1
|
Wesołek-Leszczyńska A, Pastusiak K, Bogdański P, Szulińska M. Can Adipokine FAM19A5 Be a Biomarker of Metabolic Disorders? Diabetes Metab Syndr Obes 2024; 17:1651-1666. [PMID: 38616989 PMCID: PMC11016272 DOI: 10.2147/dmso.s460226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
Aim One of the most critical functions of adipose tissue is the production of adipokines, ie, numerous active substances that regulate metabolism. One is the newly discovered FAM19A5, whose older name is TAFA-5. Purpose The study aimed to review the literature on the FAM19A5 protein. Methods The review was conducted in December 2023 using the PubMed (Medline) search engine. Sixty-four papers were included in the review. Results This protein exhibits the characteristics of an adipokine with positive features for maintaining homeostasis. The results showed that FAM19A5 was highly expressed in adipose tissue, with mild to moderate expression in the brain and ovary. FAM19A5 may also inhibit vascular smooth muscle cell proliferation and migration through the perivascular adipose tissue paracrine pathway. Serum levels of FAM19A5 were decreased in obese children compared with healthy controls. There are negative correlations between FAM19A5, body mass index, and fasting insulin. Serum FAM19A5 level is correlated with type 2 diabetes, waist circumference, waist-to-hip ratio, glutamic pyruvic transferase, fasting plasma glucose, HbA1c, and mean shoulder pulse wave velocity. FAM19A5 expression was reduced in mice with obesity. However, the data available needs to be clarified or contradictory. Conclusion Considering today's knowledge about FAM19A5, we cannot consider this protein as a biomarker of the metabolic syndrome. According to current knowledge, FAM19A5 cannot be considered a marker of metabolic disorders because the results of studies conducted in this area are unclear.
Collapse
Affiliation(s)
- Agnieszka Wesołek-Leszczyńska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznan University Of Medical Sciences, Poznań, Poland
| | - Katarzyna Pastusiak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Monika Szulińska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
2
|
Çakır B, Uzun Çakır AD, Yalın Sapmaz Ş, Bilaç Ö, Taneli F, Kandemir H. Cognitive functioning of adolescents using Methamphetamine: The impact of inflammatory and oxidative processes. APPLIED NEUROPSYCHOLOGY. CHILD 2024:1-10. [PMID: 38447149 DOI: 10.1080/21622965.2024.2323643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
BACKGROUND Methamphetamine is a substance that causes neurotoxicity and its use is increasing in recent years. Literature highlights cognitive impairment resulting from Methamphetamine use. The aim of the present study is to evaluate the relationship between cognitive impairment and inflammatory processes in adolescents with Methamphetamine use disorder. METHODS The study included 69 adolescents aged 15-19 years, comprising 37 participants with Methamphetamine Use Disorder and 32 healthy controls. Central Nervous System Vital Signs was used to detect cognitive impairment. Childhood Trauma Questionnaire-33 and The Children's Depression Inventory scales were used. In addition, venous blood was collected from the volunteers. Biochemical parameters (IL-1beta, IL-6, TNF-a, BDNF, FAM19A5, TAS, TOS) were analyzed. RESULTS Our study showed that (I) IL-6 and TNF-a levels of Methamphetamine users were lower than the healthy group; (II) BDNF levels of Methamphetamine users were higher than the healthy group; (III) mean Neurocognitive Index in cognitive tests of Methamphetamine using adolescents was negatively correlated with duration of Methamphetamine use and BDNF levels. CONCLUSIONS Our study suggests that Methamphetamine use may have a negative effect on cognitive functions.
