1
|
Hyde VR, Zhou C, Fernandez JR, Chatterjee K, Ramakrishna P, Lin A, Fisher GW, Çeliker OT, Caldwell J, Bender O, Sauer PJ, Lugo-Martinez J, Bar DZ, D'Aiuto L, Shemesh OA. Anti-herpetic tau preserves neurons via the cGAS-STING-TBK1 pathway in Alzheimer's disease. Cell Rep 2025; 44:115109. [PMID: 39753133 DOI: 10.1016/j.celrep.2024.115109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/06/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025] Open
Abstract
Alzheimer's disease (AD) diagnosis relies on the presence of extracellular β-amyloid (Aβ) and intracellular hyperphosphorylated tau (p-tau). Emerging evidence suggests a potential link between AD pathologies and infectious agents, with herpes simplex virus 1 (HSV-1) being a leading candidate. Our investigation, using metagenomics, mass spectrometry, western blotting, and decrowding expansion pathology, detects HSV-1-associated proteins in human brain samples. Expression of the herpesvirus protein ICP27 increases with AD severity and strongly colocalizes with p-tau but not with Aβ. Modeling in human brain organoids shows that HSV-1 infection elevates tau phosphorylation. Notably, p-tau reduces ICP27 expression and markedly decreases post-infection neuronal death from 64% to 7%. This modeling prompts investigation into the cGAS-STING-TBK1 pathway products, nuclear factor (NF)-κB and IRF-3, which colocalizes with ICP27 and p-tau in AD. Furthermore, experimental activation of STING enhances tau phosphorylation, while TBK1 inhibition prevents it. Together, these findings suggest that tau phosphorylation acts as an innate immune response in AD, driven by cGAS-STING.
Collapse
Affiliation(s)
- Vanesa R Hyde
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chaoming Zhou
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Juan R Fernandez
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Krishnashis Chatterjee
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pururav Ramakrishna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Amanda Lin
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Gregory W Fisher
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Orhan Tunç Çeliker
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jill Caldwell
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Omer Bender
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Peter Joseph Sauer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jose Lugo-Martinez
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daniel Z Bar
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Leonardo D'Aiuto
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Or A Shemesh
- School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
2
|
Naik B, Sasikumar J, Das SP. From Skin and Gut to the Brain: The Infectious Journey of the Human Commensal Fungus Malassezia and Its Neurological Consequences. Mol Neurobiol 2025; 62:533-556. [PMID: 38871941 DOI: 10.1007/s12035-024-04270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The human mycobiome encompasses diverse communities of fungal organisms residing within the body and has emerged as a critical player in shaping health and disease. While extensive research has focused on the skin and gut mycobiome, recent investigations have pointed toward the potential role of fungal organisms in neurological disorders. Among those fungal organisms, the presence of the commensal fungus Malassezia in the brain has created curiosity because of its commensal nature and primary association with the human skin and gut. This budding yeast is responsible for several diseases, such as Seborrheic dermatitis, Atopic dermatitis, Pityriasis versicolor, Malassezia folliculitis, dandruff, and others. However recent findings surprisingly show the presence of Malassezia DNA in the brain and have been linked to diseases like Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Amyotrophic lateral sclerosis. The exact role of Malassezia in these disorders is unknown, but its ability to infect human cells, travel through the bloodstream, cross the blood-brain barrier, and reside along with the lipid-rich neuronal cells are potential mechanisms responsible for pathogenesis. This also includes the induction of pro-inflammatory cytokines, disruption of the blood-brain barrier, gut-microbe interaction, and accumulation of metabolic changes in the brain environment. In this review, we discuss these key findings from studies linking Malassezia to neurological disorders, emphasizing the complex and multifaceted nature of these cases. Furthermore, we discuss potential mechanisms through which Malassezia might contribute to the development of neurological conditions. Future investigations will open up new avenues for our understanding of the fungal gut-brain axis and how it influences human behavior. Collaborative research efforts among microbiologists, neuroscientists, immunologists, and clinicians hold promise for unraveling the enigmatic connections between human commensal Malassezia and neurological disorders.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Jayaprakash Sasikumar
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
3
|
Borrego-Ruiz A, Borrego JJ. Epigenetic Mechanisms in Aging: Extrinsic Factors and Gut Microbiome. Genes (Basel) 2024; 15:1599. [PMID: 39766866 PMCID: PMC11675900 DOI: 10.3390/genes15121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aging is a natural physiological process involving biological and genetic pathways. Growing evidence suggests that alterations in the epigenome during aging result in transcriptional changes, which play a significant role in the onset of age-related diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. For this reason, the epigenetic alterations in aging and age-related diseases have been reviewed, and the major extrinsic factors influencing these epigenetic alterations have been identified. In addition, the role of the gut microbiome and its metabolites as epigenetic modifiers has been addressed. RESULTS Long-term exposure to extrinsic factors such as air pollution, diet, drug use, environmental chemicals, microbial infections, physical activity, radiation, and stress provoke epigenetic changes in the host through several endocrine and immune pathways, potentially accelerating the aging process. Diverse studies have reported that the gut microbiome plays a critical role in regulating brain cell functions through DNA methylation and histone modifications. The interaction between genes and the gut microbiome serves as a source of adaptive variation, contributing to phenotypic plasticity. However, the molecular mechanisms and signaling pathways driving this process are still not fully understood. CONCLUSIONS Extrinsic factors are potential inducers of epigenetic alterations, which may have important implications for longevity. The gut microbiome serves as an epigenetic effector influencing host gene expression through histone and DNA modifications, while bidirectional interactions with the host and the underexplored roles of microbial metabolites and non-bacterial microorganisms such as fungi and viruses highlight the need for further research.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
4
|
Ngah WZW, Ahmad HF, Ankasha SJ, Makpol S, Tooyama I. Dietary Strategies to Mitigate Alzheimer's Disease: Insights into Antioxidant Vitamin Intake and Supplementation with Microbiota-Gut-Brain Axis Cross-Talk. Antioxidants (Basel) 2024; 13:1504. [PMID: 39765832 PMCID: PMC11673287 DOI: 10.3390/antiox13121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's disease (AD), which is characterized by deterioration in cognitive function and neuronal death, is the most prevalent age-related progressive neurodegenerative disease. Clinical and experimental research has revealed that gut microbiota dysbiosis may be present in AD patients. The changed gut microbiota affects brain function and behavior through several mechanisms, including tau phosphorylation and increased amyloid deposits, neuroinflammation, metabolic abnormalities, and persistent oxidative stress. The lack of effective treatments to halt or reverse the progression of this disease has prompted a search for non-pharmaceutical tools. Modulation of the gut microbiota may be a promising strategy in this regard. This review aims to determine whether specific dietary interventions, particularly antioxidant vitamins, either obtained from the diet or as supplements, may support the formation of beneficial microbiota in order to prevent AD development by contributing to the systemic reduction of chronic inflammation or by acting locally in the gut. Understanding their roles would be beneficial as it may have the potential to be used as a future therapy option for AD patients.
Collapse
Affiliation(s)
- Wan Zurinah Wan Ngah
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Hajar Fauzan Ahmad
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Pahang, Malaysia;
| | - Sheril June Ankasha
- Unisza Science and Medicine Foundation Centre, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia;
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ikuo Tooyama
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| |
Collapse
|
5
|
Sighencea MG, Popescu RȘ, Trifu SC. From Fundamentals to Innovation in Alzheimer's Disease: Molecular Findings and Revolutionary Therapies. Int J Mol Sci 2024; 25:12311. [PMID: 39596378 PMCID: PMC11594972 DOI: 10.3390/ijms252212311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a global health concern and the leading cause of dementia in the elderly. The prevalence of this neurodegenerative condition is projected to increase concomitantly with increased life expectancy, resulting in a significant economic burden. With very few FDA-approved disease-modifying drugs available for AD, there is an urgent need to develop new compounds capable of impeding the progression of the disease. Given the unclear etiopathogenesis of AD, this review emphasizes the underlying mechanisms of this condition. It explores not only well-studied aspects, such as the accumulation of Aβ plaques and neurofibrillary tangles, but also novel areas, including glymphatic and lymphatic pathways, microbiota and the gut-brain axis, serotoninergic and autophagy alterations, vascular dysfunction, the metal hypothesis, the olfactory pathway, and oral health. Furthermore, the potential molecular targets arising from all these mechanisms have been reviewed, along with novel promising approaches such as nanoparticle-based therapy, neural stem cell transplantation, vaccines, and CRISPR-Cas9-mediated genome editing techniques. Taking into account the overlap of these various mechanisms, individual and combination therapies emerge as the future direction in the AD strategy.
Collapse
Affiliation(s)
| | - Ramona Ștefania Popescu
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| | - Simona Corina Trifu
- Department of Psychiatry, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
| |
Collapse
|
6
|
Li S, Peng H, Sun Y, Yang J, Wang J, Bai F, Peng C, Fang S, Cai H, Chen G. Yeast β-glucan attenuates dextran sulfate sodium-induced colitis: Involvement of gut microbiota and short-chain fatty acids. Int J Biol Macromol 2024; 280:135846. [PMID: 39307486 DOI: 10.1016/j.ijbiomac.2024.135846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Yeast β-glucan intervention offers a promising strategy for managing colitis; however, the mechanisms remain unknown. In the present work, the protective effects of yeast β-glucan on DSS-induced colitis in mice was evaluated, focusing on its interaction with gut microbiota. The result showed yeast β-glucan significantly alleviated colitis symptoms, evidenced by reduced weight loss, lower disease activity index (DAI) scores, and minimized intestinal damage. It enhanced intestinal barrier integrity via upregulation of tight junction proteins, suppressed lipopolysaccharide (LPS) release, and decreased pro-inflammatory cytokines production. Additionally, yeast β-glucan boosted short-chain fatty acids (SCFAs) production, and activated their receptors, increased the relative abundances of beneficial microbes like Lactobacillus and Lachnospiraceae_UCG-006. Transcriptomic analyses suggest that yeast β-glucan mitigates inflammation by downregulating gene expression related to IL-17 pathway. Our findings highlight potential of yeast β-glucan as a therapeutic agent for colitis through modulation of gut microbiota and inflammatory responses.
