1
|
Hou X, Zhou H, Zhou Q, Zhang J, Tang X, Gong Z, Tang Y, Duan J, Peng S, Li L, Jiang H, Tang B, Liu Y, Lei L. Disrupted Paraventricular Hypothalamic Nucleus Functional Connectivity in Parkinson's Disease With Constipation. Neurogastroenterol Motil 2025; 37:e15005. [PMID: 39835618 DOI: 10.1111/nmo.15005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Constipation is one of the most common non-motor symptoms in patients with Parkinson's disease (PD), which could manifest during the early stage of the disease. However, the etiology of constipation in PD remains largely unknown. Previous studies supported that gastrointestinal dysfunction may be associated with functional connectivity alterations in paraventricular hypothalamic nucleus (PVN). Therefore, this study aimed to investigate the potential contribution of the PVN to the pathogenesis of constipation in a cohort of early-stage patients with PD and to compare brain network organization between PD patients with and without constipation. METHODS A total of 66 PD patients (PD with constipation and without constipation) and 30 healthy controls were prospectively enrolled. All participants acquired T1-weighted and resting-state fMRI scans. Then we employed voxel-based morphometry analysis and functional connectivity analysis. RESULTS We observed a decreased functional connectivity in the PVN-pontine tegmentum pathway in PD patients with constipation compared to the patients without constipation (p = 0.006, t = 5.37), while we did not find any changes in basal ganglia circuitry between these two groups. In addition, we found that the functional connectivity between PVN and pontine tegmentum was negatively associated with the UPDRS I, II, III and NMSS scores (p < 0.05). Meanwhile, these two types of patients also showed substantial differences in functional connections linking the inferior frontal gyrus and cerebellum with multiple brain regions. We discovered no statistical difference in gray matter volume among these two groups. CONCLUSIONS Our study provides further insights into the dysfunctional mechanisms of constipation, suggesting that abnormal PVN functional connectivity may be related to the mechanism of constipation in PD. Meanwhile, the inferior frontal gyrus and cerebellum may be involved in the occurrence of constipation in PD patients.
Collapse
Affiliation(s)
- Xiaorong Hou
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongfei Zhou
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiugui Zhou
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiajian Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuxiong Tang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziwei Gong
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Tang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junhong Duan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Song Peng
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifeng Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
- Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yin Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifang Lei
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Zhao X, Cao R, Tian X, Liu P, Liu D, Yu X, Zheng Z, Chen GL, Zou L. OAB-14 Attenuated Glymphatic System Disorder, Neuroinflammation and Dyskinesia in Parkinson's Disease Model Mice Induced by Rotenone. Neurochem Res 2025; 50:142. [PMID: 40220255 DOI: 10.1007/s11064-025-04388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder characterized by the pathological accumulation of alpha-synuclein (α-syn) in the neuronal cell bodies of the substantia nigra. The glymphatic system within the Central Nervous System (CNS) is responsible for clearing metabolic waste and abnormal proteins and its dysfunction may significantly contribute to the pathogenesis of PD. Our previous study showed that OAB-14, the novel small molecular compound, showed a great potential effect in APP/PS1 transgenic mice. Given the similarities in the pathogenesis of PD and Alzheimer's disease (AD), it is pertinent to explore the therapeutic potential of OAB-14 in the context of PD. This study utilized a rotenone-induced PD mice model to evaluate the effects of oral administration of OAB-14, and its underlying mechanisms. Here we confirmed the neuroprotective effect and motor improvement of OAB-14 in rotenone-induced PD model mice. Our research has shown that OAB-14 is capable of enhancing the glymphatic system function by promoting the influx and efflux of the CSF tracers to the brain and deep cervical lymph nodes, respectively, to promote the clearance of α-syn. In addition, OAB-14 could down-regulate MyD88, NF-kB (Ser 536) phosphorylation, and TLR4 to reduce glial cell activation; and down-regulate cleaved-caspase1, NLRP3, ASC, IL-1β, IL-6, IL-18, TNF-α, and IL-10 to reduce the expression of inflammatory vesicles and pro-inflammatory factors, and to reduce neuronal oxidative stress. In summary, OAB-14 may promote the clearance of brain α-syn through the glial lymphatic system, inhibit the α-syn/TLR4/NF-κB/NLRP3 inflammatory pathway, and improve movement disorders.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Ruolin Cao