Collapse
Affiliation(s)
- Burak Çakır
- Child and Adolescent Psychiatry, Usak University, Uşak, Turkey
| | | | - Şermin Yalın Sapmaz
- Child and Adolescent Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| | - Öznur Bilaç
- Child and Adolescent Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| | - Fatma Taneli
- Department of Clinical Biochemistry, Manisa Celal Bayar University School of Medicine, Manisa, Turkey
| | - Hasan Kandemir
- Child and Adolescent Psychiatry, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
3
|
Srikanth S, Jain L, Zepeda-Mendoza C, Cascio L, Jones K, Pauly R, DuPont B, Rogers C, Sarasua S, Phelan K, Morton C, Boccuto L. Position effects of 22q13 rearrangements on candidate genes in Phelan-McDermid syndrome. PLoS One 2021; 16:e0253859. [PMID: 34228749 PMCID: PMC8259982 DOI: 10.1371/journal.pone.0253859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Phelan-McDermid syndrome (PMS) is a multi-system disorder characterized by significant variability in clinical presentation. The genetic etiology is also variable with differing sizes of deletions in the chromosome 22q13 region and types of genetic abnormalities (e.g., terminal or interstitial deletions, translocations, ring chromosomes, or SHANK3 variants). Position effects have been shown to affect gene expression and function and play a role in the clinical presentation of various genetic conditions. This study employed a topologically associating domain (TAD) analysis approach to investigate position effects of chromosomal rearrangements on selected candidate genes mapped to 22q13 in 81 individuals with PMS. Data collected were correlated with clinical information from these individuals and with expression and metabolic profiles of lymphoblastoid cells from selected cases. The data confirmed TAD predictions for genes encompassed in the deletions and the clinical and molecular data indicated clear differences among individuals with different 22q13 deletion sizes. The results of the study indicate a positive correlation between deletion size and phenotype severity in PMS and provide evidence of the contribution of other genes to the clinical variability in this developmental disorder by reduced gene expression and altered metabolomics.
Collapse
Affiliation(s)
- Sujata Srikanth
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Lavanya Jain
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, United States of America
| | - Cinthya Zepeda-Mendoza
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Lauren Cascio
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Kelly Jones
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Rini Pauly
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Barb DuPont
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Curtis Rogers
- Greenwood Genetic Center, Greenwood, SC, United States of America
| | - Sara Sarasua
- School of Nursing, Healthcare Genetics Program, Clemson University, Clemson, SC, United States of America
| | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists and Research Institute, Fort Myers, FL, United States of America
| | - Cynthia Morton
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States of America
- Division of Human Communication, Development and Hearing, School of Biological Sciences, Manchester Academic Health Science Center, Manchester, United Kingdom
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC, United States of America
- School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States of America
| |
Collapse
|
4
|
Huang S, Zheng C, Xie G, Song Z, Wang P, Bai Y, Chen D, Zhang Y, Lv P, Liang W, She S, Li Q, Liu Z, Wang Y, Xing GG, Wang Y. FAM19A5/TAFA5, a novel neurokine, plays a crucial role in depressive-like and spatial memory-related behaviors in mice. Mol Psychiatry 2021; 26:2363-2379. [PMID: 32317715 DOI: 10.1038/s41380-020-0720-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
FAM19A5/TAFA5 is a member of the family with sequence similarity 19 with unknown function in emotional and cognitive regulation. Here, we reported that FAM19A5 was highly expressed in the embryonic and postnatal mouse brain, especially in the hippocampus. Behaviorally, genetic deletion of Fam19a5 resulted in increased depressive-like behaviors and impaired hippocampus-dependent spatial memory. These behavioral alterations were associated with the decreased expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-D-aspartic acid receptors, as well as significantly reduced glutamate release and neuronal activity in the hippocampus. Subsequently, these changes led to the decreased density of dendritic spines. In recent years, the roles of chronic stress participating in the development of depression have become increasingly clear, but the mechanism remains to be elucidated. We found that the levels of FAM19A5 in plasma and hippocampus of chronic stress-treated mice were significantly decreased whereas overexpression of human FAM19A5 selectively in the hippocampus could attenuate chronic stress-induced depressive-like behaviors. Taken together, our results revealed for the first time that FAM19A5 plays a key role in the regulation of depression and spatial cognition in the hippocampus. Furthermore, our study provided a new mechanism for chronic stress-induced depression, and also provided a potential biomarker for the diagnosis and a new strategy for the treatment of depression.
Collapse
Affiliation(s)
- Shiyang Huang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Can Zheng
- Department of Clinical Laboratory, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Guoguang Xie
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Zhanming Song
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Center for Human Disease Genomics, Peking University, Beijing, 100191, China
| | - Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dixin Chen
- Drug Non-Clinical Evaluation and Research Center of Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, China
| | - Yan Zhang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Ping Lv
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
- Center for Human Disease Genomics, Peking University, Beijing, 100191, China
| | - Weiwei Liang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Shaoping She
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Qingqing Li
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Zhongtian Liu
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Guo-Gang Xing
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China.
