1
|
Liu Q, Huang B, Guiberson NGL, Chen S, Zhu D, Ma G, Ma XM, Crittenden JR, Yu J, Graybiel AM, Dawson TM, Dawson VL, Xiong Y. CalDAG-GEFI acts as a guanine nucleotide exchange factor for LRRK2 to regulate LRRK2 function and neurodegeneration. SCIENCE ADVANCES 2024; 10:eadn5417. [PMID: 39576856 PMCID: PMC11584015 DOI: 10.1126/sciadv.adn5417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). LRRK2 protein contains two enzymatic domains: a GTPase (Roc-COR) and a kinase domain. Disease-causing mutations are found in both domains. Now, studies have focused largely on LRRK2 kinase activity, while attention to its GTPase function is limited. LRRK2 is a guanine nucleotide-binding protein, but the mechanism of direct regulation of its GTPase activity remains unclear and its physiological GEF is not known. Here, we identified CalDAG-GEFI (CDGI) as a physiological GEF for LRRK2. CDGI interacts with LRRK2 and increases its GDP to GTP exchange activity. CDGI modulates LRRK2 cellular functions and LRRK2-induced neurodegeneration in both LRRK2 Drosophila and mouse models. Together, this study identified the physiological GEF for LRRK2 and provides strong evidence that LRRK2 GTPase is regulated by GAPs and GEFs. The LRRK2 GTPase, GAP, or GEF activities have the potential to serve as therapeutic targets, which is distinct from the direct LRRK2 kinase inhibition.
Collapse
Affiliation(s)
- Qinfang Liu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Bingxu Huang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Noah Guy Lewis Guiberson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shifan Chen
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Dong Zhu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Gang Ma
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Jill R. Crittenden
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jianzhong Yu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Ann M. Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130, USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 70130, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yulan Xiong
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
2
|
Sosero YL, Bandres-Ciga S, Ferwerda B, Tocino MTP, Belloso DR, Gómez-Garre P, Faouzi J, Taba P, Pavelka L, Marques TM, Gomes CPC, Kolodkin A, May P, Milanowski LM, Wszolek ZK, Uitti RJ, Heutink P, van Hilten JJ, Simon DK, Eberly S, Alvarez I, Krohn L, Yu E, Freeman K, Rudakou U, Ruskey JA, Asayesh F, Menéndez-Gonzàlez M, Pastor P, Ross OA, Krüger R, Corvol JC, Koks S, Mir P, De Bie RM, Iwaki H, Gan-Or Z. Dopamine Pathway and Parkinson's Risk Variants Are Associated with Levodopa-Induced Dyskinesia. Mov Disord 2024; 39:1773-1783. [PMID: 39132902 PMCID: PMC11490412 DOI: 10.1002/mds.29960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2. OBJECTIVES Our goal was to investigate the effects of genetic variants on risk and time to LID. METHODS We performed a genome-wide association study (GWAS) and analyses focused on GBA1 and LRRK2 variants. We also calculated polygenic risk scores (PRS) including risk variants for PD and variants in genes involved in the dopaminergic transmission pathway. To test the influence of genetics on LID risk we used logistic regression, and to examine its impact on time to LID we performed Cox regression including 1612 PD patients with and 3175 without LID. RESULTS We found that GBA1 variants were associated with LID risk (odds ratio [OR] = 1.65; 95% confidence interval [CI], 1.21-2.26; P = 0.0017) and LRRK2 variants with reduced time to LID onset (hazard ratio [HR] = 1.42; 95% CI, 1.09-1.84; P = 0.0098). The fourth quartile of the PD PRS was associated with increased LID risk (ORfourth_quartile = 1.27; 95% CI, 1.03-1.56; P = 0.0210). The third and fourth dopamine pathway PRS quartiles were associated with a reduced time to development of LID (HRthird_quartile = 1.38; 95% CI, 1.07-1.79; P = 0.0128; HRfourth_quartile = 1.38; 95% CI = 1.06-1.78; P = 0.0147). CONCLUSIONS This study suggests that variants implicated in PD and in the dopaminergic transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to examine how these findings can inform clinical care. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yuri L. Sosero
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes on Health, Bethesda, MD, USA
| | - Bart Ferwerda
- Department of Clinical Epidemiology and Biostatistics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Maria T. P. Tocino
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Dìaz R. Belloso
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pilar Gómez-Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Johann Faouzi
- Sorbonne Université, Paris Brain Institute – ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France
- CREST, ENSAI, Campus de Ker-Lann, 51 Rue Blaise Pascal – BP 37203 35172 Bruz Cedex, France
| | - Pille Taba
- Department of Neurology and Neurosurgery, Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
| | - Lukas Pavelka
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Strassen, Luxembourg
| | - Tainà M. Marques
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Clarissa P. C. Gomes
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexey Kolodkin
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Patrick May
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Strassen, Luxembourg
| | - Lukasz M Milanowski
- Department of Neurology Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | | | - Ryan J. Uitti
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | | | | | - David K. Simon
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Shirley Eberly
- Department of Biostatistics and Computational Biology at the University of Rochester School of Medicine and Dentistry
| | - Ignacio Alvarez
- Department of Neurology, Hospital Universitari Mutua de Terrassa, Barcelona, Spain
| | - Lynne Krohn
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Kathryn Freeman
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Uladzislau Rudakou
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Jennifer A. Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Manuel Menéndez-Gonzàlez
- Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Calle Julián Clavería s/n, 33006 Oviedo, Spain
- Department of Neurology, Hospital Universitario Central de Asturias, Avenida Roma s/n, 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida Roma s/n, 33011 Oviedo, Spain
| | - Pau Pastor
- Department of Neurology, Hospital Universitari Mutua de Terrassa, Barcelona, Spain
