1
|
Barthelson K, Protzman RA, Snel MF, Hemsley K, Lardelli M. Multi-omics analyses of early-onset familial Alzheimer's disease and Sanfilippo syndrome zebrafish models reveal commonalities in disease mechanisms. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167651. [PMID: 39798820 DOI: 10.1016/j.bbadis.2024.167651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII) causes childhood dementia, while Alzheimer's disease is the most common type of adult-onset dementia. There is no cure for either of these diseases, and therapeutic options are extremely limited. Increasing evidence suggests commonalities in the pathogenesis of these diseases. However, a direct molecular-level comparison of these diseases has never been performed. Here, we exploited the power of zebrafish reproduction (large families of siblings from single mating events raised together in consistent environments) to conduct sensitive, internally controlled, comparative transcriptome and proteome analyses of zebrafish models of early-onset familial Alzheimer's disease (EOfAD, psen1Q96_K97del/+) and MPSIIIB (nagluA603fs/A603fs) within single families. We examined larval zebrafish (7 days post fertilisation), representing early disease stages. We also examined the brains of 6-month-old zebrafish, which are approximately equivalent to young adults in humans. We identified substantially more differentially expressed genes and pathways in MPS III zebrafish than in EOfAD-like zebrafish. This is consistent with MPS III being a rapidly progressing and earlier onset form of dementia. Similar changes in expression were detected between the two disease models in gene sets representing extracellular matrix receptor interactions in larvae, and the ribosome and lysosome pathways in 6-month-old adult brains. Cell type-specific changes were detected in MPSIIIB brains at 6 months of age, likely reflecting significant disturbances of oligodendrocyte, neural stem cell, and inflammatory cell functions and/or numbers. Our 'omics analyses have illuminated similar disease pathways between EOfAD and MPS III indicating where efforts to find mutually effective therapeutic strategies can be targeted.
Collapse
Affiliation(s)
- Karissa Barthelson
- Childhood Dementia Research Group, College of Medicine & Public Health, Flinders Health and Medical Research Institute, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia; Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.
| | - Rachael A Protzman
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Marten F Snel
- Proteomics, Metabolomics and MS-Imaging Facility, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; School of Physics, Chemistry and Earth Science, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Kim Hemsley
- Childhood Dementia Research Group, College of Medicine & Public Health, Flinders Health and Medical Research Institute, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Baer L, Barthelson K, Postlethwait JH, Adelson DL, Pederson SM, Lardelli M. Differential allelic representation (DAR) identifies candidate eQTLs and improves transcriptome analysis. PLoS Comput Biol 2024; 20:e1011868. [PMID: 38346074 PMCID: PMC10890730 DOI: 10.1371/journal.pcbi.1011868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
In comparisons between mutant and wild-type genotypes, transcriptome analysis can reveal the direct impacts of a mutation, together with the homeostatic responses of the biological system. Recent studies have highlighted that, when the effects of homozygosity for recessive mutations are studied in non-isogenic backgrounds, genes located proximal to the mutation on the same chromosome often appear over-represented among those genes identified as differentially expressed (DE). One hypothesis suggests that DE genes chromosomally linked to a mutation may not reflect functional responses to the mutation but, instead, result from an unequal distribution of expression quantitative trait loci (eQTLs) between sample groups of mutant or wild-type genotypes. This is problematic because eQTL expression differences are difficult to distinguish from genes that are DE due to functional responses to a mutation. Here we show that chromosomally co-located differentially expressed genes (CC-DEGs) are also observed in analyses of dominant mutations in heterozygotes. We define a method and a metric to quantify, in RNA-sequencing data, localised differential allelic representation (DAR) between those sample groups subjected to differential expression analysis. We show how the DAR metric can predict regions prone to eQTL-driven differential expression, and how it can improve functional enrichment analyses through gene exclusion or weighting-based approaches. Advantageously, this improved ability to identify probable eQTLs also reveals examples of CC-DEGs that are likely to be functionally related to a mutant phenotype. This supports a long-standing prediction that selection for advantageous linkage disequilibrium influences chromosome evolution. By comparing the genomes of zebrafish (Danio rerio) and medaka (Oryzias latipes), a teleost with a conserved ancestral karyotype, we find possible examples of chromosomal aggregation of CC-DEGs during evolution of the zebrafish lineage. Our method for DAR analysis requires only RNA-sequencing data, facilitating its application across new and existing datasets.
Collapse
Affiliation(s)
- Lachlan Baer
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Karissa Barthelson
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - David L. Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen M. Pederson
- Black Ochre Data Labs, Indigenous Genomics, Telethon Kids Institute, Adelaide, South Australia, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michael Lardelli
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Lardelli M, Baer L, Hin N, Allen A, Pederson SM, Barthelson K. The Use of Zebrafish in Transcriptome Analysis of the Early Effects of Mutations Causing Early Onset Familial Alzheimer's Disease and Other Inherited Neurodegenerative Conditions. J Alzheimers Dis 2024; 99:S367-S381. [PMID: 37742650 DOI: 10.3233/jad-230522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The degree to which non-human animals can be used to model Alzheimer's disease is a contentious issue, particularly as there is still widespread disagreement regarding the pathogenesis of this neurodegenerative dementia. The currently popular transgenic models are based on artificial expression of genes mutated in early onset forms of familial Alzheimer's disease (EOfAD). Uncertainty regarding the veracity of these models led us to focus on heterozygous, single mutations of endogenous genes (knock-in models) as these most closely resemble the genetic state of humans with EOfAD, and so incorporate the fewest assumptions regarding pathological mechanism. We have generated a number of lines of zebrafish bearing EOfAD-like and non-EOfAD-like mutations in genes equivalent to human PSEN1, PSEN2, and SORL1. To analyze the young adult brain transcriptomes of these mutants, we exploited the ability of zebrafish to produce very large families of simultaneous siblings composed of a variety of genotypes and raised in a uniform environment. This "intra-family" analysis strategy greatly reduced genetic and environmental "noise" thereby allowing detection of subtle changes in gene sets after bulk RNA sequencing of entire brains. Changes to oxidative phosphorylation were predicted for all EOfAD-like mutations in the three genes studied. Here we describe some of the analytical lessons learned in our program combining zebrafish genome editing with transcriptomics to understand the molecular pathologies of neurodegenerative disease.