Collapse
Affiliation(s)
- Sichen Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Huihui Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Yuning Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Jiali Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Juan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Fuqing Bai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Chuanyi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Shuzhen Fang
- The First Aliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| |
Collapse
|
7
|
AlHarbi SG, Almushayt AS, Bamashmous S, Abujamel TS, Bamashmous NO. The oral microbiome of children in health and disease-a literature review. FRONTIERS IN ORAL HEALTH 2024; 5:1477004. [PMID: 39502321 PMCID: PMC11534731 DOI: 10.3389/froh.2024.1477004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
The oral microbiome is a complex community of microorganisms residing in the oral cavity interacting with each other and with the host in a state of equilibrium. Disruptions in this balance can result in both oral and systemic conditions. Historically, studying the oral microbiome faced limitations due to culture-dependent techniques that could not capture the complexity and diversity of the microbial community. The emergence of advanced genomic technologies and the ease of sample collection from the oral cavity has revolutionized the understanding of the oral microbiome, providing valuable insights into the bacterial community in both health and disease. This review explores the oral microbiome in children, discussing its formation and dynamics in both states of health and disease, its role in various conditions such as dental caries, periodontal disease, oral cancer, cleft lip and palate, and explores its connection to several systemic consequences.
Collapse
Affiliation(s)
- Salma G. AlHarbi
- Pediatric Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Dental Department, Ministry of Health, Yanbu, Saudi Arabia
| | - Abdullah S. Almushayt
- Pediatric Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shatha Bamashmous
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Makkah, Saudi Arabia
| | - Turki S. Abujamel
- Division of Vaccines and Immunotherapy, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Makkah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Makkah, Saudi Arabia
| | - Nada Othman Bamashmous
- Pediatric Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Fu C, Wang X, Zhou W, Gao Q, Luo J, Li Y. Exploring the mechanism of chondroitin sulfate-selenium nanoparticles in improving Alzheimer's disease: Insights from intestinal flora evaluation. Heliyon 2024; 10:e38635. [PMID: 39421360 PMCID: PMC11483475 DOI: 10.1016/j.heliyon.2024.e38635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
In this study we have investigated the effect of chondroitin sulfate-selenium nanoparticles (CS@Se) on Alzheimer's disease (AD) mice using 16S rDNA technique. We randomly divided 30 SPF grade male C57BL/6 J mice into 6 groups according to random number table method. The AD mouse model was established by subcutaneous injection of D-galactose (D-gal) combined with gavage of AlCl3 for 30 consecutive days, and then drug intervention was performed in the administration group for 40 consecutive days. The findings demonstrated several positive effects of CS@Se on AD mice. Firstly, CS@Se improved spatial learning and memory problems and reduces anxiety in AD mice. It also significantly reduced pyramidal cell arrangement disorder and rupture, leading to an improvement in synaptic structure damage between hippocampal neurons. Furthermore, CS@Se reduced mitochondrial swelling and vacuolation while increasing neuron survival in AD mice. Moreover, CS@Se significantly impacted the diversity and richness of intestinal flora in AD mice. It increased the relative abundance of Firmicutes and Actinobacteria while reducing the relative abundance of Bacteroidetes and Proteobacteria. In conclusion, CS@Se effectively reduced the breakdown of hippocampal pyramidal cells, improved the superfiber structure of hippocampal neurons, and restored intestinal flora balance, ultimately contributing to improving learning and memory abilities and alleviating anxiety in AD mice.
Collapse
Affiliation(s)
- Changfang Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Taishan vocational college of nursing, Taian 271000, China
| | - Xinyue Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Wei Zhou
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Heze Health School in Shandong Province, Heze 274000, China
| | - Qi Gao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Key Laboratory of Clinical Pharmacology, Liao cheng People's Hospital, Liaocheng 252000, China
| | - Junjun Luo
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yuqin Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
9
|
Grzelczyk J, Pérez-Sánchez H, Carmena-Bargueño M, Rodríguez-Martínez A, Budryn G. Assessment of the Interaction of Acetylcholinesterase Binding with Bioactive Compounds from Coffee and Coffee Fractions Digested In Vitro in the Gastrointestinal Tract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 39365899 PMCID: PMC11487712 DOI: 10.1021/acs.jafc.4c05435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
The aim of the study was to evaluate the degree of acetylcholinesterase (AChE) inhibition by green and light- and dark-roasted coffee extracts and their fractions after digestion in a simulated gastrointestinal tract. The analysis was carried out using isothermal titration calorimetry, molecular docking, and dynamics simulations. The results showed that 3-O-caffeoylquinic acid binds strongly to AChE through hydrogen interactions with the amino acids ARG289A, HIS440A, and PHE288A and hydrophobic interactions with TYR121A in the active site of the enzyme. The Robusta green coffee extract (ΔG = -35.87 kJ/mol) and dichlorogenic acid fraction (ΔG = -19-29 kJ/mol) showed the highest affinity. Dichlorogenic acids (3,4-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, and 3,4-O-dicaffeoylquinic acid) have high affinity for AChE as single compounds (ΔG(ITC) = -48.99-55.36 kJ/mol, ΔG(LF/AD) = -43.38-45.38 kJ/mol). The concentration necessary to reduce AChE activity by 50% amounted to 0.22 μmol/μmol chlorogenic acids to the enzyme.
Collapse
Affiliation(s)
- Joanna Grzelczyk
- Institute
of Food Technology and Analysis, Faculty of Biotechnology and Food
Sciences, Lodz University of Technology, Lodz 90-537, Poland
| | - Horacio Pérez-Sánchez
- Structural
Bioinformatics and High-Performance Computing Research Group (BIO-HPC),
Computer Engineering Department, Universidad
Católica de Murcia (UCAM), Guadalupe, Murcia 30107, Spain
| | - Miguel Carmena-Bargueño
- Structural
Bioinformatics and High-Performance Computing Research Group (BIO-HPC),
Computer Engineering Department, Universidad
Católica de Murcia (UCAM), Guadalupe, Murcia 30107, Spain
| | - Alejandro Rodríguez-Martínez
- Structural
Bioinformatics and High-Performance Computing Research Group (BIO-HPC),
Computer Engineering Department, Universidad
Católica de Murcia (UCAM), Guadalupe, Murcia 30107, Spain
| | - Grażyna Budryn
- Institute
of Food Technology and Analysis, Faculty of Biotechnology and Food
Sciences, Lodz University of Technology, Lodz 90-537, Poland
| |
Collapse
|
10
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
11
|
Dow CT, Pierce ES, Sechi LA. Mycobacterium paratuberculosis: A HERV Turn-On for Autoimmunity, Neurodegeneration, and Cancer? Microorganisms 2024; 12:1890. [PMID: 39338563 PMCID: PMC11434025 DOI: 10.3390/microorganisms12091890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that, over millions of years, became integrated into the human genome. While normally inactive, environmental stimuli such as infections have contributed to the transcriptional reactivation of HERV-promoting pathological conditions, including the development of autoimmunity, neurodegenerative disease and cancer. What infections trigger HERV activation? Mycobacterium avium subspecies paratuberculosis (MAP) is a pluripotent driver of human disease. Aside from granulomatous diseases, Crohn's disease, sarcoidosis and Blau syndrome, MAP is associated with autoimmune disease: type one diabetes (T1D), multiple sclerosis (MS), rheumatoid arthritis (RA) and autoimmune thyroiditis. MAP is also associated with Alzheimer's disease (AD) and Parkinson's disease (PD). Autoimmune diabetes, MS and RA are the diseases with the strongest MAP/HERV association. There are several other diseases associated with HERV activation, including diseases whose epidemiology and/or pathology would prompt speculation for a causal role of MAP. These include non-solar uveal melanoma, colon cancer, glioblastoma and amyotrophic lateral sclerosis (ALS). This article further points to MAP infection as a contributor to autoimmunity, neurodegenerative disease and cancer via the un-silencing of HERV. We examine the link between the ever-increasing number of MAP-associated diseases and the MAP/HERV intersection with these diverse medical conditions, and propose treatment opportunities based upon this association.
Collapse
Affiliation(s)
- Coad Thomas Dow
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Leonardo A. Sechi
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy;
- Azienda Ospedaliera Universitaria di Sassari, Viale San Pietro, 07100 Sassari, Italy
| |
Collapse
|
12
|
Dey C, Roy M, Ghosh R, Pal P, Roy D, Ghosh Dey S. Active Site Environment and Reactivity of Copper-Aβ in Membrane Mimetic SDS Micellar Environment. Chemistry 2024; 30:e202401531. [PMID: 38899478 DOI: 10.1002/chem.202401531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease (AD) is characterized by the abnormal aggregation of amyloid β (Aβ) peptide in extracellular deposits generated upon proteolysis of Amyloid Precursor Protein (APP). While copper (Cu(II)) binds to Aβ in soluble oligomeric and aggregated forms, its interaction with membrane-bound Aβ remains elusive. Investigating these interactions is crucial for understanding AD pathogenesis. Here, utilizing SDS micelles as a simplified membrane mimic, we focus on elucidating the interplay between membrane-anchored Aβ and copper, given their pivotal roles in AD. We employed spectroscopic techniques including UV, CD, and EPR to characterize the active site of Cu-Aβ complexes. Our findings demonstrate that copper interacts with Aβ peptides in membrane-mimicking micellar environments similarly to aqueous buffer solutions. Cu-Aβ complexes in this medium also induce higher hydrogen peroxide (H2O2) production, potentially contributing to AD-related oxidative stress. Moreover, we observe an increased oxidation rate of neurotransmitter such as dopamine by Cu-Aβ complexes. These results enhance our understanding of Cu-Aβ interactions in AD pathology and offer insights into potential therapeutic interventions targeting this interaction.
Collapse
Affiliation(s)
- Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Rimi Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Puja Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Debapriyo Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
13
|
Zhang H, Cao D, Xu T, Chen E, Li G, Chen Y, Payne P, Province M, Li F. mosGraphFlow: a novel integrative graph AI model mining disease targets from multi-omic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606219. [PMID: 39282361 PMCID: PMC11398418 DOI: 10.1101/2024.08.01.606219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Multi-omic data can better characterize complex cellular signaling pathways from multiple views compared to individual omic data. However, integrative multi-omic data analysis to rank key disease biomarkers and infer core signaling pathways remains an open problem. In this study, our novel contributions are that we developed a novel graph AI model, mosGraphFlow, for analyzing multi-omic signaling graphs (mosGraphs), 2) analyzed multi-omic mosGraph datasets of AD, and 3) identified, visualized and evaluated a set of AD associated signaling biomarkers and network. The comparison results show that the proposed model not only achieves the best classification accuracy but also identifies important AD disease biomarkers and signaling interactions. Moreover, the signaling sources are highlighted at specific omic levels to facilitate the understanding of the pathogenesis of AD. The proposed model can also be applied and expanded for other studies using multi-omic data. Model code is accessible via GitHub: https://github.com/FuhaiLiAiLab/mosGraphFlow.