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Owen A. Ross
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Strassen, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-Christophe Corvol
- CREST, ENSAI, Campus de Ker-Lann, 51 Rue Blaise Pascal – BP 37203 35172 Bruz Cedex, France
| | - Sulev Koks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Rob M.A. De Bie
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Hirotaka Iwaki
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes on Health, Bethesda, MD, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, District of Columbia, USA
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Hutny M, Hofman J, Klimkowicz-Mrowiec A, Gorzkowska A. Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia-Literature Review. J Clin Med 2021; 10:jcm10194377. [PMID: 34640395 PMCID: PMC8509231 DOI: 10.3390/jcm10194377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Levodopa remains the primary drug for controlling motor symptoms in Parkinson’s disease through the whole course, but over time, complications develop in the form of dyskinesias, which gradually become more frequent and severe. These abnormal, involuntary, hyperkinetic movements are mainly characteristic of the ON phase and are triggered by excess exogenous levodopa. They may also occur during the OFF phase, or in both phases. Over the past 10 years, the issue of levodopa-induced dyskinesia has been the subject of research into both the substrate of this pathology and potential remedial strategies. The purpose of the present study was to review the results of recent research on the background and treatment of dyskinesia. To this end, databases were reviewed using a search strategy that included both relevant keywords related to the topic and appropriate filters to limit results to English language literature published since 2010. Based on the selected papers, the current state of knowledge on the morphological, functional, genetic and clinical features of levodopa-induced dyskinesia, as well as pharmacological, genetic treatment and other therapies such as deep brain stimulation, are described.
Collapse
Affiliation(s)
- Michał Hutny
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
- Correspondence:
| | - Jagoda Hofman
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Aleksandra Klimkowicz-Mrowiec
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Medical College, Jagiellonian University, 30-688 Kraków, Poland;
| | - Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences, School of Medicine, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
4
|
Tirozzi A, Modugno N, Palomba NP, Ferese R, Lombardi A, Olivola E, Gialluisi A, Esposito T. Analysis of Genetic and Non-genetic Predictors of Levodopa Induced Dyskinesia in Parkinson's Disease. Front Pharmacol 2021; 12:640603. [PMID: 33995045 PMCID: PMC8118664 DOI: 10.3389/fphar.2021.640603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Levodopa (L-Dopa), representing the therapeutic gold standard for the treatment of Parkinson disease (PD), is associated with side effects like L-Dopa induced dyskinesia (LID). Although several non-genetic and genetic factors have been investigated for association with LID risk, contrasting results were reported and its genetic basis remain largely unexplored. Methods: In an Italian PD cohort (N = 460), we first performed stepwise multivariable Cox Proportional Hazard regressions modeling LID risk as a function of gender, PD familiarity, clinical subtype, weight, age-at-onset (AAO) and years-of-disease (YOD), L-Dopa dosage, severity scores, and scales assessing motor (UPDRS-III), cognitive (MoCA), and non-motor symptoms (NMS). Then we enriched the resulting model testing two variants—rs356219 and D4S3481—increasing the expression of the SNCA gene, previously suggested as a potential mechanism of LID onset. To account for more complex (non-linear) relations of these variables with LID risk, we built a survival random forest (SRF) algorithm including all the covariates mentioned above. Results: Among tested variables (N = 460 case-complete, 211 LID events; total follow-up 31,361 person-months, median 61 months), disease duration showed significant association (p < 0.005), with 6 (3–8)% decrease of LID risk per additional YOD. Other nominally significant associations were observed for gender—with women showing a 39 (5–82)% higher risk of LID—and AAO, with 2 (0.3–3)% decrease of risk for each year increase of PD onset. The SRF algorithm confirmed YOD as the most prominent feature influencing LID risk, with a variable importance of about 8% in the model. In genetic models, no statistically significant effects on incident LID risk was observed. Conclusions: This evidence supports a protective effect of late PD onset and gender (men) against LID risk and suggests a new independent protective factor, YOD. Moreover, it underlines the importance of personalized therapeutic protocols for PD patients in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Teresa Esposito
- IRCCS Neuromed, Pozzilli, Italy.,Institute of Genetics and Biophysics, CNR, Naples, Italy
| |
Collapse
|
5
|
Marchand A, Drouyer M, Sarchione A, Chartier-Harlin MC, Taymans JM. LRRK2 Phosphorylation, More Than an Epiphenomenon. Front Neurosci 2020; 14:527. [PMID: 32612495 PMCID: PMC7308437 DOI: 10.3389/fnins.2020.00527] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene are linked to autosomal dominant Parkinson's disease (PD), and genetic variations at the LRRK2 locus are associated with an increased risk for sporadic PD. This gene encodes a kinase that is physiologically multiphosphorylated, including clusters of both heterologous phosphorylation and autophosphorylation sites. Several pieces of evidence indicate that LRRK2's phosphorylation is important for its pathological and physiological functioning. These include a reduced LRRK2 heterologous phosphorylation in PD brains or after pharmacological inhibition of LRRK2 kinase activity as well as the appearance of subcellular LRRK2 accumulations when this protein is dephosphorylated at heterologous phosphosites. Nevertheless, the regulatory mechanisms governing LRRK2 phosphorylation levels and the cellular consequences of changes in LRRK2 phosphorylation remain incompletely understood. In this review, we present current knowledge on LRRK2 phosphorylation, LRRK2 phosphoregulation, and how LRRK2 phosphorylation changes affect cellular processes that may ultimately be linked to PD mechanisms.