Collapse
Affiliation(s)
- Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, The University of Adelaide, Adelaide, SA, Australia
| | - Lachlan Baer
- Alzheimer's Disease Genetics Laboratory, The University of Adelaide, Adelaide, SA, Australia
| | - Nhi Hin
- Alkahest Inc., San Carlos, CA, USA
| | - Angel Allen
- Alzheimer's Disease Genetics Laboratory, The University of Adelaide, Adelaide, SA, Australia
| | - Stephen Martin Pederson
- Black Ochre Data Labs, Indigenous Genomics, Telethon Kinds Institute, Adelaide, SA, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Karissa Barthelson
- Alzheimer's Disease Genetics Laboratory, The University of Adelaide, Adelaide, SA, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
4
|
Liu Y. Zebrafish as a Model Organism for Studying Pathologic Mechanisms of Neurodegenerative Diseases and other Neural Disorders. Cell Mol Neurobiol 2023; 43:2603-2620. [PMID: 37004595 PMCID: PMC11410131 DOI: 10.1007/s10571-023-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
Zebrafish are widely considered an excellent vertebrate model for studying the pathogenesis of human diseases because of their transparency of embryonic development, easy breeding, high similarity with human genes, and easy gene manipulation. Previous studies have shown that zebrafish as a model organism provides an ideal operating platform for clarifying the pathological and molecular mechanisms of neurodegenerative diseases and related human diseases. This review mainly summarizes the achievements and prospects of zebrafish used as model organisms in the research of neurodegenerative diseases and other human diseases related to the nervous system in recent years. In the future study of human disease mechanisms, the application of the zebrafish model will continue to provide a valuable operating platform and technical support for investigating and finding better prevention and treatment of these diseases, which has broad application prospects and practical significance. Zebrafish models used in neurodegenerative diseases and other diseases related to the nervous system.
Collapse
Affiliation(s)
- Yanying Liu
- Department of Basic Medicine, School of Nursing and Health, Qingdao Huanghai University, Qingdao, 266427, China.
| |
Collapse
|
5
|
Baer L, Barthelson K, Postlethwait J, Adelson D, Pederson S, Lardelli M. Differential allelic representation (DAR) identifies candidate eQTLs and improves transcriptome analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530865. [PMID: 36945478 PMCID: PMC10028786 DOI: 10.1101/2023.03.02.530865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
In comparisons between mutant and wild-type genotypes, transcriptome analysis can reveal the direct impacts of a mutation, together with the homeostatic responses of the biological system. Recent studies have highlighted that, when homozygous mutations are studied in non-isogenic backgrounds, genes from the same chromosome as a mutation often appear over-represented among differentially expressed (DE) genes. One hypothesis suggests that DE genes chromosomally linked to a mutation may not reflect true biological responses to the mutation but, instead, result from differences in representation of expression quantitative trait loci (eQTLs) between sample groups selected on the basis of mutant or wild-type genotype. This is problematic when inclusion of spurious DE genes in a functional enrichment study results in incorrect inferences of mutation effect. Here we show that chromosomally co-located differentially expressed genes (CC-DEGs) can also be observed in analyses of dominant mutations in heterozygotes. We define a method and a metric to quantify, in RNA-sequencing data, localised differential allelic representation (DAR) between groups of samples subject to differential expression analysis. We show how the DAR metric can predict regions prone to eQTL-driven differential expression, and how it can improve functional enrichment analyses through gene exclusion or weighting of gene-level rankings. Advantageously, this improved ability to identify probable eQTLs also reveals examples of CC-DEGs that are likely to be functionally related to a mutant phenotype. This supports a long-standing prediction that selection for advantageous linkage disequilibrium influences chromosome evolution. By comparing the genomes of zebrafish (Danio rerio) and medaka (Oryzias latipes), a teleost with a conserved ancestral karyotype, we find possible examples of chromosomal aggregation of CC-DEGs during evolution of the zebrafish lineage. The DAR metric provides a solid foundation for addressing the eQTL issue in new and existing datasets because it relies solely on RNA-sequencing data.