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Xiaoyi Tian
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Danyang Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Xin Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Zhonghui Zheng
- Shandong Xinhua Pharmaceutical Co., Ltd, Zibo, Shandong, 255086, PR China
| | - Guo-Liang Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Libo Zou
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
3
|
Jiang H, Lu J. Neuroimmune suppression and anhedonia in post-traumatic stress disorder: connecting central and peripheral immunity. PSYCHORADIOLOGY 2025; 5:kkaf004. [PMID: 40160805 PMCID: PMC11952891 DOI: 10.1093/psyrad/kkaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Affiliation(s)
- Hangyuan Jiang
- Zhejiang University–University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH89YL, UK
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou 310003, China
| |
Collapse
|
4
|
Li J, Liu T, Xian M, Zhou K, Wei J. The Power of Exercise: Unlocking the Biological Mysteries of Peripheral-Central Crosstalk in Parkinson's Disease. J Adv Res 2025:S2090-1232(25)00143-2. [PMID: 40049515 DOI: 10.1016/j.jare.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/06/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Exercise is a widely recognized non-pharmacological treatment for Parkinson's Disease (PD). The bidirectional regulation between the brain and peripheral organs has emerged as a promising area of research, with the mechanisms by which exercise impacts PD closely linked to the interplay between peripheral signals and the central nervous system. AIM OF REVIEW This review aims to summarize the mechanisms by which exercise influences peripheral-central crosstalk to improve PD, discuss the molecular processes mediating these interactions, elucidate the pathways through which exercise may modulate PD pathophysiology, and identify directions for future research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review examines how exercise-induced cytokine release promotes neuroprotection in PD. It discusses how exercise can stimulate cytokine secretion through various pathways, including the gut-brain, muscle-brain, liver-brain, adipose-brain, and bone-brain axes, thereby alleviating PD symptoms. Additionally, the potential contributions of the heart-brain, lung-brain, and spleen-brain axes, as well as multi-axis crosstalk-such as the brain-gut-muscle and brain-gut-bone axes-are explored in the context of exercise therapy. The study highlights the need for further research into peripheral-central crosstalk and outlines future directions to address challenges in clinical PD therapy.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ke Zhou
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China.
| | - Jianshe Wei
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China; Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
5
|
Liu H, Yu R, Zhang M, Zheng X, Zhong L, Yang W, Luo Y, Huang Z, Zheng J, Zhong H, Wei X, Zheng W, Yu Y, Wang Q. Fibrinogen degradation products exacerbate alpha-synuclein aggregation by inhibiting autophagy via downregulation of Beclin1 in multiple system atrophy. Neurotherapeutics 2025; 22:e00538. [PMID: 39904669 PMCID: PMC12014411 DOI: 10.1016/j.neurot.2025.e00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/24/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disease arising from accumulation of the α-synuclein and aberrant protein clearance in oligodendrocytes. The mechanisms of autophagy involved in the progression of MSA remain poorly understood. It is reported that MSA patients have blood-brain barrier impairments, which may increase the entry of fibrinogen into the brain. However, the roles of fibrinogen and its degradation products (FDPs) on autophagy and α-synuclein accumulation in MSA remain unknown. Here, we established the MSA animal model by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) and 3-nitropropionic acid (3-NP), and cellular models by adding fibrillar α-syn into oligodendrocytes to investigate the mechanisms of FDPs on autophagy and accumulation of α-synuclein in oligodendrocytes. We found that FDPs inhibit the entry of α-synuclein into lysosomes for degradation, increasing aggregation of α-synuclein in oligodendrocytes (OLN-93). Our findings indicated that in OLN-93, FDPs inhibited the expressions of Beclin1 and Bif-1, which could promote the fusion of autophagosomes with lysosomes. Furthermore, the expression of α-synuclein was elevated in FDPs-injected mice, accompanied by an increase in the protein level of p62. We detected elevated expression of FDPs in the striatum of MSA mice. Finally, FDPs inhibited the expression of Beclin1 and Bif-1, which led to aberrant autophagic degradation and increased aggregation of α-synuclein and phospho-α-synuclein in MSA mice. Our study illustrates that FDPs can cause aggregation of α-synuclein in MSA by inhibiting Beclin1-mediated autophagy, which may exacerbate disease progression. These results provide a new therapeutic approach for MSA, that targets the inhibitory effect of FDPs on oligodendrocyte autophagy.
