1
|
Garcia-Montojo M, Fathi S, Rastegar C, Simula ER, Doucet-O'Hare T, Cheng YHH, Abrams RPM, Pasternack N, Malik N, Bachani M, Disanza B, Maric D, Lee MH, Wang H, Santamaria U, Li W, Sampson K, Lorenzo JR, Sanchez IE, Mezghrani A, Li Y, Sechi LA, Pineda S, Heiman M, Kellis M, Steiner J, Nath A. TDP-43 proteinopathy in ALS is triggered by loss of ASRGL1 and associated with HML-2 expression. Nat Commun 2024; 15:4163. [PMID: 38755145 PMCID: PMC11099023 DOI: 10.1038/s41467-024-48488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) proteinopathy in brain cells is the hallmark of amyotrophic lateral sclerosis (ALS) but its cause remains elusive. Asparaginase-like-1 protein (ASRGL1) cleaves isoaspartates, which alter protein folding and susceptibility to proteolysis. ASRGL1 gene harbors a copy of the human endogenous retrovirus HML-2, whose overexpression contributes to ALS pathogenesis. Here we show that ASRGL1 expression was diminished in ALS brain samples by RNA sequencing, immunohistochemistry, and western blotting. TDP-43 and ASRGL1 colocalized in neurons but, in the absence of ASRGL1, TDP-43 aggregated in the cytoplasm. TDP-43 was found to be prone to isoaspartate formation and a substrate for ASRGL1. ASRGL1 silencing triggered accumulation of misfolded, fragmented, phosphorylated and mislocalized TDP-43 in cultured neurons and motor cortex of female mice. Overexpression of ASRGL1 restored neuronal viability. Overexpression of HML-2 led to ASRGL1 silencing. Loss of ASRGL1 leading to TDP-43 aggregation may be a critical mechanism in ALS pathophysiology.
Collapse
Affiliation(s)
- Marta Garcia-Montojo
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Saeed Fathi
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cyrus Rastegar
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elena Rita Simula
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy
| | - Tara Doucet-O'Hare
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Y H Hank Cheng
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rachel P M Abrams
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nasir Malik
- Translational Neuroscience Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Muzna Bachani
- Translational Neuroscience Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brianna Disanza
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Myoung-Hwa Lee
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute (NIH), Bethesda, MD, USA
| | - Ulisses Santamaria
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wenxue Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kevon Sampson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Juan Ramiro Lorenzo
- Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro (FCV-UNCPBA), Tandil, Argentina
| | - Ignacio E Sanchez
- Protein Physiology Laboratory, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales and IQUIBICEN-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alexandre Mezghrani
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
- Centre de Biologie Structurale, Centre national de la recherche scientifique (CNRS), Montpellier, France
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Leonardo Antonio Sechi
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy
| | | | - Myriam Heiman
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolis Kellis
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph Steiner
- Translational Neuroscience Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Bhuvaneshwar K, Gusev Y. Translational bioinformatics and data science for biomarker discovery in mental health: an analytical review. Brief Bioinform 2024; 25:bbae098. [PMID: 38493340 PMCID: PMC10944574 DOI: 10.1093/bib/bbae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
Translational bioinformatics and data science play a crucial role in biomarker discovery as it enables translational research and helps to bridge the gap between the bench research and the bedside clinical applications. Thanks to newer and faster molecular profiling technologies and reducing costs, there are many opportunities for researchers to explore the molecular and physiological mechanisms of diseases. Biomarker discovery enables researchers to better characterize patients, enables early detection and intervention/prevention and predicts treatment responses. Due to increasing prevalence and rising treatment costs, mental health (MH) disorders have become an important venue for biomarker discovery with the goal of improved patient diagnostics, treatment and care. Exploration of underlying biological mechanisms is the key to the understanding of pathogenesis and pathophysiology of MH disorders. In an effort to better understand the underlying mechanisms of MH disorders, we reviewed the major accomplishments in the MH space from a bioinformatics and data science perspective, summarized existing knowledge derived from molecular and cellular data and described challenges and areas of opportunities in this space.