Collapse
Affiliation(s)
- Lachlan Baer
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Karissa Barthelson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | | | - David Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stephen Pederson
- Black Ochre Data Labs, Indigenous Genomics, Telethon Kids Institute, Adelaide, SA, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Michael Lardelli
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Barthelson K, Newman M, Lardelli M. Brain transcriptomes of zebrafish and mouse Alzheimer's disease knock-in models imply early disrupted energy metabolism. Dis Model Mech 2021; 15:273566. [PMID: 34842276 PMCID: PMC8807579 DOI: 10.1242/dmm.049187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Energy production is the most fundamentally important cellular activity supporting all other functions, particularly in highly active organs, such as brains. Here, we summarise transcriptome analyses of young adult (pre-disease) brains from a collection of 11 early-onset familial Alzheimer's disease (EOFAD)-like and non-EOFAD-like mutations in three zebrafish genes. The one cellular activity consistently predicted as affected by only the EOFAD-like mutations is oxidative phosphorylation, which produces most of the energy of the brain. All the mutations were predicted to affect protein synthesis. We extended our analysis to knock-in mouse models of APOE alleles and found the same effect for the late onset Alzheimer's disease risk allele ε4. Our results support a common molecular basis for the initiation of the pathological processes leading to both early and late onset forms of Alzheimer's disease, and illustrate the utility of zebrafish and knock-in single EOFAD mutation models for understanding the causes of this disease. Summary: Young adult zebrafish mutants and a mouse model of a genetic variant promoting early- and late-onset Alzheimer's disease, respectively, share changes in brain gene expression, indicating disturbance of oxidative phosphorylation.
Collapse
Affiliation(s)
- Karissa Barthelson
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Lu D, Ma R, Xie Q, Xu Z, Yuan J, Ren M, Li J, Li Y, Wang J. Application and advantages of zebrafish model in the study of neurovascular unit. Eur J Pharmacol 2021; 910:174483. [PMID: 34481878 DOI: 10.1016/j.ejphar.2021.174483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/15/2022]
Abstract
The concept of "Neurovascular Unit" (NVU) was put forward, so that the research goal of Central Nervous System (CNS) diseases gradually transitioned from a single neuron to the structural and functional integrity of the NVU. Zebrafish has the advantages of high homology with human genes, strong reproductive capacity and visualization of neural circuits, so it has become an emerging model organism for NVU research and has been applied to a variety of CNS diseases. Based on CNKI (https://www.cnki.net/) and PubMed (https://pubmed.ncbi.nlm.nih.gov/about/) databases, the author of this article sorted out the relevant literature, analyzed the construction of a zebrafish model of various CNS diseases,and the use of diagrams showed the application of zebrafish in the NVU, revealed its relationship, which would provide new methods and references for the treatment and research of CNS diseases.
Collapse
Affiliation(s)
- Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
8
|
Hin N, Newman M, Pederson S, Lardelli M. Iron Responsive Element-Mediated Responses to Iron Dyshomeostasis in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1597-1630. [PMID: 34719489 DOI: 10.3233/jad-210200] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Iron trafficking and accumulation is associated with Alzheimer's disease (AD) pathogenesis. However, the role of iron dyshomeostasis in early disease stages is uncertain. Currently, gene expression changes indicative of iron dyshomeostasis are not well characterized, making it difficult to explore these in existing datasets. OBJECTIVE To identify sets of genes predicted to contain iron responsive elements (IREs) and use these to explore possible iron dyshomeostasis-associated gene expression responses in AD. METHODS Comprehensive sets of genes containing predicted IRE or IRE-like motifs in their 3' or 5' untranslated regions (UTRs) were identified in human, mouse, and zebrafish reference transcriptomes. Further analyses focusing on these genes were applied to a range of cultured cell, human, mouse, and zebrafish gene expression datasets. RESULTS IRE gene sets are sufficiently sensitive to distinguish not only between iron overload and deficiency in cultured cells, but also between AD and other pathological brain conditions. Notably, changes in IRE transcript abundance are among the earliest observable changes in zebrafish familial AD (fAD)-like brains, preceding other AD-typical pathologies such as inflammatory changes. Unexpectedly, while some IREs in the 3' untranslated regions of transcripts show significantly increased stability under iron deficiency in line with current assumptions, many such transcripts instead display decreased stability, indicating that this is not a generalizable paradigm. CONCLUSION Our results reveal IRE gene expression changes as early markers of the pathogenic process in fAD and are consistent with iron dyshomeostasis as an important driver of this disease. Our work demonstrates how differences in the stability of IRE-containing transcripts can be used to explore and compare iron dyshomeostasis-associated gene expression responses across different species, tissues, and conditions.
Collapse
Affiliation(s)
- Nhi Hin
- South Australian Genomics Centre, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia.,Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Stephen Pederson
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA, Australia
| |
Collapse
|
9
|
Barthelson K, Pederson SM, Newman M, Lardelli M. Brain Transcriptome Analysis of a Protein-Truncating Mutation in Sortilin-Related Receptor 1 Associated With Early-Onset Familial Alzheimer's Disease Indicates Early Effects on Mitochondrial and Ribosome Function. J Alzheimers Dis 2021; 79:1105-1119. [PMID: 33386808 DOI: 10.3233/jad-201383] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The early cellular stresses leading to Alzheimer's disease (AD) remain poorly understood because we cannot access living, asymptomatic human AD brains for detailed molecular analyses. Sortilin-related receptor 1 (SORL1) encodes a multi-domain receptor protein genetically associated with both rare, early-onset familial AD (EOfAD) and common, sporadic, late-onset AD (LOAD). SORL1 protein has been shown to act in the trafficking of the amyloid β A4 precursor protein (AβPP) that is proteolysed to form one of the pathological hallmarks of AD, amyloid-β (Aβ) peptide. However, other functions of SORL1 in AD are less well understood. OBJECTIVE To investigate the effects of heterozygosity for an EOfAD-like mutation in SORL1 on the brain transcriptome of young-adult mutation carriers using zebrafish as a model organism. METHODS We performed targeted mutagenesis to generate an EOfAD-like mutation in the zebrafish orthologue of SORL1 and performed RNA-sequencing on mRNA isolated from the young adult brains of siblings in a family of fish either wild type (non-mutant) or heterozygous for the EOfAD-like mutation. RESULTS We identified subtle differences in gene expression indicating changes in mitochondrial and ribosomal function in the mutant fish. These changes appear to be independent of changes in mitochondrial content or the expression of AβPP-related proteins in zebrafish. CONCLUSION These findings provided evidence supporting that EOfAD mutations in SORL1 affect mitochondrial and ribosomal function and provide the basis for future investigation elucidating the nature of these effects.