Collapse
Affiliation(s)
- Huanzhu Liu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Ruoyang Yu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Muwei Zhang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Xiaoyan Zheng
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Lizi Zhong
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Hui Zhong
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Wenhua Zheng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China
| | - Yinghua Yu
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| |
Collapse
|
6
|
Liu N, Zhang T, Zhao W, Zhao X, Xue Y, Deng Q. Current trends in blood biomarkers detection and neuroimaging for Parkinson's disease. Ageing Res Rev 2025; 104:102658. [PMID: 39793764 DOI: 10.1016/j.arr.2025.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/01/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by both motor and cognitive impairments. A significant challenge in managing PD is the variability of symptoms and disease progression rates. This variability is primarily attributed to unclear biomarkers associated with the disease and the lack of early diagnostic technologies and effective imaging methods. PD-specific biomarkers are essential for developing practical tools that facilitate accurate diagnosis, patient stratification, and monitoring of disease progression. Hence, creating valuable tools for detecting and diagnosing PD based on specific biomarkers is imperative. Blood testing, less invasive than obtaining cerebrospinal fluid through a lumbar puncture, is an ideal source for these biomarkers. Although such biomarkers were previously lacking, recent advancements in various detection techniques related to PD biomarkers and new imaging methods have emerged. However, basic research requires more detailed guidelines on effectively implementing these biomarkers in diagnostic procedures to enhance the diagnostic accuracy of PD blood testing in clinical practice. This review discusses the developmental trends of PD-related blood biomarker detection technologies, including optical analysis platforms. Despite the progress in developing various biomarkers for PD, their specificity and sensitivity remain suboptimal. Therefore, the integration of multimodal biomarkers along with optical and imaging technologies is likely to significantly improve diagnostic accuracy and facilitate the implementation of personalized medicine. This review forms valid research hypotheses for PD research and guides future empirical studies.
Collapse
Affiliation(s)
- Ni Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Tianjiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Wei Zhao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Xuechao Zhao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| | - Yuan Xue
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Qihong Deng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Pham KY, Khanal S, Bohara G, Rimal N, Song SH, Nguyen TTK, Hong IS, Cho J, Kang JS, Lee S, Choi DY, Yook S. HDAC6 inhibitor-loaded brain-targeted nanocarrier-mediated neuroprotection in methamphetamine-driven Parkinson's disease. Redox Biol 2025; 79:103457. [PMID: 39700694 PMCID: PMC11722933 DOI: 10.1016/j.redox.2024.103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
The dynamic equilibrium between acetylation and deacetylation is vital for cellular homeostasis. Parkinson's disease (PD), a neurodegenerative disorder marked by α-synuclein (α-syn) accumulation and dopaminergic neuron loss in the substantia nigra, is associated with a disruption of this balance. Therefore, correcting this imbalance with histone deacetylase (HDAC) inhibitors represents a promising treatment strategy for PD. CAY10603 (CAY) is a potent and selective HDAC6 inhibitor. However, because of its poor water solubility and short biological half-life, it faces clinical limitations. Herein, we engineered lactoferrin-decorated CAY-loaded poly(lactic-co-glycolic acid) nanoparticles (denoted as PLGA@CAY@Lf NPs) to effectively counter methamphetamine (Meth)-induced PD. PLGA@CAY@Lf NPs showed enhanced blood-brain barrier crossing and significant brain accumulation. Notably, CAY released from PLGA@CAY@Lf NPs restored the disrupted acetylation balance in PD, resulting in neuroprotection by reversing mitochondrial dysfunction, suppressing reactive oxygen species, and inhibiting α-syn accumulation. Additionally, PLGA@CAY@Lf NPs treatment normalized dopamine and tyrosine hydroxylase levels, reduced neuroinflammation, and improved behavioral impairments. These findings underscore the potential of PLGA@CAY@Lf NPs in treating Meth-induced PD and suggest that an innovative HDAC6-inhibitor-based strategy can be used to treat PD.
