1
|
Kouga T, Miwa T, Wei FY, Sunami K, Tomizawa K. Mitochonic acid 5 mitigates age-related hearing loss progression by targeting defective 2-methylthiolation in mitochondrial transfer RNAs. Front Cell Neurosci 2025; 19:1541347. [PMID: 40260078 PMCID: PMC12009901 DOI: 10.3389/fncel.2025.1541347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Age-related hearing loss (ARHL) is linked to dementia, with mitochondrial dysfunction playing a key role in its progression. Deficient mitochondrial tRNA modifications impair protein synthesis and energy metabolism, accelerating ARHL. Mitochonic acid 5 (MA-5) has shown promise as a therapeutic candidate by improving mitochondrial function, reducing oxidative stress, and stabilizing membrane potential. Methods In this study, we investigated the effects of MA-5 on ARHL in cyclin-dependent kinase 5 regulatory subunit-associated protein 1 (Cdk5rap1) knockout (KO) mice, which exhibit early-onset ARHL due to abnormalities in mitochondrial transfer RNA (mt-tRNA) modifications. Results MA-5 treatment effectively attenuated ARHL progression in Cdk5rap1-KO mice by improving auditory brainstem response thresholds and distortion product otoacoustic emissions. It also reduced spiral ganglion and outer hair cell loss, while preserving the cochlear structural integrity by preventing mitochondrial degeneration in spiral ligament fibrocytes. Mechanistically, MA-5 upregulated the expression of silent information regulator sirtuin 1 and promoted the nuclear translocation of yes-associated protein, both of which are involved in regulating mitochondrial function and cellular senescence. Metabolomics analysis further demonstrated that MA-5 restored mitochondrial metabolism, reduced lactate accumulation, and maintained mitochondrial integrity. Conclusion These findings suggest that MA-5 is a viable treatment option for ARHL and other age-related disorders associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Teppei Kouga
- Department of Otolaryngology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University, Kyoto, Japan
- Department of Otolaryngology, Teikyo University Hospital, Kawasaki, Japan
| | - Fan-yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kishiko Sunami
- Department of Otolaryngology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Miwa T, Tarui A, Kouga T, Asai Y, Ogita H, Fujikawa T, Hakuba N. N 1-methylnicotinamide promotes age-related cochlear damage via the overexpression of SIRT1. Front Cell Neurosci 2025; 19:1542164. [PMID: 39959464 PMCID: PMC11825784 DOI: 10.3389/fncel.2025.1542164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Age-related hearing loss (ARHL) is a complex condition with genetic, aging, and environmental influences. Sirtuins, particularly SIRT1, are NAD-dependent protein deacetylases critical to aging and stress responses. SIRT1 is modulated by nicotinamide N-methyltransferase (NNMT) and its product, N1-methylnicotinamide (MNAM), which influence ARHL progression. While SIRT1 is protective under certain conditions, its overexpression may paradoxically exacerbate hearing loss. This study examines MNAM supplementation's impact on SIRT1 expression and ARHL in low-fat diet (LFD)-fed B6 and CBA mice. Mice were divided into LFD and LFD + MNAM groups and evaluated for auditory function, cochlear morphology, metabolic profiles, and SIRT1 expression at 3, 6, and 12 months of age. MNAM supplementation accelerated ARHL in both strains, with B6 mice showing more pronounced and earlier disease progression. Auditory brainstem response (ABR) thresholds were significantly elevated, and distortion-product otoacoustic emissions (DPOAE) indicated outer hair cell dysfunction. Cochlear histology revealed reduced hair cell and spiral ganglion cell counts, as well as decreased Na+/K+-ATPase α1 expression and endocochlear potential. MNAM increased SIRT1 protein levels in the cochlea without altering Sirt1 mRNA, suggesting post-transcriptional regulation. Metabolomic analysis revealed disrupted mitochondrial and oxidative pathways, including fatty acid oxidation and gluconeogenesis. Tricarboxylic acid (TCA) cycle dysregulation was evident, particularly in B6 mice, with elevated pyruvate, fumarate, and lactate levels. Despite similar metabolic trends in CBA mice, their slower aging profiles mitigated ARHL progression. These results suggest that while moderate SIRT1 expression protects against ARHL, overexpression disrupts metabolic homeostasis, accelerating cochlear aging and dysfunction. The dual role of SIRT1 emphasizes the need for precise modulation of its expression for effective therapeutic interventions. Future research should explore mechanisms underlying SIRT1-induced cochlear damage and strategies to maintain balanced SIRT1 expression. This study highlights MNAM's detrimental effects on ARHL, underscoring its significance for developing targeted approaches to delay ARHL onset and preserve auditory function.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihito Tarui