Collapse
Affiliation(s)
- Karissa Barthelson
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Stephen Martin Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| |
Collapse
|
10
|
Barthelson K, Dong Y, Newman M, Lardelli M. PRESENILIN 1 Mutations Causing Early-Onset Familial Alzheimer's Disease or Familial Acne Inversa Differ in Their Effects on Genes Facilitating Energy Metabolism and Signal Transduction. J Alzheimers Dis 2021; 82:327-347. [PMID: 34024832 DOI: 10.3233/jad-210128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The most common cause of early-onset familial Alzheimer's disease (EOfAD) is mutations in PRESENILIN 1 (PSEN1) allowing production of mRNAs encoding full-length, but mutant, proteins. In contrast, a single known frameshift mutation in PSEN1 causes familial acne inversa (fAI) without EOfAD. The molecular consequences of heterozygosity for these mutation types, and how they cause completely different diseases, remains largely unexplored. OBJECTIVE To analyze brain transcriptomes of young adult zebrafish to identify similarities and differences in the effects of heterozygosity for psen1 mutations causing EOfAD or fAI. METHODS RNA sequencing was performed on mRNA isolated from the brains of a single family of 6-month-old zebrafish siblings either wild type or possessing a single, heterozygous EOfAD-like or fAI-like mutation in their endogenous psen1 gene. RESULTS Both mutations downregulate genes encoding ribosomal subunits, and upregulate genes involved in inflammation. Genes involved in energy metabolism appeared significantly affected only by the EOfAD-like mutation, while genes involved in Notch, Wnt and neurotrophin signaling pathways appeared significantly affected only by the fAI-like mutation. However, investigation of direct transcriptional targets of Notch signaling revealed possible increases in γ-secretase activity due to heterozygosity for either psen1 mutation. Transcriptional adaptation due to the fAI-like frameshift mutation was evident. CONCLUSION We observed both similar and contrasting effects on brain transcriptomes of the heterozygous EOfAD-like and fAI-like mutations. The contrasting effects may illuminate how these mutation types cause distinct diseases.
Collapse
Affiliation(s)
- Karissa Barthelson
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Yang Dong
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| |
Collapse
|
11
|
Barthelson K, Baer L, Dong Y, Hand M, Pujic Z, Newman M, Goodhill GJ, Richards RI, Pederson SM, Lardelli M. Zebrafish Chromosome 14 Gene Differential Expression in the fmr1 h u2787 Model of Fragile X Syndrome. Front Genet 2021; 12:625466. [PMID: 34135935 PMCID: PMC8203322 DOI: 10.3389/fgene.2021.625466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Zebrafish represent a valuable model for investigating the molecular and cellular basis of Fragile X syndrome (FXS). Reduced expression of the zebrafish FMR1 orthologous gene, fmr1, causes developmental and behavioural phenotypes related to FXS. Zebrafish homozygous for the hu2787 non-sense mutation allele of fmr1 are widely used to model FXS, although FXS-relevant phenotypes seen from morpholino antisense oligonucleotide (morpholino) suppression of fmr1 transcript translation were not observed when hu2787 was first described. The subsequent discovery of transcriptional adaptation (a form of genetic compensation), whereby mutations causing non-sense-mediated decay of transcripts can drive compensatory upregulation of homologous transcripts independent of protein feedback loops, suggested an explanation for the differences reported. We examined the whole-embryo transcriptome effects of homozygosity for fmr1 h u2787 at 2 days post fertilisation. We observed statistically significant changes in expression of a number of gene transcripts, but none from genes showing sequence homology to fmr1. Enrichment testing of differentially expressed genes implied effects on lysosome function and glycosphingolipid biosynthesis. The majority of the differentially expressed genes are located, like fmr1, on Chromosome 14. Quantitative PCR tests did not support that this was artefactual due to changes in relative chromosome abundance. Enrichment testing of the "leading edge" differentially expressed genes from Chromosome 14 revealed that their co-location on this chromosome may be associated with roles in brain development and function. The differential expression of functionally related genes due to mutation of fmr1, and located on the same chromosome as fmr1, is consistent with R.A. Fisher's assertion that the selective advantage of co-segregation of particular combinations of alleles of genes will favour, during evolution, chromosomal rearrangements that place them in linkage disequilibrium on the same chromosome. However, we cannot exclude that the apparent differential expression of genes on Chromosome 14 genes was, (if only in part), caused by differences between the expression of alleles of genes unrelated to the effects of the fmr1 h u2787 mutation and made manifest due to the limited, but non-zero, allelic diversity between the genotypes compared.