Collapse
Affiliation(s)
- Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington DC, 20007, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington DC, 20007, USA
| |
Collapse
|
3
|
Adav SS, Ng KW. Recent omics advances in hair aging biology and hair biomarkers analysis. Ageing Res Rev 2023; 91:102041. [PMID: 37634889 DOI: 10.1016/j.arr.2023.102041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex natural process that leads to a decline in physiological functions, which is visible in signs such as hair graying, thinning, and loss. Although hair graying is characterized by a loss of pigment in the hair shaft, the underlying mechanism of age-associated hair graying is not fully understood. Hair graying and loss can have a significant impact on an individual's self-esteem and self-confidence, potentially leading to mental health problems such as depression and anxiety. Omics technologies, which have applications beyond clinical medicine, have led to the discovery of candidate hair biomarkers and may provide insight into the complex biology of hair aging and identify targets for effective therapies. This review provides an up-to-date overview of recent omics discoveries, including age-associated alterations of proteins and metabolites in the hair shaft and follicle, and highlights the significance of hair aging and graying biomarker discoveries. The decline in hair follicle stem cell activity with aging decreased the regeneration capacity of hair follicles. Cellular senescence, oxidative damage and altered extracellular matrix of hair follicle constituents characterized hair follicle and hair shaft aging and graying. The review attempts to correlate the impact of endogenous and exogenous factors on hair aging. We close by discussing the main challenges and limitations of the field, defining major open questions and offering an outlook for future research.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
4
|
Kohler I, Verhoeven M, Haselberg R, Gargano AF. Hydrophilic interaction chromatography – mass spectrometry for metabolomics and proteomics: state-of-the-art and current trends. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Pras A, Houben B, Aprile FA, Seinstra R, Gallardo R, Janssen L, Hogewerf W, Gallrein C, De Vleeschouwer M, Mata‐Cabana A, Koopman M, Stroo E, de Vries M, Louise Edwards S, Kirstein J, Vendruscolo M, Falsone SF, Rousseau F, Schymkowitz J, Nollen EAA. The cellular modifier MOAG-4/SERF drives amyloid formation through charge complementation. EMBO J 2021; 40:e107568. [PMID: 34617299 PMCID: PMC8561633 DOI: 10.15252/embj.2020107568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
While aggregation-prone proteins are known to accelerate aging and cause age-related diseases, the cellular mechanisms that drive their cytotoxicity remain unresolved. The orthologous proteins MOAG-4, SERF1A, and SERF2 have recently been identified as cellular modifiers of such proteotoxicity. Using a peptide array screening approach on human amyloidogenic proteins, we found that SERF2 interacted with protein segments enriched in negatively charged and hydrophobic, aromatic amino acids. The absence of such segments, or the neutralization of the positive charge in SERF2, prevented these interactions and abolished the amyloid-promoting activity of SERF2. In protein aggregation models in the nematode worm Caenorhabditis elegans, protein aggregation and toxicity were suppressed by mutating the endogenous locus of MOAG-4 to neutralize charge. Our data indicate that MOAG-4 and SERF2 drive protein aggregation and toxicity by interactions with negatively charged segments in aggregation-prone proteins. Such charge interactions might accelerate primary nucleation of amyloid by initiating structural changes and by decreasing colloidal stability. Our study points at charge interactions between cellular modifiers and amyloidogenic proteins as potential targets for interventions to reduce age-related protein toxicity.
Collapse
Affiliation(s)
- Anita Pras
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Bert Houben
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Francesco A Aprile
- Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
- Present address:
Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonUK
| | - Renée Seinstra
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Rodrigo Gallardo
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- Present address:
Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Leen Janssen
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Wytse Hogewerf
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Christian Gallrein
- Department of Molecular Physiology and Cell BiologyLeibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V. (FMP)BerlinGermany
| | - Matthias De Vleeschouwer
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Alejandro Mata‐Cabana
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Mandy Koopman
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Esther Stroo
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Minke de Vries
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Samantha Louise Edwards
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Janine Kirstein
- Department of Molecular Physiology and Cell BiologyLeibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V. (FMP)BerlinGermany
- Faculty of Biology & ChemistryUniversity of BremenBremenGermany
| | - Michele Vendruscolo
- Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
| | | | - Frederic Rousseau
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Joost Schymkowitz
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Ellen A A Nollen
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| |
Collapse
|
6
|
Adav SS, Wang Y. Metabolomics Signatures of Aging: Recent Advances. Aging Dis 2021; 12:646-661. [PMID: 33815888 PMCID: PMC7990359 DOI: 10.14336/ad.2020.0909] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023] Open
Abstract
Metabolomics is the latest state-of-the-art omics technology that provides a comprehensive quantitative profile of metabolites. The metabolites are the cellular end products of metabolic reactions that explain the ultimate response to genomic, transcriptomic, proteomic, or environmental changes. Aging is a natural inevitable process characterized by a time-dependent decline of various physiological and metabolic functions and are dominated collectively by genetics, proteomics, metabolomics, environmental factors, diet, and lifestyle. The precise mechanism of the aging process is unclear, but the metabolomics has the potential to add significant insight by providing a detailed metabolite profile and altered metabolomic functions with age. Although the application of metabolomics to aging research is still relatively new, extensive attempts have been made to understand the biology of aging through a quantitative metabolite profile. This review summarises recent developments and up-to-date information on metabolomics studies in aging research with a major emphasis on aging biomarkers in less invasive biofluids. The importance of an integrative approach that combines multi-omics data to understand the complex aging process is discussed. Despite various innovations in metabolomics and metabolite associated with redox homeostasis, central energy pathways, lipid metabolism, and amino acid, a major challenge remains to provide conclusive aging biomarkers.
Collapse
Affiliation(s)
- Sunil S Adav
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
7
|
Mass spectrometric analysis of protein deamidation – A focus on top-down and middle-down mass spectrometry. Methods 2020; 200:58-66. [DOI: 10.1016/j.ymeth.2020.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/16/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
|
8
|
Ying Y, Li H. Recent progress in the analysis of protein deamidation using mass spectrometry. Methods 2020; 200:42-57. [PMID: 32544593 DOI: 10.1016/j.ymeth.2020.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Deamidation is a nonenzymatic and spontaneous posttranslational modification (PTM) that introduces changes in both structure and charge of proteins, strongly associated with aging proteome instability and degenerative diseases. Deamidation is also a common PTM occurring in biopharmaceutical proteins, representing a major cause of degradation. Therefore, characterization of deamidation alongside its inter-related modifications, isomerization and racemization, is critically important to understand their roles in protein stability and diseases. Mass spectrometry (MS) has become an indispensable tool in site-specific identification of PTMs for proteomics and structural studies. In this review, we focus on the recent advances of MS analysis in protein deamidation. In particular, we provide an update on sample preparation, chromatographic separation, and MS technologies at multi-level scales, for accurate and reliable characterization of protein deamidation in both simple and complex biological samples, yielding important new insight on how deamidation together with isomerization and racemization occurs. These technological progresses will lead to a better understanding of how deamidation contributes to the pathology of aging and other degenerative diseases and the development of biopharmaceutical drugs.