Collapse
Affiliation(s)
- Khang-Yen Pham
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Shristi Khanal
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Ganesh Bohara
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Nikesh Rimal
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Thoa Thi Kim Nguyen
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21565, Republic of Korea
| | - Jinkyung Cho
- College of Sport Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Xie F, Shen B, Luo Y, Zhou H, Xie Z, Zhu S, Wei X, Chang Z, Zhu Z, Ding C, Jin K, Yang C, Batzu L, Chaudhuri KR, Chan LL, Tan EK, Wang Q. Repetitive transcranial magnetic stimulation alleviates motor impairment in Parkinson's disease: association with peripheral inflammatory regulatory T-cells and SYT6. Mol Neurodegener 2024; 19:80. [PMID: 39456006 PMCID: PMC11515224 DOI: 10.1186/s13024-024-00770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been used to treat various neurological disorders. However, the molecular mechanism underlying the therapeutic effect of rTMS on Parkinson's disease (PD) has not been fully elucidated. Neuroinflammation like regulatory T-cells (Tregs) appears to be a key modulator of disease progression in PD. If rTMS affects the peripheral Tregs in PD remains unknown. METHODS Here, we conducted a prospective clinical study (Chinese ClinicalTrials. gov: ChiCTR 2100051140) involving 54 PD patients who received 10-day rTMS (10 Hz) stimulation on the primary motor cortex (M1) region or sham treatment. Clinical and function assessment as well as flow cytology study were undertaken in 54 PD patients who were consecutively recruited from the department of neurology at Zhujiang hospital between September 2021 and January 2022. Subsequently, we implemented flow cytometry analysis to examine the Tregs population in spleen of MPTP-induced PD mice that received rTMS or sham treatment, along with quantitative proteomic approach reveal novel molecular targets for Parkinson's disease, and finally, the RNA interference method verifies the role of these new molecular targets in the treatment of PD. RESULTS We demonstrated that a 10-day rTMS treatment on the M1 motor cortex significantly improved motor dysfunction in PD patients. The beneficial effects persisted for up to 40 days, and were associated with an increase in peripheral Tregs. There was a positive correlation between Tregs and motor improvements in PD cases. Similarly, a 10-day rTMS treatment on the brains of MPTP-induced PD mice significantly ameliorated motor symptoms. rTMS reversed the downregulation of circulating Tregs and tyrosine hydroxylase neurons in these mice. It also increased anti-inflammatory mediators, deactivated microglia, and decreased inflammatory cytokines. These effects were blocked by administration of a Treg inhibitor anti-CD25 antibody in MPTP-induced PD mice. Quantitative proteomic analysis identified TLR4, TH, Slc6a3 and especially Syt6 as the hub node proteins related to Tregs and rTMS therapy. Lastly, we validated the role of Treg and rTMS-related protein syt6 in MPTP mice using the virus interference method. CONCLUSIONS Our clinical and experimental studies suggest that rTMS improves motor function by modulating the function of Tregs and suppressing toxic neuroinflammation. Hub node proteins (especially Syt6) may be potential therapeutic targets. TRIAL REGISTRATION Chinese ClinicalTrials, ChiCTR2100051140. Registered 15 December 2021, https://www.chictr.org.cn/bin/project/edit?pid=133691.
Collapse
Affiliation(s)
- Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Bibiao Shen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Chengwu Yang
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, T. H. Chan School of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Lucia Batzu
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Ling-Ling Chan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
9
|
Di Martino S, De Rosa M. The Benzoxazole Heterocycle: A Comprehensive Review of the Most Recent Medicinal Chemistry Developments of Antiproliferative, Brain-Penetrant, and Anti-inflammatory Agents. Top Curr Chem (Cham) 2024; 382:33. [PMID: 39432195 DOI: 10.1007/s41061-024-00477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024]
Abstract
The benzoxazole is one of the most widely exploited heterocycles in drug discovery. Natural occurring and synthetic benzoxazoles show a broad range of biological activities. Many benzoxazoles are available for treating several diseases, and, to date, a few are in clinical trials. Moreover, an ever-increasing number of benzoxazole derivatives are under investigation in the early drug discovery phase and as potential hit or lead compounds. This perspective is an attempt to thoroughly review the rational design, the structure-activity relationship, and the biological activity of the most notable benzoxazoles developed during the past 5 years (period 2019-to date) in cancers, neurological disorders, and inflammation. We also briefly overviewed each target and its role in the disease. The huge amount of work examined suggests the great potential of the scaffold and the high interest of the scientific community in novel biologically active compounds containing the benzoxazole core.