Collapse
Affiliation(s)
- Karissa Barthelson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Lachlan Baer
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Yang Dong
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Melanie Hand
- Bioinformatics Hub, University of Adelaide, Adelaide, SA, Australia
| | - Zac Pujic
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Morgan Newman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey J. Goodhill
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- School of Mathematics and Physics, University of Queensland, Brisbane, QLD, Australia
| | - Robert I. Richards
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | - Michael Lardelli
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Barthelson K, Pederson SM, Newman M, Jiang H, Lardelli M. In-Frame and Frameshift Mutations in Zebrafish Presenilin 2 Affect Different Cellular Functions in Young Adult Brains. J Alzheimers Dis Rep 2021; 5:395-404. [PMID: 34189411 PMCID: PMC8203281 DOI: 10.3233/adr-200279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mutations in PRESENILIN 2 (PSEN2) cause early onset familial Alzheimer's disease (EOfAD) but their mode of action remains elusive. One consistent observation for all PRESENILIN gene mutations causing EOfAD is that a transcript is produced with a reading frame terminated by the normal stop codon-the "reading frame preservation rule". Mutations that do not obey this rule do not cause the disease. The reasons for this are debated. OBJECTIVE To predict cellular functions affected by heterozygosity for a frameshift, or a reading frame-preserving mutation in zebrafish psen2 using bioinformatic techniques. METHODS A frameshift mutation (psen2 N140fs ) and a reading frame-preserving (in-frame) mutation (psen2 T141 _ L142delinsMISLISV ) were previously isolated during genome editing directed at the N140 codon of zebrafish psen2 (equivalent to N141 of human PSEN2). We mated a pair of fish heterozygous for each mutation to generate a family of siblings including wild type and heterozygous mutant genotypes. Transcriptomes from young adult (6 months) brains of these genotypes were analyzed. RESULTS The in-frame mutation uniquely caused subtle, but statistically significant, changes to expression of genes involved in oxidative phosphorylation, long-term potentiation and the cell cycle. The frameshift mutation uniquely affected genes involved in Notch and MAPK signaling, extracellular matrix receptor interactions and focal adhesion. Both mutations affected ribosomal protein gene expression but in opposite directions. CONCLUSION A frameshift and an in-frame mutation at the same position in zebrafish psen2 cause discrete effects. Changes in oxidative phosphorylation, long-term potentiation and the cell cycle may promote EOfAD pathogenesis in humans.
Collapse
Affiliation(s)
- Karissa Barthelson
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Stephen Martin Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Haowei Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Michael Lardelli
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| |
Collapse
|
13
|
Dong Y, Newman M, Pederson SM, Barthelson K, Hin N, Lardelli M. Transcriptome analyses of 7-day-old zebrafish larvae possessing a familial Alzheimer's disease-like mutation in psen1 indicate effects on oxidative phosphorylation, ECM and MCM functions, and iron homeostasis. BMC Genomics 2021; 22:211. [PMID: 33761877 PMCID: PMC7992352 DOI: 10.1186/s12864-021-07509-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Early-onset familial Alzheimer's disease (EOfAD) is promoted by dominant mutations, enabling the study of Alzheimer's disease (AD) pathogenic mechanisms through generation of EOfAD-like mutations in animal models. In a previous study, we generated an EOfAD-like mutation, psen1Q96_K97del, in zebrafish and performed transcriptome analysis comparing entire brains from 6-month-old wild type and heterozygous mutant fish. We identified predicted effects on mitochondrial function and endolysosomal acidification. Here we aimed to determine whether similar effects occur in 7 day post fertilization (dpf) zebrafish larvae that might be exploited in screening of chemical libraries to find ameliorative drugs. RESULTS We generated clutches of wild type and heterozygous psen1Q96_K97del 7 dpf larvae using a paired-mating strategy to reduce extraneous genetic variation before performing a comparative transcriptome analysis. We identified 228 differentially expressed genes and performed various bioinformatics analyses to predict cellular functions. CONCLUSIONS Our analyses predicted a significant effect on oxidative phosphorylation, consistent with our earlier observations of predicted effects on ATP synthesis in adult heterozygous psen1Q96_K97del brains. The dysregulation of minichromosome maintenance protein complex (MCM) genes strongly contributed to predicted effects on DNA replication and the cell cycle and may explain earlier observations of genome instability due to PSEN1 mutation. The upregulation of crystallin gene expression may be a response to defective activity of mutant Psen1 protein in endolysosomal acidification. Genes related to extracellular matrix (ECM) were downregulated, consistent with previous studies of EOfAD mutant iPSC neurons and postmortem late onset AD brains. Also, changes in expression of genes controlling iron ion transport were observed without identifiable changes in the prevalence of transcripts containing iron responsive elements (IREs) in their 3' untranslated regions (UTRs). These changes may, therefore, predispose to the apparent iron dyshomeostasis previously observed in 6-month-old heterozygous psen1Q96_K97del EOfAD-like mutant brains.
Collapse
Affiliation(s)
- Yang Dong
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Karissa Barthelson
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Nhi Hin
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
| |
Collapse
|
14
|
Barthelson K, Newman M, Nowell CJ, Lardelli M. No observed effect on brain vasculature of Alzheimer's disease-related mutations in the zebrafish presenilin 1 gene. Mol Brain 2021; 14:22. [PMID: 33494778 PMCID: PMC7831246 DOI: 10.1186/s13041-021-00734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/13/2021] [Indexed: 11/10/2022] Open
Abstract
Previously, we found that brains of adult zebrafish heterozygous for Alzheimer's disease-related mutations in their presenilin 1 gene (psen1, orthologous to human PSEN1) show greater basal expression levels of hypoxia responsive genes relative to their wild type siblings under normoxia, suggesting hypoxic stress. In this study, we investigated whether this might be due to changes in brain vasculature. We generated and compared 3D reconstructions of GFP-labelled blood vessels of the zebrafish forebrain from heterozygous psen1 mutant zebrafish and their wild type siblings. We observed no statistically significant differences in vessel density, surface area, overall mean diameter, overall straightness, or total vessel length normalised to the volume of the telencephalon. Our findings do not support that changes in vascular morphology are responsible for the increased basal expression of hypoxia responsive genes in psen1 heterozygous mutant brains.