Collapse
Affiliation(s)
- Heming Zhang
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Dekang Cao
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Tim Xu
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Emily Chen
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
| | - Guangfu Li
- Department of Surgery, School of Medicine, University of Connecticut, CT, 06032, USA
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Philip Payne
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Fuhai Li
- Institute for Informatics, Data Science and Biostatistics (I2DB), Washington University School of Medicine, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
14
|
Kim Y, Lim J, Oh J. Taming neuroinflammation in Alzheimer's disease: The protective role of phytochemicals through the gut-brain axis. Biomed Pharmacother 2024; 178:117277. [PMID: 39126772 DOI: 10.1016/j.biopha.2024.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative neurological condition characterized by cognitive decline, primarily affecting memory and logical thinking, attributed to amyloid-β plaques and tau protein tangles in the brain, leading to neuronal loss and brain atrophy. Neuroinflammation, a hallmark of AD, involves the activation of microglia and astrocytes in response to pathological changes, potentially exacerbating neuronal damage. The gut-brain axis is a bidirectional communication pathway between the gastrointestinal and central nervous systems, crucial for maintaining brain health. Phytochemicals, natural compounds found in plants with antioxidant and anti-inflammatory properties, such as flavonoids, curcumin, resveratrol, and quercetin, have emerged as potential modulators of this axis, suggesting implications for AD prevention. Intake of phytochemicals influences the gut microbial composition and its metabolites, thereby impacting neuroinflammation and oxidative stress in the brain. Consumption of phytochemical-rich foods may promote a healthy gut microbiota, fostering the production of anti-inflammatory and neuroprotective substances. Early dietary incorporation of phytochemicals offers a non-invasive strategy for modulating the gut-brain axis and potentially reducing AD risk or delaying its onset. The exploration of interventions targeting the gut-brain axis through phytochemical intake represents a promising avenue for the development of preventive or therapeutic strategies against AD initiation and progression.
Collapse
Affiliation(s)
- Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea.
| |
Collapse
|
15
|
Borrego-Ruiz A, Borrego JJ. Influence of human gut microbiome on the healthy and the neurodegenerative aging. Exp Gerontol 2024; 194:112497. [PMID: 38909763 DOI: 10.1016/j.exger.2024.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The gut microbiome plays a crucial role in host health throughout the lifespan by influencing brain function during aging. The microbial diversity of the human gut microbiome decreases during the aging process and, as a consequence, several mechanisms increase, such as oxidative stress, mitochondrial dysfunction, inflammatory response, and microbial gut dysbiosis. Moreover, evidence indicates that aging and neurodegeneration are closely related; consequently, the gut microbiome may serve as a novel marker of lifespan in the elderly. In this narrative study, we investigated how the changes in the composition of the gut microbiome that occur in aging influence to various neuropathological disorders, such as mild cognitive impairment (MCI), dementia, Alzheimer's disease (AD), and Parkinson's disease (PD); and which are the possible mechanisms that govern the relationship between the gut microbiome and cognitive impairment. In addition, several studies suggest that the gut microbiome may be a potential novel target to improve hallmarks of brain aging and to promote healthy cognition; therefore, current and future therapeutic interventions have been also reviewed.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
16
|
Rajasekaran JJ, Krishnamurthy HK, Bosco J, Jayaraman V, Krishna K, Wang T, Bei K. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024; 12:1797. [PMID: 39338471 PMCID: PMC11434369 DOI: 10.3390/microorganisms12091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE OF REVIEW This review investigates the oral microbiome's composition, functions, influencing factors, connections to oral and systemic diseases, and personalized oral care strategies. RECENT FINDINGS The oral microbiome is a complex ecosystem consisting of bacteria, fungi, archaea, and viruses that contribute to oral health. Various factors, such as diet, smoking, alcohol consumption, lifestyle choices, and medical conditions, can affect the balance of the oral microbiome and lead to dysbiosis, which can result in oral health issues like dental caries, gingivitis, periodontitis, oral candidiasis, and halitosis. Importantly, our review explores novel associations between the oral microbiome and systemic diseases including gastrointestinal, cardiovascular, endocrinal, and neurological conditions, autoimmune diseases, and cancer. We comprehensively review the efficacy of interventions like dental probiotics, xylitol, oral rinses, fluoride, essential oils, oil pulling, and peptides in promoting oral health by modulating the oral microbiome. SUMMARY This review emphasizes the critical functions of the oral microbiota in dental and overall health, providing insights into the effects of microbial imbalances on various diseases. It underlines the significant connection between the oral microbiota and general health. Furthermore, it explores the advantages of probiotics and other dental care ingredients in promoting oral health and addressing common oral issues, offering a comprehensive strategy for personalized oral care.
Collapse
Affiliation(s)
- John J. Rajasekaran
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | | | - Jophi Bosco
- Vibrant America LLC, Santa Clara, CA 95054, USA;
| | - Vasanth Jayaraman
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Karthik Krishna
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Tianhao Wang
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Kang Bei
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| |
Collapse
|
17
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
18
|
Bagheri S, Saboury AA, Saso L. Sequence of Molecular Events in the Development of Alzheimer's Disease: Cascade Interactions from Beta-Amyloid to Other Involved Proteins. Cells 2024; 13:1293. [PMID: 39120323 PMCID: PMC11312137 DOI: 10.3390/cells13151293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease is the primary neurodegenerative disease affecting the elderly population. Despite the first description of its pathology over a century ago, its precise cause and molecular mechanism remain unknown. Numerous factors, including beta-amyloid, tau protein, the APOEε4 gene, and different metals, have been extensively investigated in relation to this disease. However, none of them have been proven to have a decisive causal relationship. Furthermore, no single theory has successfully integrated these puzzle pieces thus far. In this review article, we propose the most probable molecular mechanism for AD, which clearly shows the relationship between the main aspects of the disease, and addresses fundamental questions such as: Why is aging the major risk factor for the disease? Are amyloid plaques and tau tangles the causes or consequences of AD? Why are the distributions of senile plaques and tau tangles in the brain different and independent of each other? Why is the APOEε4 gene a risk factor for AD? Finally, why is the disease more prevalent in women?
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
19
|
Singhrao SK, Consoli C, Dennison SR, Kanagasingam S, Welbury R. Porphyromonas gingivalis LPS and Actinomyces naeslundii Conditioned Medium Enhance the Release of a Low Molecular Weight, Transcriptionally Active, Fragment of Glycogen Synthase-3 Kinase in IMR-32 Cell Line. J Alzheimers Dis Rep 2024; 8:1055-1067. [PMID: 39114545 PMCID: PMC11305843 DOI: 10.3233/adr-240066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/19/2024] [Indexed: 08/10/2024] Open
Abstract
Background Glycogen synthase-3 kinase (GSK3) is one of the major contributors of tau hyperphosphorylation linked to neurofibrillary tangles in Alzheimer's disease (AD). Objective To determine a mechanism of GSK-3β activation by two periodontal bacteria consistently confirmed in AD autopsied brains. Methods Porphyromonas gingivalis FDC381 and Actinomyces naeslundii ATCC10301 conditioned media were collected. IMR-32 cells were challenged for 48 h with the conditioned media alongside P. gingivalis (ATCC33277) ultrapurified lipopolysaccharide (LPS) designated Pg.LPS under established cell culture conditions either alone or combined. Gene expression and protein analyses for GSK-3β were carried out. Results qPCR demonstrated that GSK-3β gene was overexpressed in IMR-32 cells treated with Pg.LPS with a 2.09-fold change (p = 0.0005), while A. naeslundii treated cells demonstrated 1.41-fold change (p = 0.004). Western blotting of the cells challenged with Pg.LPS (p = 0.01) and A. naeslundii conditioned medium (p = 0.001) demonstrated the 37 kDa band for each treatment with variable intensity across the medium control. Immunohistochemistry with the GSK-3β of the IMR-32 cells challenged with Pg.LPS and A. naeslundii alone demonstrated cytoplasmic and nuclear localization. Conclusions Exposure to various bacterial factors upregulated the gene expression of GSK-3β. Western blotting for GSK-3β confirmed the presence of the cleaved fragment by Pg.LPS (37 kDa band p = 0.01) and A. naeslundii conditioned medium (37 kDa band p = 0.001). Immunostaining demonstrated both cytoplasmic and nuclear localization of GSK-3β. Therefore, Pg.LPS and an unknown factor from the A. naeslundii conditioned medium mediated GSK-3β activation via its transcriptionally active, cleaved, fragment. These virulence factors in the body appear to be detrimental to brain health.
Collapse
Affiliation(s)
- Sim K. Singhrao
- School of Medicine and Dentistry, University of Central Lancashire, Preston, UK
| | - Claudia Consoli
- Central Biotechnology Services, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Sarah R. Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | | | - Richard Welbury
- School of Medicine and Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
20
|
Gao Y, Xu SM, Cheng Y, Takenaka K, Lindner G, Janitz M. Investigation of the Circular Transcriptome in Alzheimer's Disease Brain. J Mol Neurosci 2024; 74:64. [PMID: 38981928 PMCID: PMC11233389 DOI: 10.1007/s12031-024-02236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Circular RNAs (circRNAs) are a subclass of non-coding RNAs which have demonstrated potential as biomarkers for Alzheimer's disease (AD). In this study, we conducted a comprehensive exploration of the circRNA transcriptome within AD brain tissues. Specifically, we assessed circRNA expression patterns in the dorsolateral prefrontal cortex collected from nine AD-afflicted individuals and eight healthy controls. Utilising two circRNA detection tools, CIRI2 and CIRCexplorer2, we detected thousands of circRNAs and performed a differential expression analysis. CircRNAs which exhibited statistically significantly differential expression were identified as AD-specific differentially expressed circRNAs. Notably, our investigation revealed 120 circRNAs with significant upregulation and 1325 circRNAs displaying significant downregulation in AD brains when compared to healthy brain tissue. Additionally, we explored the expression profiles of the linear RNA counterparts corresponding to differentially expressed circRNAs in AD-afflicted brains and discovered that the linear RNA counterparts exhibited no significant changes in the levels of expression. We used CRAFT tool to predict that circUBE4B had potential to target miRNA named as hsa-miR-325-5p, ultimately regulated CD44 gene. This study provides a comprehensive overview of differentially expressed circRNAs in the context of AD brains, underscoring their potential as molecular biomarkers for AD. These findings significantly enhance our comprehension of AD's underlying pathophysiological mechanisms, offering promising avenues for future diagnostic and therapeutic developments.