Collapse
Affiliation(s)
- Simona Di Martino
- Medicinal Chemistry Group, Fondazione Ri.MED, via Filippo Marini 14, 90128, Palermo, Italy
| | - Maria De Rosa
- Medicinal Chemistry Group, Fondazione Ri.MED, via Filippo Marini 14, 90128, Palermo, Italy.
| |
Collapse
|
10
|
Wang S, Xiao Y, Hou Y, Li C, Zhang L, Ou R, Wei Q, Lin J, Yang T, Che N, Jiang Q, Zheng X, Liu J, Shang H. Comparison of spontaneous brain activity in distinguishing parkinsonian variant of multiple system atrophy from Parkinson's disease at an early stage. Front Aging Neurosci 2024; 16:1427991. [PMID: 39267719 PMCID: PMC11390528 DOI: 10.3389/fnagi.2024.1427991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Background The overlapping clinical manifestations in parkinsonian variant of multiple system atrophy (MSA-P) and Parkinson's Disease (PD) can complicate clinical diagnostic accuracy, particularly in the early stage. The study aims to uncover the patterns of brain function in the initial phase of the two conditions. Methods We recruited 24 MSA-P patients, 34 PD patients and 27 healthy controls (HC). Voxel-wise fractional amplitude of low-frequency fluctuation (fALFF) was compared to characterize regional brain function, followed by seed-based functional connectivity (FC) analysis. Receiver operating characteristic (ROC) analyses were used to examine the diagnostic accuracy of fALFF. Results Compared to HC, decreased fALFF was observed in the bilateral basal ganglia (BG) of MSA-P patients, while decreased fALFF was identified in the left BG of PD patients. Additionally, elevated fALFF was found in the superior cerebellum for MSA-P patients and the temporo-occipital cortex for PD patients. Furthermore, PD patients exhibited increased FC in the cortico-striatal loop compared to MSA-P patients. The fALFF of the left caudate distinguished MSA-P from HC with an area under the curve (AUC) of 0.838 (p < 0.001) and from PD with an AUC of 0.772 (p < 0.001). The fALFF of the left putamen distinguished PD from HC with an AUC of 0.736 (p = 0.002). Conclusion Our findings indicated common and distinct abnormalities in spontaneous brain activity within BG, cerebellum, and cortices in early-stage MSA-P and PD patients. PD patients employed more compensatory mechanisms than MSA-P patients. Furthermore, fALFF may aid in early differentiation between MSA-P and PD.
Collapse
Affiliation(s)
- Shichan Wang
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Department of Neurology, Sichuan University, Chengdu, China
| | - Yi Xiao
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Department of Neurology, Sichuan University, Chengdu, China
| | - Yanbing Hou
- National Clinical Research Center for Geriatrics (WCH), West China Hospital, Sichuan University, Chengdu, China
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Department of Neurology, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Department of Neurology, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Department of Neurology, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Department of Neurology, Sichuan University, Chengdu, China
| | - Junyu Lin
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Department of Neurology, Sichuan University, Chengdu, China
| | - Tianmi Yang
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Department of Neurology, Sichuan University, Chengdu, China
| | - Ningning Che
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Department of Neurology, Sichuan University, Chengdu, China
| | - Qirui Jiang
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Department of Neurology, Sichuan University, Chengdu, China
| | - Xiaoting Zheng
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Department of Neurology, Sichuan University, Chengdu, China
| | - Jiyong Liu
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Department of Neurology, Sichuan University, Chengdu, China
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Department of Neurology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Shi D, Wu S, Zhuang C, Mao Y, Wang Q, Zhai H, Zhao N, Yan G, Wu R. Multimodal data fusion reveals functional and neurochemical correlates of Parkinson's disease. Neurobiol Dis 2024; 197:106527. [PMID: 38740347 DOI: 10.1016/j.nbd.2024.106527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Neurotransmitter deficits and spatial associations among neurotransmitter distribution, brain activity, and clinical features in Parkinson's disease (PD) remain unclear. Better understanding of neurotransmitter impairments in PD may provide potential therapeutic targets. Therefore, we aimed to investigate the spatial relationship between PD-related patterns and neurotransmitter deficits. METHODS We included 59 patients with PD and 41 age- and sex-matched healthy controls (HCs). The voxel-wise mean amplitude of the low-frequency fluctuation (mALFF) was calculated and compared between the two groups. The JuSpace toolbox was used to test whether spatial patterns of mALFF alterations in patients with PD were associated with specific neurotransmitter receptor/transporter densities. RESULTS Compared to HCs, patients with PD showed reduced mALFF in the sensorimotor- and visual-related regions. In addition, mALFF alteration patterns were significantly associated with the spatial distribution of the serotonergic, dopaminergic, noradrenergic, glutamatergic, cannabinoid, and acetylcholinergic neurotransmitter systems (p < 0.05, false discovery rate-corrected). CONCLUSIONS Our results revealed abnormal brain activity patterns and specific neurotransmitter deficits in patients with PD, which may provide new insights into the mechanisms and potential targets for pharmacotherapy.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Shuohua Wu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Caiyu Zhuang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yumeng Mao
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qianqi Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Huige Zhai
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, China
| | - Nannan Zhao
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China.