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
- Center for Human Disease Genomics, Peking University, Beijing, 100191, China.
| |
Collapse
|
5
|
Nikitina TV, Kashevarova AA, Gridina MM, Lopatkina ME, Khabarova AA, Yakovleva YS, Menzorov AG, Minina YA, Pristyazhnyuk IE, Vasilyev SA, Fedotov DA, Serov OL, Lebedev IN. Complex biology of constitutional ring chromosomes structure and (in)stability revealed by somatic cell reprogramming. Sci Rep 2021; 11:4325. [PMID: 33619287 PMCID: PMC7900208 DOI: 10.1038/s41598-021-83399-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Human ring chromosomes are often unstable during mitosis, and daughter cells can be partially or completely aneuploid. We studied the mitotic stability of four ring chromosomes, 8, 13, 18, and 22, in long-term cultures of skin fibroblasts and induced pluripotent stem cells (iPSCs) by GTG karyotyping and aCGH. Ring chromosome loss and secondary aberrations were observed in all fibroblast cultures except for r(18). We found monosomy, fragmentation, and translocation of indexed chromosomes. In iPSCs, aCGH revealed striking differences in mitotic stability both between iPSC lines with different rings and, in some cases, between cell lines with the same ring chromosome. We registered the spontaneous rescue of karyotype 46,XY,r(8) to 46,XY in all six iPSC lines through ring chromosome loss and intact homologue duplication with isoUPD(8)pat occurrence, as proven by SNP genotype distribution analysis. In iPSCs with other ring chromosomes, karyotype correction was not observed. Our results suggest that spontaneous correction of the karyotype with ring chromosomes in iPSCs is not universal and that pluripotency is compatible with a wide range of derivative karyotypes. We conclude that marked variability in the frequency of secondary rearrangements exists in both fibroblast and iPSC cultures, expanding the clinical significance of the constitutional ring chromosome.
Collapse
Affiliation(s)
- T V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia.
| | - A A Kashevarova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia
| | - M M Gridina
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - M E Lopatkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia
| | - A A Khabarova
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - Yu S Yakovleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia.,Department of Medical Genetics, Siberian State Medical University, Tomsk, 634050, Russia
| | - A G Menzorov
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Yu A Minina
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - I E Pristyazhnyuk
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - S A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia
| | - D A Fedotov
- Department of Medical Genetics, Siberian State Medical University, Tomsk, 634050, Russia
| | - O L Serov
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - I N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia.,Department of Medical Genetics, Siberian State Medical University, Tomsk, 634050, Russia
| |
Collapse
|
6
|
Association of Serum FAM19A5 with Cognitive Impairment in Vascular Dementia. DISEASE MARKERS 2020; 2020:8895900. [PMID: 32831973 PMCID: PMC7422492 DOI: 10.1155/2020/8895900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Objective Family with sequence similarity 19 member A5 (FAM19A5), a novel chemokine-like peptide, is a secreted protein mainly expressed in the brain. FAM19A5 was recently found to be involved in a variety of neurological diseases; however, its correlation with vascular dementia (VaD) remains unclear. The aim of the study is to explore the association between serum FAM19A5 and cognitive impairment in subjects with VaD. Method 136 VaD subjects and 81 normal controls were recruited in the study. Their demographic and clinical baseline data were collected on admission. All subjects received Mini-Mental State Examination (MMSE) evaluation, which was used to test their cognitive functions. A sandwich enzyme-linked immunosorbent assay (ELISA) was applied to detect the serum levels of FAM19A5. Results No significant differences were found between the two groups regarding the demographic and clinical baseline data (p > 0.05). The serum FAM19A5 levels were significantly higher compared to normal controls (p < 0.001). The Spearman correlation analysis indicated that serum FAM19A5 levels and MMSE scores have a significant negative correlation in VaD patients (r = −0.414, <0.001). Further multiple regression analysis indicated that serum FAM19A5 levels were independent risk predictors for cognitive functions in VaD (β = 0.419, p = 0.031). Conclusion The serum FAM19A5 level of VaD patients is significantly increased, which may serve as a biomarker to predict cognitive function of VaD.