Collapse
Affiliation(s)
- Yujia Ying
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Huilin Li
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
9
|
Serum albumin cysteine trioxidation is a potential oxidative stress biomarker of type 2 diabetes mellitus. Sci Rep 2020; 10:6475. [PMID: 32296090 PMCID: PMC7160123 DOI: 10.1038/s41598-020-62341-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/11/2020] [Indexed: 01/24/2023] Open
Abstract
Metabolic disorders in T2DM generate multiple sources of free radicals and oxidative stress that accelerate nonenzymatic degenerative protein modifications (DPMs) such as protein oxidation, disrupt redox signaling and physiological function, and remain a major risk factor for clinical diabetic vascular complications. In order to identify potential oxidative biomarkers in the blood plasma of patients with T2DM, we used LC-MS/MS-based proteomics to profile plasma samples from patients with T2DM and healthy controls. The results showed that human serum albumin (HSA) is damaged by irreversible cysteine trioxidation, which can be a potential oxidative stress biomarker for the early diagnosis of T2DM. The quantitative detection of site-specific thiol trioxidation is technically challenging; thus, we developed a sensitive and selective LC-MS/MS workflow that has been used to discover and quantify three unique thiol-trioxidized HSA peptides, ALVLIAFAQYLQQC(SO3H)PFEDHVK (m/z 1241.13), YIC(SO3H)ENQDSISSK (m/z 717.80) and RPC(SO3H)FSALEVDETYVPK (m/z 951.45), in 16 individual samples of healthy controls (n = 8) and individuals with diabetes (n = 8). Targeted quantitative analysis using multiple reaction monitoring mass spectrometry revealed impairment of the peptides with m/z 1241.13, m/z 717.80 and m/z 951.45, with significance (P < 0.02, P < 0.002 and P < 0.03), in individuals with diabetes. The results demonstrated that a set of three HSA thiol-trioxidized peptides, which are irreversibly oxidatively damaged in HSA in the plasma of patients with T2DM, can be important indicators and potential biomarkers of oxidative stress in T2DM.
Collapse
|
10
|
Adav SS, Sze SK. Hypoxia-Induced Degenerative Protein Modifications Associated with Aging and Age-Associated Disorders. Aging Dis 2020; 11:341-364. [PMID: 32257546 PMCID: PMC7069466 DOI: 10.14336/ad.2019.0604] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Aging is an inevitable time-dependent decline of various physiological functions that finally leads to death. Progressive protein damage and aggregation have been proposed as the root cause of imbalance in regulatory processes and risk factors for aging and neurodegenerative diseases. Oxygen is a modulator of aging. The oxygen-deprived conditions (hypoxia) leads to oxidative stress, cellular damage and protein modifications. Despite unambiguous evidence of the critical role of spontaneous non-enzymatic Degenerative Protein Modifications (DPMs) such as oxidation, glycation, carbonylation, carbamylation, and deamidation, that impart deleterious structural and functional protein alterations during aging and age-associated disorders, the mechanism that mediates these modifications is poorly understood. This review summarizes up-to-date information and recent developments that correlate DPMs, aging, hypoxia, and age-associated neurodegenerative diseases. Despite numerous advances in the study of the molecular hallmark of aging, hypoxia, and degenerative protein modifications during aging and age-associated pathologies, a major challenge remains there to dissect the relative contribution of different DPMs in aging (either natural or hypoxia-induced) and age-associated neurodegeneration.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
11
|
Wang X, Swensen AC, Zhang T, Piehowski PD, Gaffrey MJ, Monroe ME, Zhu Y, Dong H, Qian WJ. Accurate Identification of Deamidation and Citrullination from Global Shotgun Proteomics Data Using a Dual-Search Delta Score Strategy. J Proteome Res 2020; 19:1863-1872. [PMID: 32175737 DOI: 10.1021/acs.jproteome.9b00766] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteins with deamidated/citrullinated amino acids play critical roles in the pathogenesis of many human diseases; however, identifying these modifications in complex biological samples has been an ongoing challenge. Herein we present a method to accurately identify these modifications from shotgun proteomics data generated by a deep proteome profiling study of human pancreatic islets obtained by laser capture microdissection. All MS/MS spectra were searched twice using MSGF+ database matching, with and without a dynamic +0.9840 Da mass shift modification on amino acids asparagine, glutamine, and arginine (NQR). Consequently, each spectrum generates two peptide-to-spectrum matches (PSMs) with MSGF+ scores, which were used for the Delta Score calculation. It was observed that all PSMs with positive Delta Score values were clustered with mass errors around 0 ppm, while PSMs with negative Delta Score values were distributed nearly equally within the defined mass error range (20 ppm) for database searching. To estimate false discovery rate (FDR) of modified peptides, a "target-mock" strategy was applied in which data sets were searched against a concatenated database containing "real-modified" (+0.9840 Da) and "mock-modified" (+1.0227 Da) peptide masses. The FDR was controlled to ∼2% using a Delta Score filter value greater than zero. Manual inspection of spectra showed that PSMs with positive Delta Score values contained deamidated/citrullinated fragments in their MS/MS spectra. Many citrullinated sites identified in this study were biochemically confirmed as autoimmunogenic epitopes of autoimmune diseases in literature. The results demonstrated that in situ deamidated/citrullinated peptides can be accurately identified from shotgun tissue proteomics data using this dual-search Delta Score strategy. Raw MS data is available at ProteomeXchange (PXD010150).