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Teppei Kouga
- Department of Otolaryngology, Osaka Metropolitan University, Osaka, Japan
| | - Yasunori Asai
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Fujita Health University, Toyoake, Japan
| | - Hideaki Ogita
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taro Fujikawa
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
| | - Nobuhiro Hakuba
- Department of Otolaryngology, Teikyo University Hospital, Mizonokuchi, Kawasaki, Japan
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Li Y, Deng X, Wu X, Zhao L, Zhao Z, Guo C, Jia J, Yang L, Zhou L, Wang D, Yuan G. Association of serum Tsukushi level with metabolic syndrome and its components. Endocrine 2023; 79:469-476. [PMID: 36592295 DOI: 10.1007/s12020-022-03285-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE Tsukushi (TSK), a novel hepatokine, has recently been pointed out to play an important role in energy homeostasis and glycolipid metabolism. However, there are no clinical studies on the association of TSK with metabolic syndrome (MetS), the typical constellation of metabolic disorders. This study was conducted to explore the relationship between TSK and MetS as well as each of its metabolic component clinically. METHODS We analyzed in this cross-sectional study serum TSK levels by ELISA in 392 participants, including 90 non-MetS and 302 MetS, to compare TSK in two groups and in different numbers of metabolic components. The odds ratios (OR) of TSK quartile in MetS and each metabolic component were computed by multivariate logistic regression analysis. RESULTS TSK was substantially higher in MetS than in non-MetS subjects (P < 0.001). TSK increased with the concomitant increase of the number of metabolic components (P for <0.001). Logistic regression analyses demonstrated that the OR of MetS was 2.74 for the highest versus the lowest quartile of TSK (P < 0.001) after adjusting for age, gender, smoking status, alcohol consumption and medication use. Additionally, TSK was associated with the OR of poor HDL-C and elevated fasting glucose (P < 0.05). CONCLUSION Circulating TSK was higher in MetS patients and linked with MetS risk, suggesting that TSK may play a role in the genesis of MetS and be a potential therapeutic target for MetS. Future study should investigate the connection between TSK levels and MetS pathogenesis.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, China
| | - Xunan Wu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, China
| | - Li Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, China
| | - Zhicong Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, China
| | - Chang Guo
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, China
| | - Jue Jia
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, China
| | - Ling Yang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Dong Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, China.
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, China.
| |
Collapse
|
4
|
Istiaq A, Ohta K. A review on Tsukushi: mammalian development, disorders, and therapy. J Cell Commun Signal 2022; 16:505-513. [PMID: 35233735 PMCID: PMC9733752 DOI: 10.1007/s12079-022-00669-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Tsukushi (TSK), a leucine-rich peptidoglycan in the extracellular compartment, mediates multiple signaling pathways that are critical for development and metabolism. TSK regulates signaling pathways that eventually control cellular communication, proliferation, and cell fate determination. Research on TSK has become more sophisticated in recent years, illustrating its involvement in the physiology and pathophysiology of neural, genetic, and metabolic diseases. In a recent study, we showed that TSK therapy reversed the pathophysiological abnormalities of the hydrocephalic (a neurological disorder) brain in mice. This review summarizes the roles of TSK in key signaling processes in the mammalian development, disorders, and evaluating its possible therapeutic and diagnostic potential.