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
12
|
Zhao Y, Hsu JC, Hu S, Cai W. PET imaging of PD-L1 with a small molecule radiotracer. Eur J Nucl Med Mol Imaging 2024; 51:1578-1581. [PMID: 38459976 PMCID: PMC11042986 DOI: 10.1007/s00259-024-06663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Affiliation(s)
- Yajie Zhao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha, China.
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA.
| |
Collapse
|
13
|
Sun X, Tan X, Zhang Q, He S, Wang S, Zhou Y, Huang Q, Jiang L. 11C-CFT PET brain imaging in Parkinson's disease using a total-body PET/CT scanner. EJNMMI Phys 2024; 11:40. [PMID: 38662044 PMCID: PMC11045706 DOI: 10.1186/s40658-024-00640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE This study aimed to evaluate the feasibility of 11C-CFT PET brain imaging in Parkinson's Disease using a total-body PET/CT scanner and explore the optimal scan duration to guide the clinical practice. METHODS Thirty-two patients with Parkinson's disease (PD) performing 11C-CFT PET/CT brain imaging using a total-body PET/CT scanner were retrospectively enrolled. The PET data acquired over a period of 900 s were reconstructed into groups of different durations: 900-s, 720-s, 600-s, 480-s, 300-s, 180-s, 120-s, 60-s, and 30-s (G900 to G30). The subjective image quality analysis was performed using 5-point scales. Semi-quantitative measurements were analyzed by SUVmean and dopamine transporter (DAT) binding of key brain regions implicated in PD, including the caudate nucleus and putamen. The full-time images (G900) were served as reference. RESULTS The overall G900, G720, and G600 image quality scores were 5.0 ± 0.0, 5.0 ± 0.0, and 4.9 ± 0.3 points, respectively, and there was no significant difference among these groups (P > 0.05). A significant decrease in these scores at durations shorter than 600 s was observed when compared to G900 images (P < 0.05). However, all G300 image quality was clinically acceptable (≥ 3 points). As the scan duration reduced, the SUVmean and DAT binding of caudate nucleus and putamen decreased progressively, while there were no statistically significant variations in the SUVmean of the background among the different groups. Moreover, the changes in the lesion DAT binding (ΔDAT-binding) between the full-time reference G900 image and other reconstructed group G720 to G30 images generally increased along with the reduced scan time. CONCLUSION Sufficient image quality and lesion conspicuity could be achieved at 600-s scan duration for 11C-CFT PET brain imaging in PD assessment using a total-body PET/CT scanner, while the image quality of G300 was acceptable to meet clinical diagnosis, contributing to improve patient compliance and throughput of PET brain imaging.
Collapse
Affiliation(s)
- Xiaolin Sun
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, 510080, Guangzhou, China
| | - Xiaoyue Tan
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, 510080, Guangzhou, China
| | - Qing Zhang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, 510080, Guangzhou, China
| | - Shanzhen He
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, 510080, Guangzhou, China
| | - Siyun Wang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, 510080, Guangzhou, China
| | - Yongrong Zhou
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, 510080, Guangzhou, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, 518 Wuzhongdong Road, 200030, Shanghai, China.
| | - Lei Jiang
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, 510080, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.
| |
Collapse
|
14
|
Batarchuk V, Shepelytskyi Y, Grynko V, Kovacs AH, Hodgson A, Rodriguez K, Aldossary R, Talwar T, Hasselbrink C, Ruset IC, DeBoef B, Albert MS. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. Int J Mol Sci 2024; 25:1939. [PMID: 38339217 PMCID: PMC10856220 DOI: 10.3390/ijms25031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.