Collapse
Affiliation(s)
- Karissa Barthelson
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3058, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| |
Collapse
|
15
|
Barthelson K, Pederson SM, Newman M, Lardelli M. Brain transcriptome analysis reveals subtle effects on mitochondrial function and iron homeostasis of mutations in the SORL1 gene implicated in early onset familial Alzheimer's disease. Mol Brain 2020; 13:142. [PMID: 33076949 PMCID: PMC7570131 DOI: 10.1186/s13041-020-00681-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/06/2020] [Indexed: 01/31/2023] Open
Abstract
To prevent or delay the onset of Alzheimer’s disease (AD), we must understand its molecular basis. The great majority of AD cases arise sporadically with a late onset after 65 years of age (LOAD). However, rare familial cases of AD can occur due to dominant mutations in a small number of genes that cause an early onset prior to 65 years of age (EOfAD). As EOfAD and LOAD share similar pathologies and disease progression, analysis of EOfAD genetic models may give insight into both subtypes of AD. Sortilin-related receptor 1 (SORL1) is genetically associated with both EOfAD and LOAD and provides a unique opportunity to investigate the relationships between both forms of AD. Currently, the role of SORL1 mutations in AD pathogenesis is unclear. To understand the molecular consequences of SORL1 mutation, we performed targeted mutagenesis of the orthologous gene in zebrafish. We generated an EOfAD-like mutation, V1482Afs, and a putatively null mutation, to investigate whether EOfAD-like mutations in sorl1 display haploinsufficiency by acting through loss-of-function mechanisms. We performed mRNA-sequencing on whole brains, comparing wild type fish with their siblings heterozygous for EOfAD-like or putatively loss-of-function mutations in sorl1, or transheterozygous for these mutations. Differential gene expression analysis identified a small number of differentially expressed genes due to the sorl1 genotypes. We also performed enrichment analysis on all detectable genes to obtain a more complete view on changes to gene expression by performing three methods of gene set enrichment analysis, then calculated an overall significance value using the harmonic mean p-value. This identified subtle effects on expression of genes involved in energy production, mRNA translation and mTORC1 signalling in both the EOfAD-like and null mutant brains, implying that these effects are due to sorl1 haploinsufficiency. Surprisingly, we also observed changes to expression of genes occurring only in the EOfAD-mutation carrier brains, suggesting gain-of-function effects. Transheterozygosity for the EOfAD-like and null mutations (i.e. lacking wild type sorl1), caused apparent effects on iron homeostasis and other transcriptome changes distinct from the single-mutation heterozygous fish. Our results provide insight into the possible early brain molecular effects of an EOfAD mutation in human SORL1. Differential effects of heterozygosity and complete loss of normal SORL1 expression are revealed.
Collapse
Affiliation(s)
- Karissa Barthelson
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
| | - Stephen Martin Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
| |
Collapse
|
16
|
Iron-responsive-like elements and neurodegenerative ferroptosis. ACTA ACUST UNITED AC 2020; 27:395-413. [PMID: 32817306 PMCID: PMC7433652 DOI: 10.1101/lm.052282.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022]
Abstract
A set of common-acting iron-responsive 5′untranslated region (5′UTR) motifs can fold into RNA stem loops that appear significant to the biology of cognitive declines of Parkinson's disease dementia (PDD), Lewy body dementia (LDD), and Alzheimer's disease (AD). Neurodegenerative diseases exhibit perturbations of iron homeostasis in defined brain subregions over characteristic time intervals of progression. While misfolding of Aβ from the amyloid-precursor-protein (APP), alpha-synuclein, prion protein (PrP) each cause neuropathic protein inclusions in the brain subregions, iron-responsive-like element (IRE-like) RNA stem–loops reside in their transcripts. APP and αsyn have a role in iron transport while gene duplications elevate the expression of their products to cause rare familial cases of AD and PDD. Of note, IRE-like sequences are responsive to excesses of brain iron in a potential feedback loop to accelerate neuronal ferroptosis and cognitive declines as well as amyloidosis. This pathogenic feedback is consistent with the translational control of the iron storage protein ferritin. We discuss how the IRE-like RNA motifs in the 5′UTRs of APP, alpha-synuclein and PrP mRNAs represent uniquely folded drug targets for therapies to prevent perturbed iron homeostasis that accelerates AD, PD, PD dementia (PDD) and Lewy body dementia, thus preventing cognitive deficits. Inhibition of alpha-synuclein translation is an option to block manganese toxicity associated with early childhood cognitive problems and manganism while Pb toxicity is epigenetically associated with attention deficit and later-stage AD. Pathologies of heavy metal toxicity centered on an embargo of iron export may be treated with activators of APP and ferritin and inhibitors of alpha-synuclein translation.