Collapse
Affiliation(s)
- Yulan Gao
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Grace Lindner
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
21
|
Sun C, Dong S, Chen W, Li J, Luo E, Ji J. Berberine alleviates Alzheimer's disease by regulating the gut microenvironment, restoring the gut barrier and brain-gut axis balance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155624. [PMID: 38678955 DOI: 10.1016/j.phymed.2024.155624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease. Intestinal flora and its metabolism play a significant role in ameliorating central nervous system disorders, including AD, through bidirectional interactions between the gut-brain axis. A naturally occurring alkaloid compound called berberine (BBR) has neuroprotective properties and prevents Aβ-induced microglial activation. Additionally, BBR can suppress the synthesis of Aβ and decrease BACE1 expression. However, it is still unclear if BBR therapy can alleviate AD by changing the gut flora. PURPOSE In this study, we examined whether a partial alleviation of AD could be achieved with BBR treatment and the molecular mechanisms involved. METHODS We did this by analyzing alterations in Aβ plaques, neurons, and related neuroinflammation-related markers in the brain and the transcriptome of the mouse brain. The relationship between the intestinal flora of 5xFAD model mice and BBR treatment was investigated using high-throughput sequencing analysis of 16S rRNA from mouse feces. RESULTS The findings demonstrated that treatment with BBR cleared Aβ plaques, alleviated neuroinflammation, and ameliorated spatial memory dysfunction in AD. BBR significantly alleviated intestinal inflammation, decreased intestinal permeability, and could improve intestinal microbiota composition in 5xFAD mice.
Collapse
Affiliation(s)
- Chunbin Sun
- South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
| | - Shanshan Dong
- Department of Traditional Chinese Medicine, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
| | - Weiwei Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jin Li
- Department of Traditional Chinese Medicine, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
| | - Enli Luo
- Department of Traditional Chinese Medicine, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
| | - Jiacui Ji
- Shandong Mental Health Center, Jinan 250014, China.
| |
Collapse
|
22
|
Sui Y, Feng X, Ma Y, Zou Y, Liu Y, Huang J, Zhu X, Wang J. BHBA attenuates endoplasmic reticulum stress-dependent neuroinflammation via the gut-brain axis in a mouse model of heat stress. CNS Neurosci Ther 2024; 30:e14840. [PMID: 38973202 PMCID: PMC11228358 DOI: 10.1111/cns.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Heat stress (HS) commonly occurs as a severe pathological response when the body's sensible temperature exceeds its thermoregulatory capacity, leading to the development of chronic brain inflammation, known as neuroinflammation. Emerging evidence suggests that HS leads to the disruption of the gut microbiota, whereas abnormalities in the gut microbiota have been demonstrated to affect neuroinflammation. However, the mechanisms underlying the effects of HS on neuroinflammation are poorly studied. Meanwhile, effective interventions have been unclear. β-Hydroxybutyric acid (BHBA) has been found to have neuroprotective and anti-inflammatory properties in previous studies. This study aims to explore the modulatory effects of BHBA on neuroinflammation induced by HS and elucidate the underlying molecular mechanisms. METHODS An in vivo and in vitro model of HS was constructed under the precondition of BHBA pretreatment. The modulatory effects of BHBA on HS-induced neuroinflammation were explored and the underlying molecular mechanisms were elucidated by flow cytometry, WB, qPCR, immunofluorescence staining, DCFH-DA fluorescent probe assay, and 16S rRNA gene sequencing of colonic contents. RESULTS Heat stress was found to cause gut microbiota disruption in HS mouse models, and TM7 and [Previotella] spp. may be the best potential biomarkers for assessing the occurrence of HS. Fecal microbiota transplantation associated with BHBA effectively reversed the disruption of gut microbiota in HS mice. Moreover, BHBA may inhibit microglia hyperactivation, suppress neuroinflammation (TNF-α, IL-1β, and IL-6), and reduce the expression of cortical endoplasmic reticulum stress (ERS) markers (GRP78 and CHOP) mainly through its modulatory effects on the gut microbiota (TM7, Lactobacillus spp., Ruminalococcus spp., and Prevotella spp.). In vitro experiments revealed that BHBA (1 mM) raised the expression of the ERS marker GRP78, enhanced cellular activity, and increased the generation of reactive oxygen species (ROS) and anti-inflammatory cytokines (IL-10), while also inhibiting HS-induced apoptosis, ROS production, and excessive release of inflammatory cytokines (TNF-α and IL-1β) in mouse BV2 cells. CONCLUSION β-Hydroxybutyric acid may be an effective agent for preventing neuroinflammation in HS mice, possibly due to its ability to inhibit ERS and subsequent microglia neuroinflammation via the gut-brain axis. These findings lay the groundwork for future research and development of BHBA as a preventive drug for HS and provide fresh insights into techniques for treating neurological illnesses by modifying the gut microbiota.
Collapse
Affiliation(s)
- Yuzhen Sui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yimeng Zou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanli Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
23
|
Mohamadpour B, Mirazi N, Komaki A, Basir HS, Hosseini A. Protective effects of selegiline against amyloid beta-induced anxiety-like behavior and memory impairment. Brain Behav 2024; 14:e3599. [PMID: 38873869 PMCID: PMC11176901 DOI: 10.1002/brb3.3599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex and common neurodegenerative disorder. The present study aimed to investigate the potential effects of selegiline (SEL) on various aspects of memory performance, anxiety, and oxidative stress in an AD rat model induced by intracerebroventricular injection of amyloid beta1-42 (Aβ1-42). METHODS Oral administration of SEL at a dose of 0.5 mg/kg/day was performed for 30 consecutive days. Following the 30 days, several tests, including the open-field, elevated plus-maze, novel object recognition, Morris water maze, and passive avoidance learning were conducted to assess locomotor activity, anxiety-like behavior, recognition memory, spatial memory, and passive avoidance memory, respectively. RESULTS The results indicate that the induction of AD in rats led to recognition memory, spatial memory, and passive avoidance memory impairments, as well as increased anxiety. Additionally, the AD rats exhibited a decrease in total antioxidant capacity and an increase in total oxidant status levels, suggesting an imbalance in oxidative-antioxidant status. However, the administration of SEL improved memory performance, reduced anxiety, and modulated oxidative-antioxidant status in AD rats. CONCLUSIONS These findings provide evidence that SEL may alleviate anxiety-like behavior and cognitive deficits induced by Aβ through modulation of oxidative-antioxidant status.
Collapse
Affiliation(s)
- Behnam Mohamadpour
- Department of Biology, Faculty of Basic ScienceBu‐Ali Sina UniversityHamedanIran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic ScienceBu‐Ali Sina UniversityHamedanIran
| | - Alireza Komaki
- Neurophysiology Research CenterHamadan University of Medical SciencesHamadanIran
| | - Hamid Shokati Basir
- Department of Biology, Faculty of Basic ScienceBu‐Ali Sina UniversityHamedanIran
| | - Abdolkarim Hosseini
- Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| |
Collapse
|
24
|
Lou F, Luo S, Kang N, Yan L, Long H, Yang L, Wang H, Liu Y, Pu J, Xie P, Ji P, Jin X. Oral microbiota dysbiosis alters chronic restraint stress-induced depression-like behaviors by modulating host metabolism. Pharmacol Res 2024; 204:107214. [PMID: 38763328 DOI: 10.1016/j.phrs.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Studies have shown that the microbiota-gut-brain axis is highly correlated with the pathogenesis of depression in humans. However, whether independent oral microbiome that do not depend on gut microbes could affect the progression of depression in human beings remains unclear, neither does the presence and underlying mechanisms of the microbiota-oral-brain axis in the development of the condition. Hence this study that encompasses clinical and animal experiments aims at investigating the correlation between oral microbiota and the onset of depression via mediating the microbiota-oral-brain axis. We compared the oral microbial compositions and metabolomes of 87 patients with depressive symptoms versus 70 healthy controls. We found that the oral microbial and metabolic signatures were significantly different between the two groups. Significantly, germ-free (GF) mice transplanted with saliva from mice exposing to chronic restraint stress (CRS) displayed depression-like behavior and oral microbial dysbiosis. This was characterized by a significant differential abundance of bacterial species, including the enrichment of Pseudomonas, Pasteurellaceae, and Muribacter, as well as the depletion of Streptococcus. Metabolomic analysis showed the alternation of metabolites in the plasma of CRS-exposed GF mice, especially Eicosapentaenoic Acid. Furthermore, oral and gut barrier dysfunction caused by CRS-induced oral microbiota dysbiosis may be associated with increased blood-brain barrier permeability. Pseudomonas aeruginosa supplementation exacerbated depression-like behavior, while Eicosapentaenoic Acid treatment conferred protection against depression-like states in mice. These results suggest that oral microbiome and metabolic function dysbiosis may be relevant to the pathogenesis and pathophysiology of depression. The proposed microbiota-oral-brain axis provides a new way and targets for us to study the pathogenesis of depression.
Collapse
Affiliation(s)
- Fangzhi Lou
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Shihong Luo
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Ning Kang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Li Yan
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Huiqing Long
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Lu Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Xin Jin
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China.
| |
Collapse
|
25
|
Candeias E, Pereira-Santos AR, Empadinhas N, Cardoso SM, Esteves ARF. The Gut-Brain Axis in Alzheimer's and Parkinson's Diseases: The Catalytic Role of Mitochondria. J Alzheimers Dis 2024; 100:413-429. [PMID: 38875045 DOI: 10.3233/jad-240524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Accumulating evidence suggests that gut inflammation is implicated in neuroinflammation in Alzheimer's and Parkinson's diseases. Despite the numerous connections it remains unclear how the gut and the brain communicate and whether gut dysbiosis is the cause or consequence of these pathologies. Importantly, several reports highlight the importance of mitochondria in the gut-brain axis, as well as in mechanisms like gut epithelium self-renewal, differentiation, and homeostasis. Herein we comprehensively address the important role of mitochondria as a cellular hub in infection and inflammation and as a link between inflammation and neurodegeneration in the gut-brain axis. The role of mitochondria in gut homeostasis and as well the crosstalk between mitochondria and gut microbiota is discussed. Significantly, we also review studies highlighting how gut microbiota can ultimately affect the central nervous system. Overall, this review summarizes novel findings regarding this cross-talk where the mitochondria has a main role in the pathophysiology of both Alzheimer's and Parkinson's disease strengthen by cellular, animal and clinical studies.