Collapse
Affiliation(s)
- Xi Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Hailiang Dong
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
12
|
Bastrup J, Kastaniegaard K, Asuni AA, Volbracht C, Stensballe A. Proteomic and Unbiased Post-Translational Modification Profiling of Amyloid Plaques and Surrounding Tissue in a Transgenic Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2020; 73:393-411. [DOI: 10.3233/jad-190652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Joakim Bastrup
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
- Neuroscience, H. Lundbeck A/S, Valby, Denmark
| | | | | | | | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| |
Collapse
|
13
|
Gallart-Palau X, Tan LM, Serra A, Gao Y, Ho HH, Richards AM, Kandiah N, Chen CP, Kalaria RN, Sze SK. Degenerative protein modifications in the aging vasculature and central nervous system: A problem shared is not always halved. Ageing Res Rev 2019; 53:100909. [PMID: 31116994 DOI: 10.1016/j.arr.2019.100909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/16/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023]
Abstract
Aging influences the pathogenesis and progression of several major diseases affecting both the cardiovascular system (CVS) and central nervous system (CNS). Defining the common molecular features that underpin these disorders in these crucial body systems will likely lead to increased quality of life and improved 'health-span' in the global aging population. Degenerative protein modifications (DPMs) have been strongly implicated in the molecular pathogenesis of several age-related diseases affecting the CVS and CNS, including atherosclerosis, heart disease, dementia syndromes, and stroke. However, these isolated findings have yet to be integrated into a wider framework, which considers the possibility that, despite their distinct features, CVS and CNS disorders may in fact be closely related phenomena. In this work, we review the current literature describing molecular roles of the major age-associated DPMs thought to significantly impact on human health, including carbamylation, citrullination and deamidation. In particular, we focus on data indicating that specific DPMs are shared between multiple age-related diseases in both CVS and CNS settings. By contextualizing these data, we aim to assist future studies in defining the universal mechanisms that underpin both vascular and neurological manifestations of age-related protein degeneration.
Collapse
|
14
|
Krishna S, Yim DGR, Lakshmanan V, Tirumalai V, Koh JLY, Park JE, Cheong JK, Low JL, Lim MJS, Sze SK, Shivaprasad P, Gulyani A, Raghavan S, Palakodeti D, DasGupta R. Dynamic expression of tRNA-derived small RNAs define cellular states. EMBO Rep 2019; 20:e47789. [PMID: 31267708 PMCID: PMC6607006 DOI: 10.15252/embr.201947789] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 01/11/2023] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) have recently emerged as important regulators of protein translation and shown to have diverse biological functions. However, the underlying cellular and molecular mechanisms of tsRNA function in the context of dynamic cell-state transitions remain unclear. Expression analysis of tsRNAs in distinct heterologous cell and tissue models of stem vs. differentiated states revealed a differentiation-dependent enrichment of 5'-tsRNAs. We report the identification of a set of 5'-tsRNAs that is upregulated in differentiating mouse embryonic stem cells (mESCs). Notably, interactome studies with differentially enriched 5'-tsRNAs revealed a switch in their association with "effector" RNPs and "target" mRNAs in different cell states. We demonstrate that specific 5'-tsRNAs can preferentially interact with the RNA-binding protein, Igf2bp1, in the RA-induced differentiated state. This association influences the transcript stability and thereby translation of the pluripotency-promoting factor, c-Myc, thus providing a mechanistic basis for how 5'-tsRNAs can modulate stem cell states in mESCs. Together our study highlights the role of 5'-tsRNAs in defining distinct cell states.