Collapse
Affiliation(s)
- Viktoriia Batarchuk
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Antal Halen Kovacs
- Applied Life Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Aaron Hodgson
- Physics Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Ruba Aldossary
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Carson Hasselbrink
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA 93407-005, USA
| | | | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Mitchell S. Albert
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
15
|
Blokhin V, Pavlova EN, Katunina EA, Nodel MR, Kataeva GV, Moskalets ER, Pronina TS, Ugrumov MV. Dopamine Synthesis in the Nigrostriatal Dopaminergic System in Patients at Risk of Developing Parkinson's Disease at the Prodromal Stage. J Clin Med 2024; 13:875. [PMID: 38337569 PMCID: PMC10856030 DOI: 10.3390/jcm13030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is diagnosed by the onset of motor symptoms and treated long after its onset. Therefore, the development of the early diagnosis of PD is a priority for neurology. Advanced methodologies for this include (1) searching for patients at risk of developing prodromal PD based on premotor symptoms; (2) searching for changes in the body fluids in these patients as diagnostic biomarkers; (3) verifying the diagnosis of prodromal PD and diagnostic-value biomarkers using positron emission tomography (PET); (4) anticipating the development of motor symptoms. According to our data, the majority of patients (n = 14) at risk of developing PD selected in our previous study show pronounced interhemispheric asymmetry in the incorporation of 18F-DOPA into dopamine synthesis in the striatum. This was assessed for the caudate nucleus and putamen separately using the specific binding coefficient, asymmetry index, and putamen/caudate nucleus ratio. Interhemispheric asymmetry in the incorporation of 18F-DOPA into the striatum provides strong evidence for its dopaminergic denervation and the diagnostic value of previously identified blood biomarkers. Of the 17 patients at risk of developing prodromal PD studied using PET, 3 patients developed motor symptoms within a year. Thus, our study shows the promise of using the described methodology for the development of early diagnosis of PD.
Collapse
Affiliation(s)
- Victor Blokhin
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Ekaterina N. Pavlova
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Elena A. Katunina
- Federal Center of Brain Research and Neurotechnologies of the Russian Federal Medical and Biological Agency, Moscow 117513, Russia;
- Faculty of Medicine, Department of Neurology, Neurosurgery and Medical Genetics, N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow 117997, Russia
| | - Marina R. Nodel
- Department of Nervous Diseases and Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia;
| | - Galina V. Kataeva
- Federal State Budget Institution Granov Russian Research Center of Radiology and Surgical Technologies Ministry of Health of the Russian Federation (RRCRST) 70, Leningradskaya Street, Pesochny, St. Petersburg 197758, Russia;
| | | | - Tatiana S. Pronina
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Michael V. Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| |
Collapse
|
16
|
Wu HM, Chiang CY, Chen WY, Chen CJ, Tseng CC, Chang YC, Cheng WM, Kuan YH. Cyclizine-induced proinflammatory responses through Akt-NFκB pathway in macrophages. ENVIRONMENTAL TOXICOLOGY 2023; 38:2819-2825. [PMID: 37551787 DOI: 10.1002/tox.23913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
Cyclizine exhibits sedation and treatment of nausea, vomiting, and motion sickness due to antihistaminic and antimuscarinic effects. Cyclizine has the potential for abuse due to the hallucinogenic and euphoric effect. The response of overdose and illegal abuse of cyclizine includes confusion, tremors, chest pain, ataxia, seizures, and lead to suicide. Macrophage plays the important role in the innate immunity. However, over activation of macrophages results in pro-inflammatory responses in peripheral tissues. In the present study, cyclizine was found to enhanced the generation of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. We further found that secretion of nitrogen oxide (NO) induced by cyclizine via expression of inducible nitric oxide synthases (iNOS). Cyclizine exhibited parallel stimulation of phosphorylation of nuclear factor-κB (NFκB) p65, and its up-stream factor Akt. These results indicated that the expression of pro-inflammatory cytokines, pro-inflammatory mediators, and adhesion molecules would be induced by cyclizine via activation of Akt-NFκB pathway in macrophages.