Collapse
|
7
|
Kang D, Kim HR, Kim KK, Kim DH, Jeong B, Jin S, Park JW, Seong JY, Lee BJ. Brain-specific chemokine FAM19A5 induces hypothalamic inflammation. Biochem Biophys Res Commun 2020; 523:829-834. [PMID: 31954515 DOI: 10.1016/j.bbrc.2019.12.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/25/2019] [Indexed: 12/20/2022]
Abstract
The cytokine-like protein FAM19A5 is highly expressed in the brain, but little is known about its functions there. Here, we found that FAM19A5 was expressed in mouse hypothalamic cells expressing proopiomelanocortin (POMC) and neuropeptide Y (NPY)/agouti-related peptide (AgRP), and in the microglia. Tumor necrosis factor-α (TNF-α), which induces inflammatory sickness responses, greatly increased hypothalamic expression of FAM19A5. Knockdown of FAM19A5 expression resulted in decreased TNF-α-induced anorexia, body weight loss and TNF-α-induced expression of inflammatory factors. In contrast, intracerebroventricular administration of FAM19A5 induced anorexia, body weight loss and hyperthermia, together with increased expression of inflammatory factors. FAM19A5 injection also induced increases in c-fos activation and POMC mRNA level in hypothalamic POMC neurons. Together, these results suggest that FAM19A5 plays an important role in hypothalamic inflammatory responses.
Collapse
Affiliation(s)
- Dasol Kang
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, 44610, South Korea
| | - Han Rae Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, 44610, South Korea; Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, USA, 20037
| | - Kwang Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, 44610, South Korea
| | - Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, 44610, South Korea
| | - Bora Jeong
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, 44610, South Korea
| | - Sungho Jin
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, 44610, South Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, 44610, South Korea
| | - Jae Young Seong
- Graduate School of Medicine, Korea University, Seoul, 02841, South Korea
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, 44610, South Korea.
| |
Collapse
|
8
|
Shahapal A, Cho EB, Yong HJ, Jeong I, Kwak H, Lee JK, Kim W, Kim B, Park HC, Lee WS, Kim H, Hwang JI, Seong JY. FAM19A5 Expression During Embryogenesis and in the Adult Traumatic Brain of FAM19A5-LacZ Knock-in Mice. Front Neurosci 2019; 13:917. [PMID: 31543758 PMCID: PMC6730007 DOI: 10.3389/fnins.2019.00917] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
FAM19A5 is a secretory protein that is predominantly expressed in the brain. Although the FAM19A5 gene has been found to be associated with neurological and/or psychiatric diseases, only limited information is available on its function in the brain. Using FAM19A5-LacZ knock-in mice, we determined the expression pattern of FAM19A5 in developing and adult brains and identified cell types that express FAM19A5 in naïve and traumatic brain injury (TBI)–induced brains. According to X-gal staining results, FAM19A5 is expressed in the ventricular zone and ganglionic eminence at a very early stage of brain development, suggesting its functions are related to the generation of neural stem cells and oligodendrocyte precursor cells (OPCs). In the later stages of developing embryos and in adult mice, FAM19A5 expression expanded broadly to particular regions of the brain, including layers 2/3 and 5 of the cortex, cornu amonis (CA) region of the hippocampus, and the corpus callosum. X-gal staining combined with immunostaining for a variety of cell-type markers revealed that FAM19A5 is expressed in many different cell types, including neurons, OPCs, astrocytes, and microglia; however, only some populations of these cell types produce FAM19A5. In a subpopulation of neuronal cells, TBI led to increased X-gal staining that extended to the nucleus, marked by slightly condensed content and increased heterochromatin formation along the nuclear border. Similarly, nuclear extension of X-gal staining occurred in a subpopulation of OPCs in the corpus callosum of the TBI-induced brain. Together, these results suggest that FAM19A5 plays a role in nervous system development from an early stage and increases its expression in response to pathological conditions in subsets of neurons and OPCs of the adult brain.