Collapse
Affiliation(s)
- Srikar Krishna
- Centre for Inflammation and Tissue HomeostasisInstitute for Stem Cell Science and Regenerative MedicineBangaloreIndia
- Technologies for the Advancement of ScienceInstitute for Stem Cell Science and Regenerative MedicineBangaloreIndia
- SASTRA UniversityThirumalaisamudramThanjavurIndia
| | - Daniel GR Yim
- Precision OncologyGenome Institute of SingaporeSingapore CitySingapore
| | - Vairavan Lakshmanan
- Technologies for the Advancement of ScienceInstitute for Stem Cell Science and Regenerative MedicineBangaloreIndia
- SASTRA UniversityThirumalaisamudramThanjavurIndia
| | - Varsha Tirumalai
- SASTRA UniversityThirumalaisamudramThanjavurIndia
- National Centre for Biological SciencesBangaloreIndia
| | - Judice LY Koh
- Precision OncologyGenome Institute of SingaporeSingapore CitySingapore
| | - Jung Eun Park
- School of Biological SciencesNanyang Technological UniversitySingapore CitySingapore
| | - Jit Kong Cheong
- Program in Cancer and Stem Cell BiologyDuke‐NUS Medical SchoolSingapore CitySingapore
| | - Joo Leng Low
- Precision OncologyGenome Institute of SingaporeSingapore CitySingapore
| | - Michelle JS Lim
- Precision OncologyGenome Institute of SingaporeSingapore CitySingapore
| | - Siu Kwan Sze
- School of Biological SciencesNanyang Technological UniversitySingapore CitySingapore
| | | | - Akash Gulyani
- Technologies for the Advancement of ScienceInstitute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Srikala Raghavan
- Centre for Inflammation and Tissue HomeostasisInstitute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Dasaradhi Palakodeti
- Technologies for the Advancement of ScienceInstitute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Ramanuj DasGupta
- Precision OncologyGenome Institute of SingaporeSingapore CitySingapore
| |
Collapse
|
15
|
Deolankar SC, Patil AH, Koyangana SG, Subbannayya Y, Prasad TSK, Modi PK. Dissecting Alzheimer's Disease Molecular Substrates by Proteomics and Discovery of Novel Post-translational Modifications. ACTA ACUST UNITED AC 2019; 23:350-361. [DOI: 10.1089/omi.2019.0085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sayali Chandrashekhar Deolankar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Arun H. Patil
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shashanka G. Koyangana
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
16
|
Pedrero-Prieto CM, Flores-Cuadrado A, Saiz-Sánchez D, Úbeda-Bañón I, Frontiñán-Rubio J, Alcaín FJ, Mateos-Hernández L, de la Fuente J, Durán-Prado M, Villar M, Martínez-Marcos A, Peinado JR. Human amyloid-β enriched extracts: evaluation of in vitro and in vivo internalization and molecular characterization. Alzheimers Res Ther 2019; 11:56. [PMID: 31253170 PMCID: PMC6599264 DOI: 10.1186/s13195-019-0513-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Intracerebral inoculation of extracts from post-mortem human Alzheimer's disease brains into mice produces a prion-like spreading effect of amyloid-β. The differences observed between these extracts and the synthetic peptide, in terms of amyloid-β internalization and seed and cell-to-cell transmission of cytosolic protein aggregates, suggest that brain extracts contain key contributors that enhance the prion-like effect of amyloid-β. Nevertheless, these potential partners are still unknown due to the complexity of whole brain extracts. METHODS Herein, we established a method based on sequential detergent solubilization of post-mortem samples of human brains affected by Alzheimer's disease that strongly enrich amyloid-β aggregates by eliminating 92% of the remaining proteins. Internalization of Aβ1-42 from the enriched AD extracts was evaluated in vitro, and internalization of fluorescent-labeled AD extracts was also investigated in vivo. Furthermore, we carried out a molecular characterization of the Aβ-enriched fraction using label-free proteomics, studying the distribution of representative components in the amygdala and the olfactory cortex of additional human AD brain samples by immunohistochemistry. RESULTS Aβ1-42 from the enriched AD extracts are internalized into endothelial cells in vitro after 48 h. Furthermore, accumulation of fluorescent-labeled Aβ-enriched extracts into mouse microglia was observed in vivo after 4 months of intracerebral inoculation. Label-free proteomics (FDR < 0.01) characterization of the amyloid-β-enriched fraction from different post-mortem samples allowed for the identification of more than 130 proteins, several of which were significantly overrepresented (i.e., ANXA5 and HIST1H2BK; p < 0.05) and underrepresented (i.e., COL6A or FN1; p < 0.05) in the samples with Alzheimer's disease. We were also able to identify proteins exclusively observed in Alzheimer's disease (i.e., RNF213) or only detected in samples not affected by the disease (i.e., CNTN1) after the enrichment process. Immunohistochemistry against these proteins in additional tissues revealed their particular distribution in the amygdala and the olfactory cortex in relation to the amyloid-β plaque. CONCLUSIONS Identification and characterization of the unique features of these extracts, in terms of amyloid-β enrichment, identification of the components, in vitro and in vivo cell internalization, and tissue distribution, constitute the best initial tool to further investigate the seeding and transmissibility proposed in the prion-like hypothesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Cristina M. Pedrero-Prieto
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Alicia Flores-Cuadrado
- Department of Medical Sciences, Ciudad Real Medical School; Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Daniel Saiz-Sánchez
- Department of Medical Sciences, Ciudad Real Medical School; Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Isabel Úbeda-Bañón
- Department of Medical Sciences, Ciudad Real Medical School; Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Javier Frontiñán-Rubio
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco J. Alcaín
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Lourdes Mateos-Hernández
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK USA
| | - Mario Durán-Prado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Alino Martínez-Marcos
- Department of Medical Sciences, Ciudad Real Medical School; Neuroplasticity and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Juan R. Peinado
- Department of Medical Sciences, Ciudad Real Medical School, Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
17
|
Adav SS, Park JE, Sze SK. Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer's disease. Mol Brain 2019; 12:8. [PMID: 30691479 PMCID: PMC6350377 DOI: 10.1186/s13041-019-0430-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/22/2019] [Indexed: 11/10/2022] Open
Abstract
Mitochondrial dysfunction is a key feature in both aging and neurodegenerative diseases including Alzheimer’s disease (AD), but the molecular signature that distinguishes pathological changes in the AD from healthy aging in the brain mitochondria remain poorly understood. In order to unveil AD specific mitochondrial dysfunctions, this study adopted a discovery-driven approach with isobaric tag for relative and absolute quantitation (iTRAQ) and label-free quantitative proteomics, and profiled the mitochondrial proteomes in human brain tissues of healthy and AD individuals. LC-MS/MS-based iTRAQ quantitative proteomics approach revealed differentially altered mitochondriomes that distinguished the AD’s pathophysiology-induced from aging-associated changes. Our results showed that dysregulated mitochondrial complexes including electron transport chain (ETC) and ATP-synthase are the potential driver for pathology of the AD. The iTRAQ results were cross-validated with independent label-free quantitative proteomics experiments to confirm that the subunit of electron transport chain complex I, particularly NDUFA4 and NDUFA9 were altered in AD patients, suggesting destabilization of the junction between membrane and matrix arms of mitochondrial complex I impacted the mitochondrial functions in the AD. iTRAQ quantitative proteomics of brain mitochondriomes revealed disparity in healthy aging and age-dependent AD.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore. .,Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