Collapse
Affiliation(s)
- Antoine Marchand
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Matthieu Drouyer
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Alessia Sarchione
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Marie-Christine Chartier-Harlin
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Jean-Marc Taymans
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| |
Collapse
|
6
|
Elmatboly AM, Sherif AM, Deeb DA, Benmelouka A, Bin-Jumah MN, Aleya L, Abdel-Daim MM. The impact of proteostasis dysfunction secondary to environmental and genetic causes on neurodegenerative diseases progression and potential therapeutic intervention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11461-11483. [PMID: 32072427 DOI: 10.1007/s11356-020-07914-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Aggregation of particular proteins in the form of inclusion bodies or plaques followed by neuronal death is a hallmark of neurodegenerative proteopathies such as primary Parkinsonism, Alzheimer's disease, Lou Gehrig's disease, and Huntington's chorea. Complex polygenic and environmental factors implicated in these proteopathies. Accumulation of proteins in these disorders indicates a substantial disruption in protein homeostasis (proteostasis). Proteostasis or cellular proteome homeostasis is attained by the synchronization of a group of cellular mechanisms called the proteostasis network (PN), which is responsible for the stability of the proteome and achieves the equilibrium between synthesis, folding, and degradation of proteins. In this review, we will discuss the different types of PN and the impact of PN component dysfunction on the four major neurodegenerative diseases mentioned earlier. Graphical abstract.
Collapse
Affiliation(s)
| | - Ahmed M Sherif
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Dalia A Deeb
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Amira Benmelouka
- Faculty of Medicine, University of Algiers, Sidi M'Hamed, Algeria
| | - May N Bin-Jumah
- Biology Department, College Of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
7
|
Liu M, Shen C, Wang C. Long Noncoding RNA LINC01133 Confers Tumor-Suppressive Functions in Ovarian Cancer by Regulating Leucine-Rich Repeat Kinase 2 as an miR-205 Sponge. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2323-2339. [DOI: 10.1016/j.ajpath.2019.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/30/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023]
|
8
|
Mellone M, Zianni E, Stanic J, Campanelli F, Marino G, Ghiglieri V, Longhi A, Thiolat ML, Li Q, Calabresi P, Bezard E, Picconi B, Di Luca M, Gardoni F. NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology. Neurobiol Dis 2019; 121:338-349. [DOI: 10.1016/j.nbd.2018.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022] Open
|
9
|
Kalinderi K, Papaliagkas V, Fidani L. Pharmacogenetics and levodopa induced motor complications. Int J Neurosci 2018; 129:384-392. [DOI: 10.1080/00207454.2018.1538993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kallirhoe Kalinderi
- Department of General Biology, Medical School Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Papaliagkas
- Laboratory of Clinical Neurophysiology, Aristotle University of Thessaloniki AHEPA University Hospital, Thessaloniki, Greece
| | - Liana Fidani
- Department of General Biology, Medical School Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Junqueira SC, Centeno EGZ, Wilkinson KA, Cimarosti H. Post-translational modifications of Parkinson's disease-related proteins: Phosphorylation, SUMOylation and Ubiquitination. Biochim Biophys Acta Mol Basis Dis 2018; 1865:2001-2007. [PMID: 30412791 DOI: 10.1016/j.bbadis.2018.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the nigrostriatal pathway. The etiology of PD remains unclear and most cases are sporadic, however genetic mutations in more than 20 proteins have been shown to cause inherited forms of PD. Many of these proteins are linked to mitochondrial function, defects in which are a central characteristic of PD. Post-translational modifications (PTMs) allow rapid and reversible control over protein function. Largely focussing on mitochondrial dysfunction in PD, here we review findings on the PTMs phosphorylation, SUMOylation and ubiquitination that have been shown to affect PD-related proteins.
Collapse
Affiliation(s)
- Stella C Junqueira
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Eduarda G Z Centeno
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, UK.
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, Brazil.
| |
Collapse
|