Collapse
Affiliation(s)
- Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, 819-0395 Fukuoka, Japan ,Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 860-8555 Kumamoto, Japan ,HIGO Program, Kumamoto University, 860-8555 Kumamoto, Japan
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, 819-0395 Fukuoka, Japan
| |
Collapse
|
5
|
Istiaq A, Umemoto T, Ito N, Suda T, Shimamura K, Ohta K. Tsukushi proteoglycan maintains RNA splicing and developmental signaling network in GFAP-expressing subventricular zone neural stem/progenitor cells. Front Cell Dev Biol 2022; 10:994588. [DOI: 10.3389/fcell.2022.994588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Tsukushi (TSK) proteoglycan dysfunction leads to hydrocephalus, a condition defined by excessive fluid collection in the ventricles and lateral ventricular enlargement. TSK injections into the LV at birth are effective at rescuing the lateral ventricle (LV). TSK regulates the activation of the Wnt signaling to facilitate the proper expansion of the LV and maintain the fate of the neural stem cell lineage. However, the molecular mechanism by which TSK acts on neural stem/progenitor cells (NSCs) during LV development is unknown. We demonstrated that TSK is crucial for the splicing and development-associated gene regulation of GFAP-expressing subventricular zone (SVZ) NSCs. We isolated GFAP-expressing NSCs from the SVZ of wild-type (GFAPGFP/+/TSK+/+) and TSK knock-out (GFAPGFP/+/TSK−/−) mice on postnatal day 3 and compared their transcriptome and splicing profiles. TSK deficiency in NSCs resulted in genome-wide missplicing (alteration in exon usage) and transcriptional dysregulation affecting the post-transcriptional regulatory processes (including splicing, cell cycle, and circadian rhythm) and developmental signaling networks specific to the cell (including Wnt, Sonic Hedgehog, and mTOR signaling). Furthermore, TSK deficiency prominently affected the splicing of genes encoding RNA and DNA binding proteins in the nervous SVZ and non-nervous muscle tissues. These results suggested that TSK is involved in the maintenance of correct splicing and gene regulation in GFAP-expressing NSCs, thereby protecting cell fate and LV development. Hence, our study provides a critical insight on hydrocephalus development.
Collapse
|
6
|
Wang C, Qiu J, Li G, Wang J, Liu D, Chen L, Song X, Cui L, Sun Y. Application and prospect of quasi-targeted metabolomics in age-related hearing loss. Hear Res 2022; 424:108604. [PMID: 36116178 DOI: 10.1016/j.heares.2022.108604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
Abstract
Age-related hearing loss (ARHL) is a common sensory deficit in the elderly, which seriously affects physical and mental health. Therefore, understanding its underlying molecular mechanisms and taking interventions to treat ARHL are urgently needed. In our study, cochlea of 4-week-old C57BL/6 mice as the Youth group (n = 6) and 48-week-old cochlea as the Old group (n = 6) were subjected to quasi-targeted metabolomics analysis by Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). In total, 208 differential metabolites were identified in 12 cochlea samples, which highlighted the following discriminant compounds: tryptophan, piperidine, methionine, L-arginine, histamine, serotonin, acetylcholine, and 4-aminobutyric acid. Differentially expressed metabolites were identified which were involved in KEGG pathways related to the digestion and absorption of oxidative stress associated amino acids, Synaptic vesicle cycle of serotonin, Pantothenate and CoA Biosynthesis. These findings are a first step toward elucidating the pathophysiological pathways involved in the etiology of ARHL and provide the possibility to further explore the mechanisms of ARHL using metabolomic analysis.
Collapse
Affiliation(s)
- Chen Wang
- School of Clinical Medicine, Weifang Medical University, Baotong West Street 7166, Weifang, China; Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Jingjing Qiu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Guangjin Li
- School of Clinical Medicine, Weifang Medical University, Baotong West Street 7166, Weifang, China; Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Junxin Wang
- School of Clinical Medicine, Weifang Medical University, Baotong West Street 7166, Weifang, China; Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Dawei Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Liang Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Limei Cui
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China.
| | - Yan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China.