| | - Jung Eun Park
- School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Division of Structural Biology and Biochemistry, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
18
|
Adav SS, Wei J, Terence Y, Ang BCH, Yip LWL, Sze SK. Proteomic Analysis of Aqueous Humor from Primary Open Angle Glaucoma Patients on Drug Treatment Revealed Altered Complement Activation Cascade. J Proteome Res 2018; 17:2499-2510. [DOI: 10.1021/acs.jproteome.8b00244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sunil S. Adav
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| | - Jin Wei
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
- Renmin Hospital of Wuhan University, Wuhan, Hubei 430072, PR China
| | - Yap Terence
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| | - Bryan C. H. Ang
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore 308433
| | - Leonard W. L. Yip
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore 308433
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| |
Collapse
|
19
|
Abstract
To detect disease at an early stage and to develop effective disease treatment therapies, reliable biomarkers of diagnosis, disease progression, and its status remain a research priority. A majority of disease pathologies are primarily associated with different subsets of cells of different tissues, discrete compartments, and areas. These subsets of cells release glycoproteins and specific extracellular vesicles (EVs) including microvesicles and exosomes that carry bioactive cargoes of proteins, nucleic acids, and metabolites. Body fluids like blood plasma are considered as a golden source of disease biomarkers since it contains glycoprotein and EVs released by almost all cell types. The contents of glycoproteome and EV cargo change with cell status, and they act as mirror of cell's intracellular events and status; hence, EVs and glycoproteins are promising disease biomarkers. However, their abundance in blood plasma remains low posing a serious technical problem in their identification and quantification. Until recently, technical advances and exhaustive research devised a technique for either enrichment of plasma glycoprotein or EVs, but no methodologies exist that can enrich and identify both plasma glycoprotein and EVs. To overcome this technical challenge, a method that can eliminate high-abundance entities without depleting disease-modifying molecules is required. Therefore, here we describe the detailed protocol of simultaneous enrichment of glycoproteins and EVs from blood plasma by prolonged ultracentrifugation coupled to electrostatic repulsion-hydrophilic interaction chromatography (PUC-ERLIC) and their identification and quantification by mass spectrometry-based proteomic technique.
Collapse
|
20
|
Adav SS, Subbaiaih RS, Kerk SK, Lee AY, Lai HY, Ng KW, Sze SK, Schmidtchen A. Studies on the Proteome of Human Hair - Identification of Histones and Deamidated Keratins. Sci Rep 2018; 8:1599. [PMID: 29371649 PMCID: PMC5785504 DOI: 10.1038/s41598-018-20041-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/12/2018] [Indexed: 11/30/2022] Open
Abstract
Human hair is laminar-fibrous tissue and an evolutionarily old keratinization product of follicle trichocytes. Studies on the hair proteome can give new insights into hair function and lead to the development of novel biomarkers for hair in health and disease. Human hair proteins were extracted by detergent and detergent-free techniques. We adopted a shotgun proteomics approach, which demonstrated a large extractability and variety of hair proteins after detergent extraction. We found an enrichment of keratin, keratin-associated proteins (KAPs), and intermediate filament proteins, which were part of protein networks associated with response to stress, innate immunity, epidermis development, and the hair cycle. Our analysis also revealed a significant deamidation of keratin type I and II, and KAPs. The hair shafts were found to contain several types of histones, which are well known to exert antimicrobial activity. Analysis of the hair proteome, particularly its composition, protein abundances, deamidated hair proteins, and modification sites, may offer a novel approach to explore potential biomarkers of hair health quality, hair diseases, and aging.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Roopa S Subbaiaih
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Swat Kim Kerk
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Amelia Yilin Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Nanyang Environment and Water Research Institute, (Environmental Chemistry and Materials Centre), Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Nanyang Environment and Water Research Institute, (Environmental Chemistry and Materials Centre), Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
- Skin Research Institute of Singapore, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Artur Schmidtchen
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Division of Dermatology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Brain ureido degenerative protein modifications are associated with neuroinflammation and proteinopathy in Alzheimer's disease with cerebrovascular disease. J Neuroinflammation 2017; 14:175. [PMID: 28865468 PMCID: PMC5581431 DOI: 10.1186/s12974-017-0946-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/23/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Brain degenerative protein modifications (DPMs) are associated with the apparition and progression of dementia, and at the same time, Alzheimer's disease with cerebrovascular disease (AD + CVD) is the most prevalent form of dementia in the elder population. Thus, understanding the role(s) of brain DPMs in this dementia subtype may provide novel insight on the disease pathogenesis and may aid on the development of novel diagnostic and therapeutic tools. Two essential DPMs known to promote inflammation in several human diseases are the ureido DPMs (uDPMs) arginine citrullination and lysine carbamylation, although they have distinct enzymatic and non-enzymatic origins, respectively. Nevertheless, the implication of uDPMs in the neuropathology of dementia remains poorly understood. METHODS In this study, we use the state-of-the-art, ultracentrifugation-electrostatic repulsion hydrophilic interaction chromatography (UC-ERLIC)-coupled mass spectrometry technology to undertake a comparative characterization of uDPMs in the soluble and particulate postmortem brain fractions of subjects diagnosed with AD + CVD and age-matched controls. RESULTS An increase in the formation of uDPMs was observed in all the profiled AD + CVD brains. Citrulline-containing proteins were found more abundant in the soluble fraction of AD + CVD whereas homocitrulline-containing proteins were preferentially abundant in the particulate fraction of AD + CVD brains. Several dementia-specific citrulline residues were also identified in soluble proteins previously categorized as pro-immunogenic, which include the receptor P2X7, alpha-internexin, GFAP, CNP, MBP, and histones. Similarly, diverse dementia-specific homocitrulline residues were also observed in the particulate fractions of AD + CVD in proteins that have been vastly implicated in neuropathology. Intriguingly, we also found that the amino acids immediately flanking arginine residues may specifically influence the increase in protein citrullination. CONCLUSIONS Taken together, these results indicate that uDPMs widely contribute to the pathophysiology of AD + CVD by promoting neuroinflammation and proteinopathy. Furthermore, the obtained results could help to identify disease-associated proteins that can act as potential targets for therapeutic intervention or as novel biomarkers of specific neuropathology.