Collapse
Affiliation(s)
- Hao-Min Wu
- Department of Cardiology, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan
| | - Chen-Yu Chiang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Ching-Chi Tseng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu-Chi Chang
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wen-Min Cheng
- College of Management, National Sun Yat-sen University, Kaohsiung City, Taiwan
- Medical Devices R&D Service Development, Metal Industries Research & Development Centre, Kaohsiung City, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
17
|
Wu CH, Lin KL, Long CY, Feng CW. The Neuroprotective Effect of Isotetrandrine on Parkinson's Disease via Anti-Inflammation and Antiapoptosis In Vitro and In Vivo. PARKINSON'S DISEASE 2023; 2023:8444153. [PMID: 37854894 PMCID: PMC10581844 DOI: 10.1155/2023/8444153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Parkinson's disease (PD) is one of the most influential diseases in the world, and the current medication only can relieve the clinical symptoms but not slow the progression of PD. Therefore, we intend to examine the neuroprotective activity of plant-derived compound isotetrandrine (ITD) in vitro and in vivo. In vitro, cells were cotreated with ITD and LPS to detect the inflammatory-related protein and mRNA. In vivo, zebrafish were pretreated with ITD and inhibitors prior to 6-OHDA treatment. Then, the behavior was monitored at 5 dpf. Our result showed ITD inhibited LPS-induced upregulation of iNOS, COX-2 protein expression, and iL-6, inos, cox-2, and cd11b mRNA expression in BV2 cells. The data in zebrafish also demonstrated a significant improvement of ITD on the 6-OHDA-induced locomotor deficiency. ITD also improved 6-OHDA-induced apoptosis in zebrafish PD. We also pharmacologically validated the mechanism with three inhibitors, including LY294002, PI3K inhibitor; LY32141996, ERK inhibitor, SnPP, and HO-1 inhibitors. All of these inhibitors could abolish the neuroprotective effect of ITD partially in locomotor activity. Besides, the molecular level also showed the same trend. Treatment of these inhibitors could significantly abolish ITD-induced antineuroinflammatory and antioxidative stress effects in zebrafish PD. Our study showed ITD possessed a neuroprotective activity in zebrafish PD. The mRNA level also supported our arguments. The neuroprotection of ITD might be through antineuroinflammation and antiapoptosis pathways via PI3K, ERK, and HO-1.
Collapse
Affiliation(s)
- Ching-Hu Wu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Ling Lin
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Yu Long
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Municipal Siao-Gang Hospital, Kaohsiung Medical University, Kaohsiung 81267, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Wei Feng
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
18
|
Harraz MM. Selective dopaminergic vulnerability in Parkinson's disease: new insights into the role of DAT. Front Neurosci 2023; 17:1219441. [PMID: 37694119 PMCID: PMC10483232 DOI: 10.3389/fnins.2023.1219441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
One of the hallmarks of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and associated dopamine depletion. Several mechanisms, previously considered in isolation, have been proposed to contribute to the pathophysiology of dopaminergic degeneration: dopamine oxidation-mediated neurotoxicity, high dopamine transporter (DAT) expression density per neuron, and autophagy-lysosome pathway (ALP) dysfunction. However, the interrelationships among these mechanisms remained unclear. Our recent research bridges this gap, recognizing autophagy as a novel dopamine homeostasis regulator, unifying these concepts. I propose that autophagy modulates dopamine reuptake by selectively degrading DAT. In PD, ALP dysfunction could increase DAT density per neuron, and enhance dopamine reuptake, oxidation, and neurotoxicity, potentially contributing to the progressive loss of dopaminergic neurons. This integrated understanding may provide a more comprehensive view of aspects of PD pathophysiology and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Maged M. Harraz
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Wan L, Zhu S, Chen Z, Qiu R, Tang B, Jiang H. Multidimensional biomarkers for multiple system atrophy: an update and future directions. Transl Neurodegener 2023; 12:38. [PMID: 37501056 PMCID: PMC10375766 DOI: 10.1186/s40035-023-00370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal progressive neurodegenerative disease. Biomarkers are urgently required for MSA to improve the diagnostic and prognostic accuracy in clinic and facilitate the development and monitoring of disease-modifying therapies. In recent years, significant research efforts have been made in exploring multidimensional biomarkers for MSA. However, currently few biomarkers are available in clinic. In this review, we systematically summarize the latest advances in multidimensional biomarkers for MSA, including biomarkers in fluids, tissues and gut microbiota as well as imaging biomarkers. Future directions for exploration of novel biomarkers and promotion of implementation in clinic are also discussed.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China.
| |
Collapse
|
20
|
Oz T, Kaushik AK, Kujawska M. Advances in graphene-based nanoplatforms and their application in Parkinson's disease. MATERIALS ADVANCES 2023; 4:6464-6477. [DOI: 10.1039/d3ma00623a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Graphene and GBNs offer diverse PD management modalities by targeting neurodegeneration, exerting regenerative properties and their use as carriers, biosensors, and imaging agents.
Collapse
Affiliation(s)
- Tuba Oz
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, India
| | - Małgorzata Kujawska
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|