Collapse
Affiliation(s)
- Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Fernandes Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
Deng Y, Zhu C, Jiang R, Yu C, Zhao J, Jiang X, Wen J. Salivary signatures of oral-brain communication in sleep bruxers. Front Cell Infect Microbiol 2023; 13:1321855. [PMID: 38125907 PMCID: PMC10731308 DOI: 10.3389/fcimb.2023.1321855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Microbiota and their interaction with hosts have been of great interest in brain research in recent years. However, the role of oral microbiota in mental illness and the underlying mechanism of oral-brain communication remains elusive. Sleep bruxism (SB) is an oral parafunctional activity related to the nervous system and is considered a risk factor for harmful clinical consequences and severe systemic conditions. Exploring the connection between oral microbiota and sleep bruxism may deepen our understanding of the complex relationship between oral-brain axis and provide insights for treatment. Methods In this study, salivary samples were collected from 22 individuals with SB and 21 healthy controls, and metagenomics with metabolomics was performed. Nonparametric Wilcoxon test were applied for the statistical analysis between the two groups. Microbial dysbiosis and altered oral metabolites were found in the SB individuals. Results The characteristic metabolite N-acetylglucosamine (GlcNAc) (VIP=8.4823, P<0.05) was correlated to a statistically lower Streptococcus mitis level in SB individuals. Salivary IFN-g level and IFN-g/IL-4 ratio were detected with significant changes in a chip assay. Amino acid metabolism pathways were upregulated, and the pathway with the largest number of differentially expressed genes is related to amino-tRNA charging pathway, while the most significantly enriched pathway is related to arginine biosynthesis. Neurotransmitter-associated pathways with glutamatergic and GABAergic synapses and cardiovascular system-related pathways were enriched in the SB group. Discussion These results indicate a possible neuroimmune regulatory network of oral-brain communication in SB, which helps explain the mechanism of the oral microbiome with the host in sleep bruxers and provides a reference for early clinical and therapeutic intervention to improve the diagnosis and treatment of SB and similar diseases.
Collapse
Affiliation(s)
- Yuwei Deng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Chenyuan Zhu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Ruixue Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Chunhua Yu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Jun Zhao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| |
Collapse
|
27
|
Pisano M, Giordano F, Sangiovanni G, Capuano N, Acerra A, D’Ambrosio F. The Interaction between the Oral Microbiome and Systemic Diseases: A Narrative Review. MICROBIOLOGY RESEARCH 2023; 14:1862-1878. [DOI: 10.3390/microbiolres14040127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Background: The human being is defined as a ‘superorganism’ since it is made up of its own cells and microorganisms that reside inside and outside the human body. Commensal microorganisms, which are even ten times more numerous than the cells present in the body, perform very important functions for the host, as they contribute to the health of the host, resist pathogens, maintain homeostasis, and modulate the immune system. In the mouth, there are different types of microorganisms, such as viruses, mycoplasmas, bacteria, archaea, fungi, and protozoa, often organized in communities. The aim of this umbrella review is to evaluate if there is a connection between the oral microbiome and systematic diseases. Methodology: A literature search was conducted through PubMed/MEDLINE, the COCHRANE library, Scopus, and Web of Science databases without any restrictions. Because of the large number of articles included and the wide range of methods and results among the studies found, it was not possible to report the results in the form of a systematic review or meta-analysis. Therefore, a narrative review was conducted. We obtained 73.931 results, of which 3593 passed the English language filter. After the screening of the titles and abstracts, non-topic entries were excluded, but most articles obtained concerned interactions between the oral microbiome and systemic diseases. Discussion: A description of the normal microbial flora was present in the oral cavity both in physiological conditions and in local pathological conditions and in the most widespread systemic pathologies. Furthermore, the therapeutic precautions that the clinician can follow in order to intervene on the change in the microbiome have been described. Conclusions: This review highlights what are the intercorrelations of the oral microbiota in healthy subjects and in subjects in pathological conditions. According to several recent studies, there is a clear correlation between dysbiosis of the oral microbiota and diseases such as diabetes, cardiovascular diseases, chronic inflammatory diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Massimo Pisano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco Giordano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Giuseppe Sangiovanni
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Nicoletta Capuano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Alfonso Acerra
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco D’Ambrosio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| |
Collapse
|
28
|
Zhou X, Kumar P, Bhuyan DJ, Jensen SO, Roberts TL, Münch GW. Neuroinflammation in Alzheimer's Disease: A Potential Role of Nose-Picking in Pathogen Entry via the Olfactory System? Biomolecules 2023; 13:1568. [PMID: 38002250 PMCID: PMC10669446 DOI: 10.3390/biom13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and memory impairment. Many possible factors might contribute to the development of AD, including amyloid peptide and tau deposition, but more recent evidence suggests that neuroinflammation may also play an-at least partial-role in its pathogenesis. In recent years, emerging research has explored the possible involvement of external, invading pathogens in starting or accelerating the neuroinflammatory processes in AD. In this narrative review, we advance the hypothesis that neuroinflammation in AD might be partially caused by viral, bacterial, and fungal pathogens entering the brain through the nose and the olfactory system. The olfactory system represents a plausible route for pathogen entry, given its direct anatomical connection to the brain and its involvement in the early stages of AD. We discuss the potential mechanisms through which pathogens may exploit the olfactory pathway to initiate neuroinflammation, one of them being accidental exposure of the olfactory mucosa to hands contaminated with soil and feces when picking one's nose.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Paayal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Slade O. Jensen
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Microbiology and Infectious Diseases Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Oncology Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
29
|
Klabunde B, Wesener A, Bertrams W, Beinborn I, Paczia N, Surmann K, Blankenburg S, Wilhelm J, Serrania J, Knoops K, Elsayed EM, Laakmann K, Jung AL, Kirschbaum A, Hammerschmidt S, Alshaar B, Gisch N, Abu Mraheil M, Becker A, Völker U, Vollmeister E, Benedikter BJ, Schmeck B. NAD + metabolism is a key modulator of bacterial respiratory epithelial infections. Nat Commun 2023; 14:5818. [PMID: 37783679 PMCID: PMC10545792 DOI: 10.1038/s41467-023-41372-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
Lower respiratory tract infections caused by Streptococcus pneumoniae (Spn) are a leading cause of death globally. Here we investigate the bronchial epithelial cellular response to Spn infection on a transcriptomic, proteomic and metabolic level. We found the NAD+ salvage pathway to be dysregulated upon infection in a cell line model, primary human lung tissue and in vivo in rodents, leading to a reduced production of NAD+. Knockdown of NAD+ salvage enzymes (NAMPT, NMNAT1) increased bacterial replication. NAD+ treatment of Spn inhibited its growth while growth of other respiratory pathogens improved. Boosting NAD+ production increased NAD+ levels in immortalized and primary cells and decreased bacterial replication upon infection. NAD+ treatment of Spn dysregulated the bacterial metabolism and reduced intrabacterial ATP. Enhancing the bacterial ATP metabolism abolished the antibacterial effect of NAD+. Thus, we identified the NAD+ salvage pathway as an antibacterial pathway in Spn infections, predicting an antibacterial mechanism of NAD+.
Collapse
Affiliation(s)
- Björn Klabunde
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - André Wesener
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sascha Blankenburg
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-Universität Giessen, German Center for Lung Research (DZL), Giessen, Germany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Kèvin Knoops
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Eslam M Elsayed
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Katrin Laakmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Kirschbaum
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Gießen and Marburg (UKGM), Marburg, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Belal Alshaar
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Mobarak Abu Mraheil
- Institute for Medical Microbiology, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany.
- University Eye Clinic Maastricht, Maastricht University Medical Center (MUMC+), School for Mental Health and Neuroscience, Maastricht University, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Philipps-Universität Marburg, Marburg, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-Universität Marburg, Marburg, Germany.
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-Universität Marburg, Marburg, Germany.
- Member of the German Center for Infectious Disease Research (DZIF), Marburg, Germany.
| |
Collapse
|
30
|
Yang J, Yang X, Wu G, Huang F, Shi X, Wei W, Zhang Y, Zhang H, Cheng L, Yu L, Shang J, Lv Y, Wang X, Zhai R, Li P, Cui B, Fang Y, Deng X, Tang S, Wang L, Yuan Q, Zhao L, Zhang F, Zhang C, Yuan H. Gut microbiota modulate distal symmetric polyneuropathy in patients with diabetes. Cell Metab 2023; 35:1548-1562.e7. [PMID: 37451270 DOI: 10.1016/j.cmet.2023.06.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
The pathogenic mechanisms underlying distal symmetric polyneuropathy (DSPN), a common neuropathy in patients with diabetes mellitus (DM), are not fully understood. Here, we discover that the gut microbiota from patients with DSPN can induce a phenotype exhibiting more severe peripheral neuropathy in db/db mice. In a randomized, double-blind, and placebo-controlled trial (ChiCTR1800017257), compared to 10 patients who received placebo, DSPN was significantly alleviated in the 22 patients who received fecal microbiota transplants from healthy donors, independent of glycemic control. The gut bacterial genomes that correlated with the Toronto Clinical Scoring System (TCSS) score were organized in two competing guilds. Increased guild 1, which had higher capacity in butyrate production, and decreased guild 2, which harbored more genes in synthetic pathway of endotoxin, were associated with improved gut barrier integrity and decreased proinflammatory cytokine levels. Moreover, matched enterotype between transplants and recipients showed better therapeutic efficacy with more enriched guild 1 and suppressed guild 2. Thus, changes in these two competing guilds may play a causative role in DSPN and have the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Junpeng Yang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Xueli Yang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Guojun Wu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, Rutgers-SJTU Joint Laboratory on Microbiome and Human Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Fenglian Huang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Xiaoyang Shi
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Wei Wei
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yingchao Zhang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Haihui Zhang
- Department of Gastroenterology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Lina Cheng
- Department of Gastroenterology of Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Lu Yu
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jing Shang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yinghua Lv
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Xiaobing Wang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Rui Zhai
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, Rutgers-SJTU Joint Laboratory on Microbiome and Human Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Li
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; Key Laboratory of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Bota Cui
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; Key Laboratory of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Yuanyuan Fang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Xinru Deng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Shasha Tang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Limin Wang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Qian Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, Rutgers-SJTU Joint Laboratory on Microbiome and Human Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Faming Zhang
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; Key Laboratory of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China.