Collapse
|
22
|
Mangione PP, Mazza G, Gilbertson JA, Rendell NB, Canetti D, Giorgetti S, Frenguelli L, Curti M, Rezk T, Raimondi S, Pepys MB, Hawkins PN, Gillmore JD, Taylor GW, Pinzani M, Bellotti V. Increasing the accuracy of proteomic typing by decellularisation of amyloid tissue biopsies. J Proteomics 2017; 165:113-118. [PMID: 28647518 PMCID: PMC5571436 DOI: 10.1016/j.jprot.2017.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/04/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Diagnosis and treatment of systemic amyloidosis depend on accurate identification of the specific amyloid fibril protein forming the tissue deposits. Confirmation of monoclonal immunoglobulin light chain amyloidosis (AL), requiring cytotoxic chemotherapy, and avoidance of such treatment in non-AL amyloidosis, are particularly important. Proteomic analysis characterises amyloid proteins directly. It complements immunohistochemical staining of amyloid to identify fibril proteins and gene sequencing to identify mutations in the fibril precursors. However, proteomics sometimes detects more than one potentially amyloidogenic protein, especially immunoglobulins and transthyretin which are abundant plasma proteins. Ambiguous results are most challenging in the elderly as both AL and transthyretin (ATTR) amyloidosis are usually present in this group. We have lately described a procedure for tissue decellularisation which retains the structure, integrity and composition of amyloid but removes proteins that are not integrated within the deposits. Here we show that use of this procedure before proteomic analysis eliminates ambiguity and improves diagnostic accuracy. SIGNIFICANCE Unequivocal identification of the protein causing amyloidosis disease is crucial for correct diagnosis and treatment. As a proof of principle, we selected a number of cardiac and fat tissue biopsies from patients with various types of amyloidosis and show that a classical procedure of decellularisation enhances the specificity of the identification of the culprit protein reducing ambiguity and the risk of misdiagnosis.
Collapse
Affiliation(s)
- P Patrizia Mangione
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK; Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Giuseppe Mazza
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Janet A Gilbertson
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Nigel B Rendell
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - Diana Canetti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK; Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; CEINGE and Department of Chemical Sciences, University of Naples, Naples, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Luca Frenguelli
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Marco Curti
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Tamer Rezk
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Mark B Pepys
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK; National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Philip N Hawkins
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Julian D Gillmore
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Graham W Taylor
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - Massimo Pinzani
- Institute for Liver and Digestive Health, University College London, London, UK.
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK; Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy.
| |
Collapse
|
23
|
Nguyen PT, Zottig X, Sebastiao M, Bourgault S. Role of Site-Specific Asparagine Deamidation in Islet Amyloid Polypeptide Amyloidogenesis: Key Contributions of Residues 14 and 21. Biochemistry 2017; 56:3808-3817. [PMID: 28665109 DOI: 10.1021/acs.biochem.7b00209] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deamidation of an asparagine residue is a spontaneous non-enzymatic post-translational modification that results in the conversion of asparagine into a mixture of aspartic acid and isoaspartic acid. This chemical conversion modulates protein conformation and physicochemical properties, which could lead to protein misfolding and aggregation. In this study, we investigated the effects of site-specific Asn deamidation on the amyloidogenicity of the aggregation-prone peptide islet amyloid polypeptide (IAPP). IAPP is a 37-residue peptidic hormone whose deposition as insoluble amyloid fibrils is closely associated with type 2 diabetes. Asn residues were successively substituted with an Asp or isoAsp, and amyloid formation was evaluated by a thioflavin T fluorescence assay, circular dichroism spectroscopy, atomic force microscopy, and transmission electron microscopy. Whereas deamidation at position 21 inhibited IAPP conformational conversion and amyloid formation, the N14D mutation accelerated self-assembly and led to the formation of long and thick amyloid fibrils. In contrast, IAPP was somewhat tolerant to the successive deamidation of Asn residues 22, 31, and 35. Interestingly, a small molar ratio of IAPP deamidated at position 14 promoted the formation of nucleating species and the elongation from unmodified IAPP. Besides, using the rat pancreatic β cell line INS-1E, we observed that site-specific deamidation did not significantly alter IAPP-induced toxicity. These data indicate that Asn deamidation can modulate IAPP amyloid formation and fibril morphology and that the site of modification plays a critical role. Above all, this study reinforces the notion that IAPP amyloidogenesis is governed by precise intermolecular interactions involving specific Asn side chains.