Collapse
Affiliation(s)
- Anu Shahapal
- Graduate School of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Eun Bee Cho
- Neuracle Science Co., Ltd., Seoul, South Korea
| | - Hyo Jeong Yong
- Graduate School of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Inyoung Jeong
- Graduate School of Biomedical Sciences, Korea University Ansan Hospital, Ansan, South Korea
| | - Hoyun Kwak
- Neuracle Science Co., Ltd., Seoul, South Korea
| | | | - Wonkyum Kim
- Neuracle Science Co., Ltd., Seoul, South Korea
| | | | - Hae-Chul Park
- Graduate School of Biomedical Sciences, Korea University Ansan Hospital, Ansan, South Korea
| | - Won Suk Lee
- Graduate School of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Hyun Kim
- Graduate School of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jong-Ik Hwang
- Graduate School of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jae Young Seong
- Graduate School of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Fedorenko OY, Golimbet VE, Ivanova SА, Levchenko А, Gainetdinov RR, Semke AV, Simutkin GG, Gareeva АE, Glotov АS, Gryaznova A, Iourov IY, Krupitsky EM, Lebedev IN, Mazo GE, Kaleda VG, Abramova LI, Oleichik IV, Nasykhova YA, Nasyrova RF, Nikolishin AE, Kasyanov ED, Rukavishnikov GV, Timerbulatov IF, Brodyansky VM, Vorsanova SG, Yurov YB, Zhilyaeva TV, Sergeeva AV, Blokhina EA, Zvartau EE, Blagonravova AS, Aftanas LI, Bokhan NА, Kekelidze ZI, Klimenko TV, Anokhina IP, Khusnutdinova EK, Klyushnik TP, Neznanov NG, Stepanov VA, Schulze TG, Kibitov АО. Opening up new horizons for psychiatric genetics in the Russian Federation: moving toward a national consortium. Mol Psychiatry 2019; 24:1099-1111. [PMID: 30664668 PMCID: PMC6756082 DOI: 10.1038/s41380-019-0354-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/27/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022]
Abstract
We provide an overview of the recent achievements in psychiatric genetics research in the Russian Federation and present genotype-phenotype, population, epigenetic, cytogenetic, functional, ENIGMA, and pharmacogenetic studies, with an emphasis on genome-wide association studies. The genetic backgrounds of mental illnesses in the polyethnic and multicultural population of the Russian Federation are still understudied. Furthermore, genetic, genomic, and pharmacogenetic data from the Russian Federation are not adequately represented in the international scientific literature, are currently not available for meta-analyses and have never been compared with data from other populations. Most of these problems cannot be solved by individual centers working in isolation but warrant a truly collaborative effort that brings together all the major psychiatric genetic research centers in the Russian Federation in a national consortium. For this reason, we have established the Russian National Consortium for Psychiatric Genetics (RNCPG) with the aim to strengthen the power and rigor of psychiatric genetics research in the Russian Federation and enhance the international compatibility of this research.The consortium is set up as an open organization that will facilitate collaborations on complex biomedical research projects in human mental health in the Russian Federation and abroad. These projects will include genotyping, sequencing, transcriptome and epigenome analysis, metabolomics, and a wide array of other state-of-the-art analyses. Here, we discuss the challenges we face and the approaches we will take to unlock the huge potential that the Russian Federation holds for the worldwide psychiatric genetics community.
Collapse
Affiliation(s)
- Olga Yu Fedorenko
- Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation.
- National Research Tomsk Polytechnic University, Tomsk, Russian Federation.
| | | | - Svetlana А Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
- National Research Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Аnastasia Levchenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Arkady V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
| | - German G Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
| | - Аnna E Gareeva
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
- Federal State Educational Institution of Highest Education Bashkir State Medical University of Public Health Ministry of Russian Federation, Ufa, Russian Federation
| | - Аndrey S Glotov
- Laboratory of Biobanking and Genomic Medicine of Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Anna Gryaznova
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU, Munich, Germany
| | - Ivan Y Iourov
- Mental Health Research Center, Moscow, Russian Federation
| | - Evgeny M Krupitsky
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russian Federation
| | - Igor N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
| | - Galina E Mazo
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russian Federation
| | | | | | | | - Yulia A Nasykhova
- Laboratory of Biobanking and Genomic Medicine of Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Regina F Nasyrova
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russian Federation
| | - Anton E Nikolishin
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russian Federation
| | - Evgeny D Kasyanov
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russian Federation
| | - Grigory V Rukavishnikov
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russian Federation
| | - Ilgiz F Timerbulatov
- Federal State Educational Institution of Highest Education Bashkir State Medical University of Public Health Ministry of Russian Federation, Ufa, Russian Federation
| | - Vadim M Brodyansky
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russian Federation
| | - Svetlana G Vorsanova