| |
Collapse
|
7
|
Wang D, Pan D, Xie B, Wang S, Xing X, Liu X, Ma Y, Andersson L, Wu J, Jiang L. Porcine ZBED6 regulates growth of skeletal muscle and internal organs via multiple targets. PLoS Genet 2021; 17:e1009862. [PMID: 34710100 PMCID: PMC8577783 DOI: 10.1371/journal.pgen.1009862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/09/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
ZBED6 (zinc finger BED domain containing protein 6) is a transcription factor unique to placental mammals and its interaction with the IGF2 (insulin-like growth factor 2) locus plays a prominent role in the regulation of postnatal skeletal muscle growth. Here, we generated lean Bama miniature pigs by generating ZBED6-knockout (ZBED6−/−) and investigated the mechanism underlying ZBED6 in growth of muscle and internal organs of placental mammals. ZBED6−/− pigs show markedly higher lean mass, lean mass rate, larger muscle fiber area and heavier internal organs (heart and liver) than wild-type (WT) pigs. The striking phenotypic changes of ZBED6-/- pigs coincided with remarkable upregulation of IGF2 mRNA and protein expression across three tissues (gastrocnemius muscle, longissimus dorsi, heart). Despite a significant increase in liver weight, ZBED6-/- pigs show comparable levels of IGF2 expression to those of WT controls. A mechanistic study revealed that elevated methylation in the liver abrogates ZBED6 binding at the IGF2 locus, explaining the unaltered hepatic IGF2 expression in ZBED6-/- pigs. These results indicate that a ZBED6-IGF2-independent regulatory pathway exists in the liver. Transcriptome analysis and ChIP-PCR revealed new ZBED6 target genes other than IGF2, including cyclin dependent kinase inhibitor 1A (CDKN1A) and tsukushi, small leucine rich proteoglycan (TSKU), that regulates growth of muscle and liver, respectively. The lean meat rate is an important economic trait for the swine industry and it is determined by muscle growth and development. A single base change in intron 3 of the insulin-like growth factor 2 (IGF2) gene increases meat production in pigs by disrupting a binding site for zinc finger BED domain containing protein 6 (ZBED6). Chinese indigenous pig breeds carrying the homozygous IGF2 wild-type allele produce low lean meat. We thus generate a lean pig model in Chinese Bama pig by knocking out ZBED6. In this model, we demonstrate that ZBED6 KO increases muscle and internal organ growth through ZBED6-IGF2 axis and other target genes. These results not only open new strategies for lean meat breeding in Chinese indigenous pigs, but also provide new insights to the global function of ZBED6 in organ growth and development.
Collapse
Affiliation(s)
- Dandan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Dengke Pan
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Baocai Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengnan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | | | - Xuexue Liu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Jiangwei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JW); (LJ)
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * E-mail: (JW); (LJ)
| |
Collapse
|
8
|
Li YY, Wu XN, Deng X, Zhang PP, Li HX, Chen K, Wu DP, Gu T, Wang CX, Zhao L, Wang D, Yang L, Yuan GY. Serum Tsukushi levels are elevated in newly diagnosed type 2 diabetic patients. Diabetes Res Clin Pract 2021; 178:108987. [PMID: 34329693 DOI: 10.1016/j.diabres.2021.108987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022]
Abstract
AIMS Tsukushi, a newly identified hepatokine, has been recently characterized as a potent modifier in lipid metabolism and energy homeostasis, but the role of Tsukushi in diabetes remains almost unknown. We detected for the first time the serum Tsukushi levels in newly diagnosed type 2 diabetes, exploring the relationship between Tsukushi and various metabolic parameters. METHODS A total of 172 participants were recruited, including 86 patients with newly diagnosed type 2 diabetes and 86 subjects with normal glucose tolerance according to oral glucose tolerance test. Serum Tsukushi was measured by ELISA. The insulin resistance, pancreas β-cell function and insulin sensitivity were determined by homeostasis model assessment (HOMA-IR, HOMA-β), Stumvoll insulin sensitivity index (ISIstumvoll) and Stumvoll metabolic clearance rate (MCRstumvoll). RESULTS Serum Tsukushi was significantly higher in type 2 diabetes than in normal glucose tolerance [1.22(0.86,1.74) vs 0.8(0.5,1.38) ng/mL; P < 0.001]. Multiple regression analysis showed that BMI, 2-h post-OGTT glucose and TC were independently related factors influencing Tsukushi. Logistic regression analyses demonstrated that Tsukushi was associated with higher risk of type 2 diabetes independently. CONCLUSIONS Circulating Tsukushi levels significantly increase in patients with type 2 diabetes, which suggest that Tsukushi may play a role in type 2 diabetes pathogenesis.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Xu-Nan Wu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Pan-Pan Zhang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hao-Xiang Li
