient (HI) mild Osteogenesis Imperfecta (OI); the Col1a1 +/Mov13 (Mov13) and the Col1a1 +/-365 mouse model. The Mov13 mice were created by random insertion of the Mouse Moloney leukemia virus in the first intron of the Col1a1 gene, preventing the initiation of transcription. Since the development of the Mov13 mice almost four decades ago and its basic phenotypic characterization in the 90s, there have not been many further studies. We aimed to extensively characterize the Mov13 mouse model in order to critically evaluate its possible use for preclinical studies of HI OI. METHODS Bone tissue from ten heterozygous Mov13 and ten wild-type littermates (WT) C57BL/6J mice (50% males per group) was analyzed at eight weeks of age with bone histomorphometry, micro computed tomography (microCT), 3-point bending, gene expression of different collagens, as well as serum markers of bone turnover. RESULTS The Mov13 mouse presented a lower bone strength and impaired material properties based on our results of 3-point bending and microCT analysis respectively. In contrast, no significant differences were found for all histomorphometric parameters. In addition, no significant differences in Col1a1 bone expression were present, but there was a significant lower P1NP concentration, a bone formation marker, measured in serum. Furthermore, bone tissue of Mov13 mice presented significantly higher expression of collagens (Col1a2, Col5a1 and Col5a2), and bone metabolism markers (Bglap, Fgf23, Smad7, Edn1 and Eln) compared to WT. Finally, we measured a significantly lower Col1a1 expression in heart and skin tissue and also determined a higher expression of other collagens in the heart tissue. CONCLUSION Although we did not detect a significant reduction in Col1a1 expression in the bone tissue, a change in bone structure and reduction in bone strength was noted. Regrettably, the variability of the bone phenotype and the appearance of severe lymphoma in adult Mov13 mice, does not favor their use for the testing of new long-term drug studies. As such, a new HI OI type 1 mouse model is urgently needed.
Collapse
Affiliation(s)
- Lauria Claeys
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lidiia Zhytnik
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Traumatology and Orthopeadics, Institute of Clinical Medicine, The University of Tartu, Tartu, Estonia
| | - Lisanne E. Wisse
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Huib W. van Essen
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Tissue Function & Regeneration and Ageing & Vitality, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - E. Marelise W. Eekhoff
- Department of Endocrinology and Metabolism, Amsterdam Rare Bone Disease Center, Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - Gerard Pals
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Tissue Function & Regeneration and Ageing & Vitality, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Dimitra Micha,
| |
Collapse
|
14
|
Kruse J, Mueller R, Aghdassi AA, Lerch MM, Salloch S. Genetic Testing for Rare Diseases: A Systematic Review of Ethical Aspects. Front Genet 2022; 12:701988. [PMID: 35154238 PMCID: PMC8826556 DOI: 10.3389/fgene.2021.701988] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
Genetic testing is associated with many ethical challenges on the individual, organizational and macro level of health care systems. The provision of genetic testing for rare diseases in particular requires a full understanding of the complexity and multiplicity of related ethical aspects. This systematic review presents a detailed overview of ethical aspects relevant to genetic testing for rare diseases as discussed in the literature. The electronic databases Pubmed, Science Direct and Web of Science were searched, resulting in 55 relevant publications. From the latter, a total of 93 different ethical aspects were identified. These ethical aspects were structured into three main categories (process of testing, consequences of the test outcome and contextual challenges) and 20 subcategories highlighting the diversity and complexity of ethical aspects relevant to genetic testing for rare diseases. This review can serve as a starting point for the further in-depth investigation of particular ethical issues, the education of healthcare professionals regarding this matter and for informing international policy development on genetic testing for rare diseases.