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, Rutgers-SJTU Joint Laboratory on Microbiome and Human Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
31
|
Sun R, Xie C. Peripheral ApoE4 Leads to Cerebrovascular Dysfunction and Aβ Deposition in Alzheimer's Disease. Neurosci Bull 2023; 39:1330-1332. [PMID: 37093447 PMCID: PMC10387007 DOI: 10.1007/s12264-023-01058-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/19/2023] [Indexed: 04/25/2023] Open
Affiliation(s)
- Rui Sun
- Department of Neurology, School of Medicine, Affiliated Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Chunming Xie
- Department of Neurology, School of Medicine, Affiliated Zhongda Hospital, Southeast University, Nanjing, 210009, China.
- Institute of Neuropsychiatry, Affiliated Zhongda Hospital, Southeast University, Nanjing, 210009, China.
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
32
|
Chandra S, Di Meco A, Dodiya HB, Popovic J, Cuddy LK, Weigle IQ, Zhang X, Sadleir K, Sisodia SS, Vassar R. The gut microbiome regulates astrocyte reaction to Aβ amyloidosis through microglial dependent and independent mechanisms. Mol Neurodegener 2023; 18:45. [PMID: 37415149 DOI: 10.1186/s13024-023-00635-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined. METHODS To study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx. RESULTS Herein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes. CONCLUSIONS We show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia.
Collapse
Affiliation(s)
- Sidhanth Chandra
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Antonio Di Meco
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hemraj B Dodiya
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Jelena Popovic
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Leah K Cuddy
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ian Q Weigle
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoqiong Zhang
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Katherine Sadleir
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sangram S Sisodia
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Northwestern University, Tarry Building Room 8-711, 300 East Superior Street, Chicago, IL, 60611, USA.
| |
Collapse
|
33
|
Montagnani M, Bottalico L, Potenza MA, Charitos IA, Topi S, Colella M, Santacroce L. The Crosstalk between Gut Microbiota and Nervous System: A Bidirectional Interaction between Microorganisms and Metabolome. Int J Mol Sci 2023; 24:10322. [PMID: 37373470 DOI: 10.3390/ijms241210322] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have shown that the gut microbiota influences behavior and, in turn, changes in the immune system associated with symptoms of depression or anxiety disorder may be mirrored by corresponding changes in the gut microbiota. Although the composition/function of the intestinal microbiota appears to affect the central nervous system (CNS) activities through multiple mechanisms, accurate epidemiological evidence that clearly explains the connection between the CNS pathology and the intestinal dysbiosis is not yet available. The enteric nervous system (ENS) is a separate branch of the autonomic nervous system (ANS) and the largest part of the peripheral nervous system (PNS). It is composed of a vast and complex network of neurons which communicate via several neuromodulators and neurotransmitters, like those found in the CNS. Interestingly, despite its tight connections to both the PNS and ANS, the ENS is also capable of some independent activities. This concept, together with the suggested role played by intestinal microorganisms and the metabolome in the onset and progression of CNS neurological (neurodegenerative, autoimmune) and psychopathological (depression, anxiety disorders, autism) diseases, explains the large number of investigations exploring the functional role and the physiopathological implications of the gut microbiota/brain axis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lucrezia Bottalico
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Division, Maugeri Clinical Scientific Research Institutes (IRCCS), 70124 Bari, Italy
| | - Skender Topi
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Marica Colella
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
34
|
Bulgart HR, Goncalves I, Weisleder N. Leveraging Plasma Membrane Repair Therapeutics for Treating Neurodegenerative Diseases. Cells 2023; 12:1660. [PMID: 37371130 DOI: 10.3390/cells12121660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Plasma membrane repair is an essential cellular mechanism that reseals membrane disruptions after a variety of insults, and compromised repair capacity can contribute to the progression of many diseases. Neurodegenerative diseases are marked by membrane damage from many sources, reduced membrane integrity, elevated intracellular calcium concentrations, enhanced reactive oxygen species production, mitochondrial dysfunction, and widespread neuronal death. While the toxic intracellular effects of these changes in cellular physiology have been defined, the specific mechanism of neuronal death in certain neurodegenerative diseases remains unclear. An abundance of recent evidence indicates that neuronal membrane damage and pore formation in the membrane are key contributors to neurodegenerative disease pathogenesis. In this review, we have outlined evidence supporting the hypothesis that membrane damage is a contributor to neurodegenerative diseases and that therapeutically enhancing membrane repair can potentially combat neuronal death.
Collapse
Affiliation(s)
- Hannah R Bulgart
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Isabella Goncalves
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Noah Weisleder
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
35
|
Tan X, Wang Y, Gong T. The interplay between oral microbiota, gut microbiota and systematic diseases. J Oral Microbiol 2023; 15:2213112. [PMID: 37200866 PMCID: PMC10187086 DOI: 10.1080/20002297.2023.2213112] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
Over the past two decades, the importance of microbiota in health and disease has become evident. The human gut microbiota and oral microbiota are the largest and second-largest microbiome in the human body, respectively, and they are physically connected as the oral cavity is the beginning of the digestive system. Emerging and exciting evidence has shown complex and important connections between gut microbiota and oral microbiota. The interplay of the two microbiomes may contribute to the pathological processes of many diseases, including diabetes, rheumatoid arthritis, nonalcoholic fatty liver disease, inflammatory bowel disease, pancreatic cancer, colorectal cancer, and so on. In this review, we discuss possible routes and factors of oral microbiota to affect gut microbiota, and the contribution of this interplay between oral and gut microbiota to systemic diseases. Although most studies are association studies, recently, there have been increasing mechanistic investigations. This review aims to enhance the interest in the connection between oral and gut microbiota, and shows the tangible impact of this connection on human health.
Collapse
Affiliation(s)
- Xiujun Tan
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yizhong Wang
- Department of Research & Development, Zhejiang Charioteer Pharmaceutical CO. LTD, Taizhou, China
| | - Ting Gong
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
36
|
Refisch A, Sen ZD, Klassert TE, Busch A, Besteher B, Danyeli LV, Helbing D, Schulze-Späte U, Stallmach A, Bauer M, Panagiotou G, Jacobsen ID, Slevogt H, Opel N, Walter M. Microbiome and immuno-metabolic dysregulation in patients with major depressive disorder with atypical clinical presentation. Neuropharmacology 2023; 235:109568. [PMID: 37182790 DOI: 10.1016/j.neuropharm.2023.109568] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/24/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Depression is highly prevalent (6% 1-year prevalence) and is the second leading cause of disability worldwide. Available treatment options for depression are far from optimal, with response rates only around 50%. This is most likely related to a heterogeneous clinical presentation of major depression disorder (MDD), suggesting different manifestations of underlying pathophysiological mechanisms. Poorer treatment outcomes to first-line antidepressants were reported in MDD patients endorsing an "atypical" symptom profile that is characterized by preserved reactivity in mood, increased appetite, hypersomnia, a heavy sensation in the limbs, and interpersonal rejection sensitivity. In recent years, evidence has emerged that immunometabolic biological dysregulation is an important underlying pathophysiological mechanism in depression, which maps more consistently to atypical features. In the last few years human microbial residents have emerged as a key influencing variable associated with immunometabolic dysregulations in depression. The microbiome plays a critical role in the training and development of key components of the host's innate and adaptive immune systems, while the immune system orchestrates the maintenance of key features of the host-microbe symbiosis. Moreover, by being a metabolically active ecosystem commensal microbes may have a huge impact on signaling pathways, involved in underlying mechanisms leading to atypical depressive symptoms. In this review, we discuss the interplay between the microbiome and immunometabolic imbalance in the context of atypical depressive symptoms. Although research in this field is in its infancy, targeting biological determinants in more homogeneous clinical presentations of MDD may offer new avenues for the development of novel therapeutic strategies for treatment-resistant depression.
Collapse
Affiliation(s)
- Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Tilman E Klassert
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745, Jena, Germany; Respiratory Infection Dynamics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany
| | - Anne Busch
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena, Germany
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Dario Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany; Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena, Germany; Theoretical Microbial Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany, and Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hortense Slevogt
- Host Septomics Group, Centre for Innovation Competence (ZIK) Septomics, University Hospital Jena, 07745, Jena, Germany; Respiratory Infection Dynamics, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, Braunschweig, Germany; Department of Pulmonary Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
37
|
Molinero N, Antón-Fernández A, Hernández F, Ávila J, Bartolomé B, Moreno-Arribas MV. Gut Microbiota, an Additional Hallmark of Human Aging and Neurodegeneration. Neuroscience 2023; 518:141-161. [PMID: 36893982 DOI: 10.1016/j.neuroscience.2023.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023]
Abstract
Gut microbiota represents a diverse and dynamic population of microorganisms harbouring the gastrointestinal tract, which influences host health and disease. Bacterial colonization of the gastrointestinal tract begins at birth and changes throughout life, with age being one of the conditioning factors for its vitality. Aging is also a primary risk factor for most neurodegenerative diseases. Among them, Alzheimeŕs disease (AD) is probably the one where its association with a state of dysbiosis of the gut microbiota has been most studied. In particular, intestinal microbial-derived metabolites have been associated with β-amyloid formation and brain amyloid deposition, tau phosphorylation, as well as neuroinflammation in AD patients. Moreover, it has been suggested that some oral bacteria increase the risk of developing AD. However, the causal connections among microbiome, amyloid-tau interaction, and neurodegeneration need to be addressed. This paper summarizes the emerging evidence in the literature regarding the link between the oral and gut microbiome and neurodegeneration with a focus on AD. Taxonomic features of bacteria as well as microbial functional alterations associated with AD biomarkers are the main points reviewed. Data from clinical studies as well as the link between microbiome and clinical determinants of AD are particularly emphasized. Further, relationships between gut microbiota and age-dependent epigenetic changes and other neurological disorders are also described. Together, all this evidence suggests that, in some sense, gut microbiota can be seen as an additional hallmark of human aging and neurodegeneration.