- Veltischev Research and Clinical Institute for Pediatrics, the Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Yury B Yurov
- Mental Health Research Center, Moscow, Russian Federation
| | - Tatyana V Zhilyaeva
- Privolzhskiy Research Medical University, Nizhny Novgorod, Russian Federation
| | | | - Elena A Blokhina
- First Saint Petersburg Pavlov State Medical University, Saint Petersburg, Russian Federation
| | - Edwin E Zvartau
- First Saint Petersburg Pavlov State Medical University, Saint Petersburg, Russian Federation
| | - Anna S Blagonravova
- Privolzhskiy Research Medical University, Nizhny Novgorod, Russian Federation
| | - Lyubomir I Aftanas
- Federal State Scientific Budgetary Institution "Scientific Research Institute of Physiology and Basic Medicine,", Novosibirsk, Russian Federation
| | - Nikolay А Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
- National Research Tomsk State University, Tomsk, Russian Federation
| | - Zurab I Kekelidze
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russian Federation
| | - Tatyana V Klimenko
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russian Federation
| | - Irina P Anokhina
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russian Federation
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
- Federal State Educational Institution of Highest Education Bashkir State Medical University of Public Health Ministry of Russian Federation, Ufa, Russian Federation
| | | | - Nikolay G Neznanov
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, Saint Petersburg, Russian Federation
| | - Vadim A Stepanov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of Russian Academy of Sciences, Tomsk, Russian Federation
- National Research Tomsk State University, Tomsk, Russian Federation
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU, Munich, Germany
| | - Аleksandr О Kibitov
- Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russian Federation
| |
Collapse
|
10
|
Generation of two iPSC lines (IMGTi001-A and IMGTi001-B) from human skin fibroblasts with ring chromosome 22. Stem Cell Res 2018; 31:244-248. [PMID: 30144655 DOI: 10.1016/j.scr.2018.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 02/02/2023] Open
Abstract
Skin fibroblasts from a patient with intellectual disability and ring chromosome 22 were reprogrammed into induced pluripotent stem cells (iPSCs) to establish a clonal stem cell lines, IMGTi001-A (iTAF5-29) and IMGTi001-B (iTAF5-32). Because of ring chromosome mitotic instability these cell lines show mosaic karyotypes with 46,XX,r(22) in >83% cells, 45,XX,-22 as minor class and sporadically cells with other karyotypes. Differentiation in derivatives of all three germ layers was shown in teratoma assay for IMGTi001-A, and in embryoid bodies for both cell lines. To our knowledge, human iPSC lines with ring chromosome are described for the first time.
Collapse
|
11
|
Gug C, Huțanu D, Vaida M, Doroş G, Popa C, Stroescu R, Furău G, Furău C, Grigoriță L, Mozos I. De novo unbalanced translocation t(15;22)(q26.2;q12) with velo-cardio-facial syndrome: A case report and review of the literature. Exp Ther Med 2018; 16:3589-3595. [PMID: 30233713 PMCID: PMC6143868 DOI: 10.3892/etm.2018.6609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
The present study reports the case of a 3-h old male with a de novo unbalanced t(15;22) translocation and velo-cardio-facial syndrome (VCFS), with other abnormalities. The manifestations of the condition observed in the patient included cleft palate with feeding difficulties, respiratory infection, dysmorphic face with almond-shaped eyes, a long and wide nose, small and low-set ears, tetralogy of Fallot, cryptorchidism and varus equinus. Standard lymphocyte cytogenetic analysis using G-banding demonstrated a 45,XY,-22,der (15),t(15;22)(q26.2;q12) karyotype. Fluorescent in situ hybridization with DiGeorge/VCFS TUPLE 1 confirmed 22q11 deletions. These cytogenetic aspects appear to be rare in the etiology of VCFS, as >1% of all 22q11 deletions are the result of an unbalanced translocation, which involves chromosomes 22 and another chromosome. To the best of our knowledge, this is the second reported case where the clinical features associated with VCFS are combined with an unbalanced (15;22) translocation involving the critical 22q11.2 region.
Collapse
Affiliation(s)
- Cristina Gug
- Department of Microscopic Morphology, Victor Babeș University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Delia Huțanu
- Department of Biology, Chemistry-Biology-Geography Faculty, West University Timisoara, 300115 Timisoara, Romania
| | - Monica Vaida
- Department of Anatomy and Embryology, Victor Babeș University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Gabriela Doroş
- Department of Pediatrics, Victor Babeș University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cristina Popa
- Department of Microscopic Morphology, Victor Babeș University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ramona Stroescu
- Department of Pediatrics, Victor Babeș University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Gheorghe Furău
- Department of General Medicine, Faculty of Medicine, 'Vasile Goldis' Western University of Arad, 310118 Arad, Romania
| | - Cristian Furău
- Department of Life Sciences, Faculty of Medicine, 'Vasile Goldis' Western University of Arad, 310118 Arad, Romania
| | - Laura Grigoriță
- Department of Anatomy and Embryology, Victor Babeș University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioana Mozos
- Department of Functional Sciences, Victor Babeș University of Medicine and Pharmacy, 300173 Timisoara, Romania.,Center for Translational Research and Systems Medicine, Victor Babeș University of Medicine and Pharmacy, 300173 Timisoara, Romania
| |
Collapse
|