Collapse
Affiliation(s)
- Judith Kruse
- Institute of Ethics and History of Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Regina Mueller
- Institute of Ethics and History of Medicine, Medical Faculty, University Tübingen, Tübingen, Germany
| | - Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | | | - Sabine Salloch
- Institute of Ethics, History and Philosophy of Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
The Special Features of Prenatal and Preimplantation Genetic Counseling in Arab Countries. Genes (Basel) 2022; 13:genes13020167. [PMID: 35205212 PMCID: PMC8872395 DOI: 10.3390/genes13020167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/02/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic counseling services have only recently been introduced in most Arab countries, and their utilization is increasing. Prenatal genetic counseling is essential, particularly in the Arab context, which is characterized by high rates of consanguinity. Nevertheless, little is known about the decisions faced by parents and the factors underlying the complex decision making that must occur when accessing these services in Arab countries. Herein, we performed a narrative review to discuss the reported experiences of parents accessing genetic counseling in the prenatal setting in the 22 Arab countries. We also highlight the different types of decisions encountered and the factors influencing them. We report that: (i) utilization of genetic counseling services varies across different Arab countries; (ii) many factors affect decision making and service utilization, especially religion; and (iii) parents are faced with an array of decisions in the prenatal setting, partly driven by increased utilization of prenatal diagnosis and preimplantation genetic testing in some countries. Our work is the first to highlight the different factors and decisions influencing genetic counseling in Arab countries. Understanding these factors is essential for improving genetic counseling services in the region and helping counselors facilitate informed decision making.
Collapse
|
16
|
Mei Y, Zhang H, Zhang Z. Comparing Clinical and Genetic Characteristics of De Novo and Inherited COL1A1/COL1A2 Variants in a Large Chinese Cohort of Osteogenesis Imperfecta. Front Endocrinol (Lausanne) 2022; 13:935905. [PMID: 35909573 PMCID: PMC9329653 DOI: 10.3389/fendo.2022.935905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/17/2022] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Nearly 85%-90% of osteogenesis imperfecta (OI) cases are caused by autosome dominant mutations of COL1A1 and COL1A2 genes, of which de novo mutations cover a large proportion, whereas their characteristics remain to be elucidated. This study aims to compare the differences in clinical and genetic characteristics of de novo and inherited COL1A1/COL1A2 mutations of OI, assess the average paternal and maternal age at conception in de novo mutations, and research the rate of nonpenetrance in inherited mutations. MATERIALS AND METHODS A retrospective comparison between de novo and inherited mutations was performed among 135 OI probands with COL1A1/COL1A2 mutations. Mutational analyses of all probands and their family members were completed by Sanger sequencing. A new clinical scoring system was developed to assess the clinical severity of OI quantitatively. RESULTS A total of 51 probands (37.78%) with de novo mutations and 84 probands (62.22%) with inherited mutations were grouped by the results of the parental gene verification. The proportion of clinical type III (P<0.001) and clinical scores (P<0.001) were significantly higher in de novo mutations. Missense mutations covered a slightly higher proportion of de novo COL1A1 mutations (46.34%) compared with inherited COL1A1 mutations (33.33%), however, lacking a significant difference (P=0.1923). The mean BMD Z/T-score at the lumbar spine in de novo mutations was -2.3 ± 1.5, lower than inherited mutations (-1.7 ± 1.8), but lacking statistical significance (P=0.0742). There was no significant difference between the two groups in OI-related phenotypes (like fracture frequency, blue sclera, and hearing loss) and biochemical indexes. In de novo mutations, the average paternal and maternal age at conception was 29.2 (P<0.05) and 26.8 (P<0.0001), respectively, which were significantly younger than the average gestational age of the population. Additionally, 98.04% of pedigrees (50/51) with de novo mutations were spontaneous conception. The rate of nonpenetrance of parents with pathogenic variants in the inherited mutation group was 25.64% (20/78). CONCLUSIONS Our data revealed that the proportion of clinical type III and clinical scores were significantly higher in de novo mutations than in inherited mutations, demonstrating that de novo mutations are more damaging because they have not undergone purifying selection.