Collapse
Affiliation(s)
- Natalia Molinero
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain
| | - Alejandro Antón-Fernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain.
| |
Collapse
|
38
|
Xu R, Zhang Y, Chen S, Zeng Y, Fu X, Chen T, Luo S, Zhang X. The role of the probiotic Akkermansia muciniphila in brain functions: insights underpinning therapeutic potential. Crit Rev Microbiol 2023; 49:151-176. [PMID: 35272549 DOI: 10.1080/1040841x.2022.2044286] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of Akkermansia muciniphila, one of the most abundant microorganisms of the intestinal microbiota, has been studied extensively in metabolic diseases, such as obesity and diabetes. It is considered a next-generation probiotic microorganism. Although its mechanism of action has not been fully elucidated, accumulating evidence indicates the important role of A. muciniphila in brain functions via the gut-brain axis and its potential as a therapeutic target in various neuropsychiatric disorders. However, only a limited number of studies, particularly clinical studies, have directly assessed the therapeutic effects of A. muciniphila interventions in these disorders. This is the first review to discuss the comprehensive mechanism of A. muciniphila in the gut-brain axis via the protection of the intestinal mucosal barrier and modulation of the immune system and metabolites, such as short-chain fatty acids, amino acids, and amino acid derivatives. Additionally, the role of A. muciniphila and its therapeutic potential in various neuropsychiatric disorders, including Alzheimer's disease and cognitive deficit, amyotrophic lateral sclerosis, Parkinson's disease, and multiple sclerosis, have been discussed. The review suggests the potential role of A. muciniphila in healthy brain functions.
Collapse
Affiliation(s)
- Ruiling Xu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinic Research Center for Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.,Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuxuan Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinic Research Center for Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.,Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shurui Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinic Research Center for Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.,Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaohui Zeng
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinic Research Center for Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.,Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Fu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinic Research Center for Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.,Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ti Chen
- Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shilin Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinic Research Center for Mental Disorders, Changsha, Hunan, China.,National Technology Institute on Mental Disorders, Changsha, Hunan, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China.,Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Fogelholm N, Leskelä J, Manzoor M, Holmer J, Paju S, Hiltunen K, Roitto HM, Saarela RK, Pitkälä K, Eriksdotter M, Buhlin K, Pussinen PJ, Mäntylä P. Subgingival microbiome at different levels of cognition. J Oral Microbiol 2023; 15:2178765. [PMID: 36844899 PMCID: PMC9946326 DOI: 10.1080/20002297.2023.2178765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Oral health and declining cognition may have a bi-directional association. We characterized the subgingival microbiota composition of subjects from normal cognition to severe cognitive decline in two cohorts. Memory and Periodontitis (MINOPAR) include 202 home-living participants (50-80 years) in Sweden. Finnish Oral Health Studies in Older Adults (FINORAL) include 174 participants (≥65 years) living in long-term care in Finland. We performed oral examination and assessed the cognitive level with Mini Mental State Examination (MMSE). We sequenced the 16S-rRNA gene (V3-V4 regions) to analyse the subgingival bacterial compositions. The microbial diversities only tended to differ between the MMSE categories, and the strongest determinants were increased probing pocket depth (PPD) and presence of caries. However, abundances of 101 taxa were associated with the MMSE score. After adjusting for age, sex, medications, PPD, and caries, only eight taxa retained the significance in the meta-analyses of the two cohorts. Especially Lachnospiraceae [XIV] at the family, genus, and species level increased with decreasing MMSE. Cognitive decline is associated with obvious changes in the composition of the oral microbiota. Impaired cognition is accompanied with poor oral health status and the appearance of major taxa of the gut microbiota in the oral cavity. Good oral health-care practices require special deliberations among older adults.
Collapse
Affiliation(s)
- Nele Fogelholm
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Jaakko Leskelä
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Muhammed Manzoor
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Jacob Holmer
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Susanna Paju
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Kaija Hiltunen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Hanna-Maria Roitto
- Department of Neurosciences, University of Helsinki, Helsinki, Finland.,Internal medicine and rehabilitation, Division of Geriatrics, Helsinki University Hospital Helsinki, Finland.,Population health unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Riitta Kt Saarela
- Department of Social Services and Health Care, Oral Health Care, Helsinki, Finland
| | - Kaisu Pitkälä
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland.,Unit of Primary Health Care, Helsinki University Hospital, Helsinki, Finland
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Kåre Buhlin
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Pirkko J Pussinen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,School of Medicine, Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Päivi Mäntylä
- School of Medicine, Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
40
|
Rivera J, Gangwani L, Kumar S. Mitochondria Localized microRNAs: An Unexplored miRNA Niche in Alzheimer's Disease and Aging. Cells 2023; 12:cells12050742. [PMID: 36899879 PMCID: PMC10000969 DOI: 10.3390/cells12050742] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Mitochondria play several vital roles in the brain cells, especially in neurons to provide synaptic energy (ATP), Ca2+ homeostasis, Reactive Oxygen Species (ROS) production, apoptosis, mitophagy, axonal transport and neurotransmission. Mitochondrial dysfunction is a well-established phenomenon in the pathophysiology of many neurological diseases, including Alzheimer's disease (AD). Amyloid-beta (Aβ) and Phosphorylated tau (p-tau) proteins cause the severe mitochondrial defects in AD. A newly discovered cellular niche of microRNAs (miRNAs), so-called mitochondrial-miRNAs (mito-miRs), has recently been explored in mitochondrial functions, cellular processes and in a few human diseases. The mitochondria localized miRNAs regulate local mitochondrial genes expression and are significantly involved in the modulation of mitochondrial proteins, and thereby in controlling mitochondrial function. Thus, mitochondrial miRNAs are crucial to maintaining mitochondrial integrity and for normal mitochondrial homeostasis. Mitochondrial dysfunction is well established in AD pathogenesis, but unfortunately mitochondria miRNAs and their precise roles have not yet been investigated in AD. Therefore, an urgent need exists to examine and decipher the critical roles of mitochondrial miRNAs in AD and in the aging process. The current perspective sheds light on the latest insights and future research directions on investigating the contribution of mitochondrial miRNAs in AD and aging.
Collapse
Affiliation(s)
- Jazmin Rivera
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Laxman Gangwani
- Department of Veterinary Pathobiology and Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Correspondence:
| |
Collapse
|
41
|
Wang X, Li Z, Sun R, Li X, Guo R, Cui X, Liu B, Li W, Yang Y, Huang X, Qu H, Liu C, Wang Z, Lü Y, Yue C. Zunyimycin C enhances immunity and improves cognitive impairment and its mechanism. Front Cell Infect Microbiol 2022; 12:1081243. [PMID: 36579344 PMCID: PMC9791046 DOI: 10.3389/fcimb.2022.1081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to explore the efficacy of zunyimycin C in the immunological enhancement of hypoimmune mice and improvement of cognitive impairment in a mice model of Alzheimer's disease (AD). Zunyimycin C was administered intranasally to interfere with AD mouse models or gavage to hypoimmune animals. Results of the Morris water maze (MWM) showed that zunyimycin may improve the learning and memory abilities of the AD mice model. The results of differential expression analysis of mRNA levels of inflammatory factors and pathways in brain tissues of the AD mouse model suggested that differential expression was more obvious under Zun-Int L. Western blot revealed that the relative expression of glial fibrillary acidic protein in the brain tissue of the AD mouse model in the Zun-Pre group was significantly higher than that in the other groups, and the difference was statistically significant. The relative expression of interleukin (IL)-6 protein in the brain tissue of mice in the low-dose intervention group was significantly lower than that in the other groups, and the difference was statistically significant. As for hypoimmune animals, short chain fatty acids (SCFAs) assay and intestinal flora assay results showed that zunyimycin C may change intestinal flora diversity and SCFA biosynthesis. The prophylactic administration of zunyimycin C could not inhibit acute neuroinflammation in AD mice. Zunyimycin C may participate in the immune response by activating the Ras-Raf-MEK-ERK signaling pathway to stimulate microglia to produce more inflammatory factors. Zunyimycin C may inhibit autophagy by activating the PI3K-AKT-mTOR signaling pathway, promote cell survival, mediate neuroprotective effects of reactive microglia and reactive astrocytes, and reduce IL-1β in brain tissue and IL-6 secretion, thereby attenuating neuroinflammation in AD mice and achieving the effect of improving learning and memory impairment. Zunyimycin C may play a role in immunological enhancement by changing intestinal flora diversity and SCFAs.
Collapse
Affiliation(s)
- Xuemei Wang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Zexin Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Rui Sun
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xueli Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China,Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an, Shaanxi, China
| | - Ruirui Guo
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xiangyi Cui
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Bingxin Liu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Wujuan Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yi Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xiaoyu Huang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Hanlin Qu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Chen Liu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Zhuoling Wang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yuhong Lü
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China,*Correspondence: Changwu Yue, ; Yuhong Lü,
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China,Shaanxi Institute of Basic Sciences (Chemistry and Biology), Northwestern University, Xi’an, Shaanxi, China,*Correspondence: Changwu Yue, ; Yuhong Lü,
| |
Collapse
|
42
|
Dai CL, Liu F, Iqbal K, Gong CX. Gut Microbiota and Immunotherapy for Alzheimer's Disease. Int J Mol Sci 2022; 23:15230. [PMID: 36499564 PMCID: PMC9741026 DOI: 10.3390/ijms232315230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that eventually leads to dementia and death of the patient. Currently, no effective treatment is available that can slow or halt the progression of the disease. The gut microbiota can modulate the host immune system in the peripheral and central nervous system through the microbiota-gut-brain axis. Growing evidence indicates that gut microbiota dysbiosis plays an important role in the pathogenesis of AD, and modulation of the gut microbiota may represent a new avenue for treating AD. Immunotherapy targeting Aβ and tau has emerged as the most promising disease-modifying therapy for the treatment of AD. However, the underlying mechanism of AD immunotherapy is not known. Importantly, preclinical and clinical studies have highlighted that the gut microbiota exerts a major influence on the efficacy of cancer immunotherapy. However, the role of the gut microbiota in AD immunotherapy has not been explored. We found that immunotherapy targeting tau can modulate the gut microbiota in an AD mouse model. In this article, we focused on the crosstalk between the gut microbiota, immunity, and AD immunotherapy. We speculate that modulation of the gut microbiota induced by AD immunotherapy may partially underlie the efficacy of the treatment.