Collapse
|
17
|
Newman M, Nik HM, Sutherland GT, Hin N, Kim WS, Halliday GM, Jayadev S, Smith C, Laird AS, Lucas CW, Kittipassorn T, Peet DJ, Lardelli M. Accelerated loss of hypoxia response in zebrafish with familial Alzheimer's disease-like mutation of presenilin 1. Hum Mol Genet 2020; 29:2379-2394. [PMID: 32588886 PMCID: PMC8604272 DOI: 10.1093/hmg/ddaa119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Ageing is the major risk factor for Alzheimer's disease (AD), a condition involving brain hypoxia. The majority of early-onset familial AD (EOfAD) cases involve dominant mutations in the gene PSEN1. PSEN1 null mutations do not cause EOfAD. We exploited putative hypomorphic and EOfAD-like mutations in the zebrafish psen1 gene to explore the effects of age and genotype on brain responses to acute hypoxia. Both mutations accelerate age-dependent changes in hypoxia-sensitive gene expression supporting that ageing is necessary, but insufficient, for AD occurrence. Curiously, the responses to acute hypoxia become inverted in extremely aged fish. This is associated with an apparent inability to upregulate glycolysis. Wild-type PSEN1 allele expression is reduced in post-mortem brains of human EOfAD mutation carriers (and extremely aged fish), possibly contributing to EOfAD pathogenesis. We also observed that age-dependent loss of HIF1 stabilization under hypoxia is a phenomenon conserved across vertebrate classes.
Collapse
Affiliation(s)
- Morgan Newman
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Hani Moussavi Nik
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Greg T Sutherland
- Discipline of Pathology, School of Medical Sciences and Charles
Perkins Centre, Faculty of Medicine and Health, The University of
Sydney, Camperdown, New South Wales 2006, Australia
| | - Nhi Hin
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
- Bioinformatics Hub, University of
Adelaide, Adelaide, South Australia, Australia
| | - Woojin S Kim
- Brain and Mind Centre, Central Clinical School, Faculty of
Medicine and Health, The University of Sydney, Camperdown, New
South Wales 2052, Australia
- School of Medical Sciences, University of New South
Wales and Neuroscience Research Australia, Randwick, New South Wales,
Australia
| | - Glenda M Halliday
- Brain and Mind Centre, Central Clinical School, Faculty of
Medicine and Health, The University of Sydney, Camperdown, New
South Wales 2052, Australia
- School of Medical Sciences, University of New South
Wales and Neuroscience Research Australia, Randwick, New South Wales,
Australia
| | - Suman Jayadev
- Department of Neurology, University of
Washington, Seattle, Washington 98195, USA
| | - Carole Smith
- Department of Neurology, University of
Washington, Seattle, Washington 98195, USA
| | - Angela S Laird
- Centre for MND Research, Department of Biomedical Sciences,
Faculty of Medicine and Health Sciences, Macquarie University,
New South Wales 2109, Australia
| | - Caitlin W Lucas
- Centre for MND Research, Department of Biomedical Sciences,
Faculty of Medicine and Health Sciences, Macquarie University,
New South Wales 2109, Australia
| | - Thaksaon Kittipassorn
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
- Department of Physiology, Faculty of Medicine Siriraj Hospital,
Mahidol University, Bangkok 10700, Thailand
| | - Dan J Peet
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
| | - Michael Lardelli
- School of Biological Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
18
|
Jiang H, Pederson SM, Newman M, Dong Y, Barthelson K, Lardelli M. Transcriptome analysis indicates dominant effects on ribosome and mitochondrial function of a premature termination codon mutation in the zebrafish gene psen2. PLoS One 2020; 15:e0232559. [PMID: 32658922 PMCID: PMC7357760 DOI: 10.1371/journal.pone.0232559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/25/2020] [Indexed: 01/16/2023] Open
Abstract
PRESENILIN 2 (PSEN2) is one of the genes mutated in early onset familial Alzheimer’s disease (EOfAD). PSEN2 shares significant amino acid sequence identity with another EOfAD-related gene PRESENILIN 1 (PSEN1), and partial functional redundancy is seen between these two genes. However, the complete range of functions of PSEN1 and PSEN2 is not yet understood. In this study, we performed targeted mutagenesis of the zebrafish psen2 gene to generate a premature termination codon close downstream of the translation start with the intention of creating a null mutation. Homozygotes for this mutation, psen2S4Ter, are viable and fertile, and adults do not show any gross psen2-dependent pigmentation defects, arguing against significant loss of γ-secretase activity. Also, assessment of the numbers of Dorsal Longitudinal Ascending (DoLA) interneurons that are responsive to psen2 but not psen1 activity during embryogenesis did not reveal decreased psen2 function. Transcripts containing the S4Ter mutation show no evidence of destabilization by nonsense-mediated decay. Forced expression in zebrafish embryos of fusions of psen2S4Ter 5’ mRNA sequences with sequence encoding enhanced green fluorescent protein (EGFP) indicated that the psen2S4Ter mutation permits utilization of cryptic, novel downstream translation start codons. These likely initiate translation of N-terminally truncated Psen2 proteins lacking late endosomal/lysosomal localization sequences and that obey the “reading frame preservation rule” of PRESENILIN EOfAD mutations. Transcriptome analysis of entire brains from a 6-month-old family of wild type, heterozygous and homozygous psen2S4Ter female siblings revealed profoundly dominant effects on gene expression likely indicating changes in ribosomal, mitochondrial, and anion transport functions.