Collapse
Affiliation(s)
- Phuong Trang Nguyen
- Department of Chemistry, University of Québec in Montreal , C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO
| | - Ximena Zottig
- Department of Chemistry, University of Québec in Montreal , C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO
| | - Mathew Sebastiao
- Department of Chemistry, University of Québec in Montreal , C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO
| | - Steve Bourgault
- Department of Chemistry, University of Québec in Montreal , C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada.,Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO
| |
Collapse
|
24
|
Gallart-Palau X, Serra A, Sze SK. LERLIC-MS/MS for In-depth Characterization and Quantification of Glutamine and Asparagine Deamidation in Shotgun Proteomics. J Vis Exp 2017. [PMID: 28448026 DOI: 10.3791/55626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Characterization of protein deamidation is imperative to decipher the role(s) and potentialities of this protein posttranslational modification (PTM) in human pathology and other biochemical contexts. In order to perform characterization of protein deamidation, we have recently developed a novel long-length electrostatic repulsion-hydrophilic interaction chromatography-tandem mass spectrometry (LERLIC-MS/MS) method which can separate the glutamine (Gln) and asparagine (Asn) isoform products of deamidation from model compounds to highly complex biological samples. LERLIC-MS/MS is, therefore, the first shotgun proteomics strategy for the separation and quantification of Gln deamidation isoforms. We also demonstrate, as a novelty, that the sample processing protocol outlined here stabilizes the succinimide intermediate allowing its characterization by LERLIC-MS/MS. Application of LERLIC-MS/MS as shown in this video article can help to elucidate the currently unknown molecular arrays of protein deamidation. Additionally, LERLIC-MS/MS provides further understanding of the enzymatic reactions that encompass deamidation in distinct biological backgrounds.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University
| | - Aida Serra
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University
| | - Siu Kwan Sze
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University;
| |
Collapse
|
25
|
Future of the Genetic Code. Life (Basel) 2017; 7:life7010010. [PMID: 28264473 PMCID: PMC5370410 DOI: 10.3390/life7010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 11/17/2022] Open
Abstract
The methods for establishing synthetic lifeforms with rewritten genetic codes comprising non-canonical amino acids (NCAA) in addition to canonical amino acids (CAA) include proteome-wide replacement of CAA, insertion through suppression of nonsense codon, and insertion via the pyrrolysine and selenocysteine pathways. Proteome-wide reassignments of nonsense codons and sense codons are also under development. These methods enable the application of NCAAs to enrich both fundamental and applied aspects of protein chemistry and biology. Sense codon reassignment to NCAA could incur problems arising from the usage of anticodons as identity elements on tRNA, and possible misreading of NNY codons by UNN anticodons. Evidence suggests that the problem of anticodons as identity elements can be diminished or resolved through removal from the tRNA of all identity elements besides the anticodon, and the problem of misreading of NNY codons by UNN anticodon can be resolved by the retirement of both the UNN anticodon and its complementary NNA codon from the proteome in the event that a restrictive post-transcriptional modification of the UNN anticodon by host enzymes to prevent the misreading cannot be obtained.
Collapse
|
26
|
Adav SS, Sze SK. Insight of brain degenerative protein modifications in the pathology of neurodegeneration and dementia by proteomic profiling. Mol Brain 2016; 9:92. [PMID: 27809929 PMCID: PMC5094070 DOI: 10.1186/s13041-016-0272-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/16/2016] [Indexed: 02/06/2023] Open
Abstract
Dementia is a syndrome associated with a wide range of clinical features including progressive cognitive decline and patient inability to self-care. Due to rapidly increasing prevalence in aging society, dementia now confers a major economic, social, and healthcare burden throughout the world, and has therefore been identified as a public health priority by the World Health Organization. Previous studies have established dementia as a 'proteinopathy' caused by detrimental changes in brain protein structure and function that promote misfolding, aggregation, and deposition as insoluble amyloid plaques. Despite clear evidence that pathological cognitive decline is associated with degenerative protein modifications (DPMs) arising from spontaneous chemical modifications to amino acid side chains, the molecular mechanisms that promote brain DPMs formation remain poorly understood. However, the technical challenges associated with DPM analysis have recently become tractable due to powerful new proteomic techniques that facilitate detailed analysis of brain tissue damage over time. Recent studies have identified that neurodegenerative diseases are associated with the dysregulation of critical repair enzymes, as well as the misfolding, aggregation and accumulation of modified brain proteins. Future studies will further elucidate the mechanisms underlying dementia pathogenesis via the quantitative profiling of the human brain proteome and associated DPMs in distinct phases and subtypes of disease. This review summarizes recent developments in quantitative proteomic technologies, describes how these techniques have been applied to the study of dementia-linked changes in brain protein structure and function, and briefly outlines how these findings might be translated into novel clinical applications for dementia patients. In this review, only spontaneous protein modifications such as deamidation, oxidation, nitration glycation and carbamylation are reviewed and discussed.
Collapse
Affiliation(s)
- Sunil S. Adav
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Siu Kwan Sze
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|