Collapse
Affiliation(s)
| | - Hao Zhang
- *Correspondence: Zhenlin Zhang, ; Hao Zhang,
| | | |
Collapse
|
17
|
Zhu W, Yan K, Chen X, Zhao W, Wu Y, Tang H, Chen M, Wu J, Wang P, Zhang R, Shen Y, Zhang D. A Founder Pathogenic Variant of PPIB Unique to Chinese Population Causes Osteogenesis Imperfecta IX. Front Genet 2021; 12:717294. [PMID: 34659339 PMCID: PMC8511635 DOI: 10.3389/fgene.2021.717294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder characterized by bone fragility. PPIB pathogenic variants cause a perinatal lethal form of OI type IX. A limited number of pathogenic variants have been reported so far worldwide. Methods: We identified a rare pedigree whose phenotype was highly consistent with OI-IX. Exome sequencing was performed to uncover the causal variants. The variant pathogenicity was classified following the ACMG/AMP guidelines. The founder effect and the age of the variant were assessed. Results: We identified a homozygous missense variant c.509G > A/p.G170D in PPIB in an affected fetus. This variant is a Chinese-specific allele and can now be classified as pathogenic. We estimated the allele frequency (AF) of this variant to be 0.0000427 in a Chinese cohort involving 128,781 individuals. All patients and carriers shared a common haplotype, indicative of a founder effect. The estimated age of variant was 65,160 years. We further identified pathogenic variants of PPIB in gnomAD and ClinVar databases, the conserved estimation of OI type IX incidence to be 1/1,000,000 in Chinese population. Conclusion: We reported a founder pathogenic variant in PPIB specific to the Chinese population. We further provided our initial estimation of OI-IX disease incidence in China.
Collapse
Affiliation(s)
- Wenting Zhu
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Yan
- Department of Genetics and Reproduction, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xijing Chen
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhao
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Wu
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huanna Tang
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Chen
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan
| | - Jian Wu
- MyGenostics Inc., Beijing, China
| | | | - Runju Zhang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiping Shen
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Division of Genetics and Genomics, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Dan Zhang
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Zhejiang University, Ministry of Education, Hangzhou, China
| |
Collapse
|
18
|
Zhytnik L, Peters M, Tilk K, Simm K, Tõnisson N, Reimand T, Maasalu K, Acharya G, Krjutškov K, Salumets A. From late fatherhood to prenatal screening of monogenic disorders: evidence and ethical concerns. Hum Reprod Update 2021; 27:1056-1085. [PMID: 34329448 DOI: 10.1093/humupd/dmab023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/27/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND With the help of ART, an advanced parental age is not considered to be a serious obstacle for reproduction anymore. However, significant health risks for future offspring hide behind the success of reproductive medicine for the treatment of reduced fertility associated with late parenthood. Although an advanced maternal age is a well-known risk factor for poor reproductive outcomes, understanding the impact of an advanced paternal age on offspring is yet to be elucidated. De novo monogenic disorders (MDs) are highly associated with late fatherhood. MDs are one of the major sources of paediatric morbidity and mortality, causing significant socioeconomic and psychological burdens to society. Although individually rare, the combined prevalence of these disorders is as high as that of chromosomal aneuploidies, indicating the increasing need for prenatal screening. With the help of advanced reproductive technologies, families with late paternity have the option of non-invasive prenatal testing (NIPT) for multiple MDs (MD-NIPT), which has a sensitivity and specificity of almost 100%. OBJECTIVE AND RATIONALE The main aims of the current review were to examine the effect of late paternity on the origin and nature of MDs, to highlight the role of NIPT for the detection of a variety of paternal age-associated MDs, to describe clinical experiences and to reflect on the ethical concerns surrounding the topic of late paternity and MD-NIPT. SEARCH METHODS An extensive search of peer-reviewed publications (1980-2021) in English from the PubMed and Google Scholar databases was based on key words in different combinations: late paternity, paternal age, spermatogenesis, selfish