Collapse
Affiliation(s)
| | | | | | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY 10314, USA
| |
Collapse
|
43
|
Yamawaki Y, So H, Oue K, Asano S, Furusho H, Miyauchi M, Tanimoto K, Kanematsu T. Imipramine prevents Porphyromonas gingivalis lipopolysaccharide-induced microglial neurotoxicity. Biochem Biophys Res Commun 2022; 634:92-99. [DOI: 10.1016/j.bbrc.2022.09.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
|
44
|
Raulin AC, Doss SV, Trottier ZA, Ikezu TC, Bu G, Liu CC. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener 2022; 17:72. [PMID: 36348357 PMCID: PMC9644639 DOI: 10.1186/s13024-022-00574-4] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the common ε3 allele. These gene alleles encode three apoE protein isoforms that differ at two amino acid positions. The primary physiological function of apoE is to mediate lipid transport in the brain and periphery; however, additional functions of apoE in diverse biological functions have been recognized. Pathogenically, apoE seeds amyloid-β (Aβ) plaques in the brain with apoE4 driving earlier and more abundant amyloids. ApoE isoforms also have differential effects on multiple Aβ-related or Aβ-independent pathways. The complexity of apoE biology and pathobiology presents challenges to designing effective apoE-targeted therapeutic strategies. This review examines the key pathobiological pathways of apoE and related targeting strategies with a specific focus on the latest technological advances and tools.
Collapse
|
45
|
Chen L, Cao H, Wu X, Xu X, Ji X, Wang B, Zhang P, Li H. Effects of oral health intervention strategies on cognition and microbiota alterations in patients with mild Alzheimer's disease: A randomized controlled trial. Geriatr Nurs 2022; 48:103-110. [PMID: 36155316 DOI: 10.1016/j.gerinurse.2022.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
We explored the effects of an oral health intervention on the oral microbiome and cognitive function of patients with mild Alzheimer's disease (AD) and determined the influence on disease progression. Sixty-six patients with mild AD were randomly assigned to intervention or control groups and received a 24-week oral health intervention and routine care, respectively. Data were collected at baseline and week 24. 16 S rRNA sequencing was used to analyze oral microbiota. After 24 weeks of oral health intervention, Kayser-Jones Brief Oral Health Status Examination (BOHSE), Mini-Mental State Examination (MMSE), Neuropsychiatric Inventory (NPI), Nursing Home Adjustment Scale (NHAS), and Alzheimer's Disease Cooperative Study-ADL (ADCS-ADL) scores were different between groups (p < 0.05). Subgingival plaque in patients with AD showed significant differences in the diversity and abundance of oral microbiomes, with a higher abundance of normal oral flora in the intervention group. We found oral health intervention strategies are effective in modifying subgingival microbiota differences and slowing cognitive decline in mild AD patients.
Collapse
Affiliation(s)
- Lili Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The School of Nursing, Fujian Medical University, Fuzhou, China; Fujian Provincial Hospital, Fuzhou, China.
| | - Huizhen Cao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; Fujian Provincial Hospital, Fuzhou, China
| | - Xiaoqi Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xinhua Xu
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Xinli Ji
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Bixia Wang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Ping Zhang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Hong Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The School of Nursing, Fujian Medical University, Fuzhou, China; Fujian Provincial Hospital, Fuzhou, China.
| |
Collapse
|
46
|
Bashir Y, Khan AU. The interplay between the gut-brain axis and the microbiome: A perspective on psychiatric and neurodegenerative disorders. Front Neurosci 2022; 16:1030694. [PMID: 36389228 PMCID: PMC9650127 DOI: 10.3389/fnins.2022.1030694] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
What is the effect of our gut microbial flora on brain? Does the gut microbiome have any role in the causation of psychiatric and neurodegenerative diseases? Does the effect of gut microbiota traverse the gut-brain axis? Questions like these have captured the interest and imagination of the scientific community for quite some time now. Research in the quest for answers to these questions, to unravel the potential role of the microbiota inhabiting the gut in controlling brain functions, has progressed manifold over the last two decades. Although the possibility of microbiome as a key susceptibility factor for neurological disorders viz. Parkinson's disease, Alzheimer's disease, multiple sclerosis, and autism spectrum disorder has bolstered by an increase in the clinical and preclinical evidence, the field is still in its infancy. Given the fact that the diversity of the gut microbiota is affected by various factors including the diet and exercise, the interpretation of such data becomes all the more difficult. Also, such studies have been mostly conducted on animal models, so there is a need for randomized controlled trials in human subjects, corroborated by longitudinal studies, to establish if modulating the gut microbiota can unravel novel therapeutic interventions. Exploring the genomic, metagenomic and metabolomic data from clinical subjects with psychiatric and neurological diseases can prove to be a helpful guide in individual treatment selection.
Collapse
|
47
|
A Deep Longitudinal Model for Mild Cognitive Impairment to Alzheimer’s Disease Conversion Prediction in Low-Income Countries. APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING 2022. [DOI: 10.1155/2022/1419310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive and fatal disease, due to the nonavailability of any permanent cure. Some treatments are under experimentation that can slow down and possibly pause the progression of the disease only if the disease is diagnosed earlier. The onset of AD can only be detected at the mild cognitive impairment (MCI) stage in which slight memory loss is observed but daily routine functions are intact. A small fraction of the patient progresses from MCI to AD. In this research, we have designed a cascaded deep neural network model to identify those MCI subjects who will progress to AD in the following year. The analysis and experimentation have been performed using twenty longitudinal neuropsychological measures (NMs) provided by Alzheimer’s Disease Neuroimaging Initiative (ADNI). After normalization and ranking of longitudinal data, the deep neural network regression model is trained and tuned to forecast the next in-sequence biomarker value using two previous follow-up readings for each marker. Then, the three time-domain window samples are fed into another deep neural network classifier model for the classification of MCI progressor (MCIp) and MCI stables (MCIs). Our model presented regression forecasting MAE of 0.13 and classification accuracy of 86.9% with AUC of 92.1% (Sensitivity: 67.7%, specificity: 92.3%) over 5-fold cross-validation. We conclude that time-domain measures of NM alone can deliver comparable MCI to AD conversion prediction performance without leveraging more expensive and invasive counterparts such as MR imaging, PET scans, and CSF measures. Middle and low-income countries will benefit from such cheap and effective solutions greatly.
Collapse
|
48
|
Li KR, Wu AG, Tang Y, He XP, Yu CL, Wu JM, Hu GQ, Yu L. The Key Role of Magnetic Resonance Imaging in the Detection of Neurodegenerative Diseases-Associated Biomarkers: A Review. Mol Neurobiol 2022; 59:5935-5954. [PMID: 35829831 DOI: 10.1007/s12035-022-02944-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Neurodegenerative diseases (NDs), including chronic disease such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, and acute diseases like traumatic brain injury and ischemic stroke are characterized by progressive degeneration, brain tissue damage and loss of neurons, accompanied by behavioral and cognitive dysfunctions. So far, there are no complete cures for NDs; thus, early and timely diagnoses are essential and beneficial to patients' treatment. Magnetic resonance imaging (MRI) has become one of the advanced medical imaging techniques widely used in the clinical examination of NDs due to its non-invasive diagnostic value. In this review, research published in English in current decade from PubMed electronic database on the use of MRI to detect specific biomarkers of NDs was collected, summarized, and discussed, which provides valuable suggestions for the early diagnosis, prevention, and treatment of NDs in the clinic.
Collapse
Affiliation(s)
- Ke-Ru Li
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- Department of Radiology, Chongqing University Fuling Hospital, Chongqing, 408000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Xiao-Peng He
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Guang-Qiang Hu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Department of Chemistry, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
49
|
Implications of Microorganisms in Alzheimer's Disease. Curr Issues Mol Biol 2022; 44:4584-4615. [PMID: 36286029 PMCID: PMC9600878 DOI: 10.3390/cimb44100314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a deadly brain degenerative disorder that leads to brain shrinkage and dementia. AD is manifested with hyperphosphorylated tau protein levels and amyloid beta (Aβ) peptide buildup in the hippocampus and cortex regions of the brain. The nervous tissue of AD patients also contains fungal proteins and DNA which are linked to bacterial infections, suggesting that polymicrobial infections also occur in the brains of those with AD. Both immunohistochemistry and next-generation sequencing (NGS) techniques were employed to assess fungal and bacterial infections in the brain tissue of AD patients and non-AD controls, with the most prevalent fungus genera detected in AD patients being Alternaria, Botrytis, Candida, and Malassezia. Interestingly, Fusarium was the most common genus detected in the control group. Both AD patients and controls were also detectable for Proteobacteria, followed by Firmicutes, Actinobacteria, and Bacteroides for bacterial infection. At the family level, Burkholderiaceae and Staphylococcaceae exhibited higher levels in the brains of those with AD than the brains of the control group. Accordingly, there is thought to be a viscous cycle of uncontrolled neuroinflammation and neurodegeneration in the brain, caused by agents such as the herpes simplex virus type 1 (HSV1), Chlamydophilapneumonia, and Spirochetes, and the presence of apolipoprotein E4 (APOE4), which is associated with an increased proinflammatory response in the immune system. Systemic proinflammatory cytokines are produced by microorganisms such as Cytomegalovirus, Helicobacter pylori, and those related to periodontal infections. These can then cross the blood–brain barrier (BBB) and lead to the onset of dementia. Here, we reviewed the relationship between the etiology of AD and microorganisms (such as bacterial pathogens, Herpesviridae viruses, and periodontal pathogens) according to the evidence available to understand the pathogenesis of AD. These findings might guide a targeted anti-inflammatory therapeutic approach to AD.
Collapse
|
50
|
Huynh QS, Elangovan S, Holsinger RMD. Non-Pharmacological Therapeutic Options for the Treatment of Alzheimer's Disease. Int J Mol Sci 2022; 23:11037. [PMID: 36232336 PMCID: PMC9570337 DOI: 10.3390/ijms231911037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is a growing global crisis in need of urgent diagnostic and therapeutic strategies. The current treatment strategy mostly involves immunotherapeutic medications that have had little success in halting disease progress. Hypotheses for pathogenesis and development of AD have been expanded to implicate both organ systems as well as cellular reactions. Non-pharmacologic interventions ranging from minimally to deeply invasive have attempted to address these diverse contributors to AD. In this review, we aim to delineate mechanisms underlying such interventions while attempting to provide explanatory links between the observed differences in disease states and postulated metabolic or structural mechanisms of change. The techniques discussed are not an exhaustive list of non-pharmacological interventions against AD but provide a foundation to facilitate a deeper understanding of the area of study.
Collapse
Affiliation(s)
- Quy-Susan Huynh
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shalini Elangovan
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|