Collapse
Affiliation(s)
- Haowei Jiang
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stephen Martin Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Yang Dong
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Karissa Barthelson
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael Lardelli
- Alzheimer’s Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- * E-mail:
| |
Collapse
|
19
|
Lin Y, Chen T, Mao G, Qiu T, Lan Y, Xiang X, Huang J, Huang J, Lu T, Gan S, Sun XD, Zhang J. Long-term and in vivo assessment of Aβ protein-induced brain atrophy in a zebrafish model by optical coherence tomography. JOURNAL OF BIOPHOTONICS 2020; 13:e202000067. [PMID: 32306519 DOI: 10.1002/jbio.202000067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/12/2020] [Indexed: 05/20/2023]
Abstract
In this study, a neurotoxicity model of zebrafish induced by amyloid beta (Aβ) protein was developed and evaluated in vivo by optical coherence tomography (OCT). Aβ protein and phosphate buffer saline (PBS) were separately injected into the head of two groups of adult zebrafish (n = 6 per group). Congo-red staining results confirmed that Aβ protein had penetrated into brain tissue. All zebrafish were imaged with OCT on the 0th, 5th, 10th, 15th and 20th day postinjection. OCT images showed that PBS is not toxic to brain tissue. However, significant brain atrophy could be seen in the OCT images of zebrafish injected with Aβ-protein that was verified by histological consequences. In addition, zebrafish in the model group showed memory decline in behavioral tests. This study verified the feasibility of in vivo long-term assessment of Aβ protein-induced brain atrophy in adult zebrafish by OCT that has great potential to be applied in the neurological diseases research.
Collapse
Affiliation(s)
- Yanping Lin
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tingru Chen
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guangjuan Mao
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting Qiu
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yintao Lan
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiang Xiang
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Huang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Huang
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting Lu
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuqi Gan
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiang-Dong Sun
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong, China
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Afghah Z, Chen X, Geiger JD. Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiol Dis 2020; 134:104670. [PMID: 31707116 PMCID: PMC7184921 DOI: 10.1016/j.nbd.2019.104670] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022] Open
Abstract
Endosomes and lysosomes (endolysosomes) are membrane bounded organelles that play a key role in cell survival and cell death. These acidic intracellular organelles are the principal sites for intracellular hydrolytic activity required for the maintenance of cellular homeostasis. Endolysosomes are involved in the degradation of plasma membrane components, extracellular macromolecules as well as intracellular macromolecules and cellular fragments. Understanding the physiological significance and pathological relevance of endolysosomes is now complicated by relatively recent findings of physical and functional interactions between endolysosomes with other intracellular organelles including endoplasmic reticulum, mitochondria, plasma membranes, and peroxisomes. Indeed, evidence clearly indicates that endolysosome dysfunction and inter-organellar signaling occurs in different neurodegenerative diseases including Alzheimer's disease (AD), HIV-1 associated neurocognitive disease (HAND), Parkinson's disease (PD) as well as various forms of brain cancer such as glioblastoma multiforme (GBM). These findings open new areas of cell biology research focusing on understanding the physiological actions and pathophysiological consequences of inter-organellar communication. Here, we will review findings of others and us that endolysosome de-acidification and dysfunction coupled with impaired inter-organellar signaling is involved in the pathogenesis of AD, HAND, PD, and GBM. A more comprehensive appreciation of cell biology and inter-organellar signaling could lead to the development of new drugs to prevent or cure these diseases.
Collapse
Affiliation(s)
- Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58201, United States of America.
| |
Collapse
|
21
|
Accelerated brain aging towards transcriptional inversion in a zebrafish model of the K115fs mutation of human PSEN2. PLoS One 2020; 15:e0227258. [PMID: 31978074 PMCID: PMC6980398 DOI: 10.1371/journal.pone.0227258] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
Background The molecular changes involved in Alzheimer’s disease (AD) progression remain unclear since we cannot easily access antemortem human brains. Some non-mammalian vertebrates such as the zebrafish preserve AD-relevant transcript isoforms of the PRESENILIN genes lost from mice and rats. One example is PS2V, the alternative transcript isoform of the PSEN2 gene. PS2V is induced by hypoxia/oxidative stress and shows increased expression in late onset, sporadic AD brains. A unique, early onset familial AD mutation of PSEN2, K115fs, mimics the PS2V coding sequence suggesting that forced, early expression of PS2V-like isoforms may contribute to AD pathogenesis. Here we use zebrafish to model the K115fs mutation to investigate the effects of forced PS2V-like expression on the transcriptomes of young adult and aged adult brains. Methods We edited the zebrafish genome to model the K115fs mutation. To explore its effects at the molecular level, we analysed the brain transcriptome and proteome of young (6-month-old) and aged (24-month-old) wild type and heterozygous mutant female sibling zebrafish. Finally, we used gene co-expression network analysis (WGCNA) to compare molecular changes in the brains of these fish to human AD. Results Young heterozygous mutant fish show transcriptional changes suggesting accelerated brain aging and increased glucocorticoid signalling. These early changes precede a transcriptional ‘inversion’ that leads to glucocorticoid resistance and other likely pathological changes in aged heterozygous mutant fish. Notably, microglia-associated immune responses regulated by the ETS transcription factor family are altered in both our zebrafish mutant model and in human AD. The molecular changes we observe in aged heterozygous mutant fish occur without obvious histopathology and possibly in the absence of Aβ. Conclusions Our results suggest that forced expression of a PS2V-like isoform contributes to immune and stress responses favouring AD pathogenesis. This highlights the value of our zebrafish genetic model for exploring molecular mechanisms involved in AD pathogenesis.
Collapse
|