spermatogonial selection, paternal age effect, de novo mutations (DNMs), MDs, NIPT, ethics of late fatherhood, prenatal testing and paternal rights. OUTCOMES An advanced paternal age provokes the accumulation of DNMs, which arise in continuously dividing germline cells. A subset of DNMs, owing to their effect on the rat sarcoma virus protein-mitogen-activated protein kinase signalling pathway, becomes beneficial for spermatogonia, causing selfish spermatogonial selection and outgrowth, and in some rare cases may lead to spermatocytic seminoma later in life. In the offspring, these selfish DNMs cause paternal age effect (PAE) disorders with a severe and even life-threatening phenotype. The increasing tendency for late paternity and the subsequent high risk of PAE disorders indicate an increased need for a safe and reliable detection procedure, such as MD-NIPT. The MD-NIPT approach has the capacity to provide safe screening for pregnancies at risk of PAE disorders and MDs, which constitute up to 20% of all pregnancies. The primary risks include pregnancies with a paternal age over 40 years, a previous history of an affected pregnancy/child, and/or congenital anomalies detected by routine ultrasonography. The implementation of NIPT-based screening would support the early diagnosis and management needed in cases of affected pregnancy. However, the benefits of MD-NIPT need to be balanced with the ethical challenges associated with the introduction of such an approach into routine clinical practice, namely concerns regarding reproductive autonomy, informed consent, potential disability discrimination, paternal rights and PAE-associated issues, equity and justice in accessing services, and counselling. WIDER IMPLICATIONS Considering the increasing parental age and risks of MDs, combined NIPT for chromosomal aneuploidies and microdeletion syndromes as well as tests for MDs might become a part of routine pregnancy management in the near future. Moreover, the ethical challenges associated with the introduction of MD-NIPT into routine clinical practice need to be carefully evaluated. Furthermore, more focus and attention should be directed towards the ethics of late paternity, paternal rights and paternal genetic guilt associated with pregnancies affected with PAE MDs.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Kadi Tilk
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Kadri Simm
- Institute of Philosophy and Semiotics, Faculty of Arts and Humanities, University of Tartu, Tartu, Estonia.,Centre of Ethics, University of Tartu, Tartu, Estonia
| | - Neeme Tõnisson
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Reproductive Medicine, West Tallinn Central Hospital, Tallinn, Estonia
| | - Tiia Reimand
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ganesh Acharya
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Institute of Genomics, University of Tartu, Tartu, Estonia.,Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Deguchi M, Tsuji S, Katsura D, Kasahara K, Kimura F, Murakami T. Current Overview of Osteogenesis Imperfecta. ACTA ACUST UNITED AC 2021; 57:medicina57050464. [PMID: 34068551 PMCID: PMC8151368 DOI: 10.3390/medicina57050464] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Osteogenesis imperfecta (OI), or brittle bone disease, is a heterogeneous disorder characterised by bone fragility, multiple fractures, bone deformity, and short stature. OI is a heterogeneous disorder primarily caused by mutations in the genes involved in the production of type 1 collagen. Severe OI is perinatally lethal, while mild OI can sometimes not be recognised until adulthood. Severe or lethal OI can usually be diagnosed using antenatal ultrasound and confirmed by various imaging modalities and genetic testing. The combination of imaging parameters obtained by ultrasound, computed tomography (CT), and magnetic resource imaging (MRI) can not only detect OI accurately but also predict lethality before birth. Moreover, genetic testing, either noninvasive or invasive, can further confirm the diagnosis prenatally. Early and precise diagnoses provide parents with more time to decide on reproductive options. The currently available postnatal treatments for OI are not curative, and individuals with severe OI suffer multiple fractures and bone deformities throughout their lives. In utero mesenchymal stem cell transplantation has been drawing attention as a promising therapy for severe OI, and a clinical trial to assess the safety and efficacy of cell therapy is currently ongoing. In the future, early diagnosis followed by in utero stem cell transplantation should be adopted as a new therapeutic option for severe OI.
Collapse
|