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Chen
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dan-Ping Wu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tian Gu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen-Xi Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dong Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ling Yang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Guo-Yue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
9
|
Miwa T, Ito N, Ohta K. Tsukushi is essential for the formation of the posterior semicircular canal that detects gait performance. J Cell Commun Signal 2021; 15:581-594. [PMID: 34061311 DOI: 10.1007/s12079-021-00627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/25/2021] [Indexed: 11/27/2022] Open
Abstract
Tsukushi is a small, leucine-rich repeat proteoglycan that interacts with and regulates essential cellular signaling cascades in the chick retina and murine subventricular zone, hippocampus, dermal hair follicles, and the cochlea. However, its function in the vestibules of the inner ear remains unknown. Here, we investigated the function of Tsukushi in the vestibules and found that Tsukushi deficiency in mice resulted in defects in posterior semicircular canal formation in the vestibules, but did not lead to vestibular hair cell loss. Furthermore, Tsukushi accumulated in the non-prosensory and prosensory regions during the embryonic and postnatal developmental stages. The downregulation of Tsukushi altered the expression of key genes driving vestibule differentiation in the non-prosensory regions. Our results indicate that Tsukushi interacts with Wnt2b, bone morphogenetic protein 4, fibroblast growth factor 10, and netrin 1, thereby controlling semicircular canal formation. Therefore, Tsukushi may be an essential component of the molecular pathways regulating vestibular development.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Ougimaci, Kita-ku, Osaka, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kumamoto University, Honjo, Kumamoto, Japan.
| | - Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, Honjo, Kumamoto, Japan
- K.K. Sciex Japan, Shinagawa, Tokyo, Japan
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
10
|
Miwa T, Wei FY, Tomizawa K. Cdk5 regulatory subunit-associated protein 1 knockout mice show hearing loss phenotypically similar to age-related hearing loss. Mol Brain 2021; 14:82. [PMID: 34001214 PMCID: PMC8130336 DOI: 10.1186/s13041-021-00791-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Mitochondrial dysfunction is associated with aging and age-related hearing loss (AHL). However, the precise mechanisms underlying the pathophysiology of hearing loss remain unclear. Cdk5 regulatory subunit-associated protein 1 (CDK5RAP1) enables efficient intramitochondrial translation by catalyzing the deposition of 2-methylthio modifications on mitochondrial tRNAs. Here we investigated the effect of defective mitochondrial protein translation on hearing and AHL in a Cdk5rap1 deficiency C57BL/6 mouse model. Compared to control C57BL/6 mice, Cdk5rap1-knockout female mice displayed hearing loss phenotypically similar to AHL from an early age. The premature hearing loss in Cdk5rap1-knockout mice was associated with the degeneration of the spiral ligament and reduction of endocochlear potentials following the loss of auditory sensory cells. Furthermore, cultured primary mouse embryonic fibroblasts displayed early onset of cellular senescence associated with high oxidative stress and cell death. These results indicate that the CDK5RAP1 deficiency-induced defective mitochondrial translation might cause early hearing loss through the induction of cellular senescence and cochlear dysfunction in the inner ear. Our results suggest that the accumulation of dysfunctional mitochondria might promote AHL progression. Furthermore, our findings suggest that mitochondrial dysfunction and dysregulated mitochondrial tRNA modifications mechanistically cause AHL. Understanding the mechanisms underlying AHL will guide future clinical investigations and interventions in the attempt to mitigate the consequences of AHL.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20 Ougimaci, Kita-ku, Osaka, 5308480, Japan.
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1- Honjo, Chuo-ku, Kumamoto, 8608556, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Aoba-ku, Sendai, Miyagi, 9808575, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1- Honjo, Chuo-ku, Kumamoto, 8608556, Japan
| |
Collapse
|
11
|
Warnecke A, Giesemann A. Embryology, Malformations, and Rare Diseases of the Cochlea. Laryngorhinootologie 2021; 100:S1-S43. [PMID: 34352899 PMCID: PMC8354575 DOI: 10.1055/a-1349-3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite the low overall prevalence of individual rare diseases, cochlear
dysfunction leading to hearing loss represents a symptom in a large
proportion. The aim of this work was to provide a clear overview of rare
cochlear diseases, taking into account the embryonic development of the
cochlea and the systematic presentation of the different disorders. Although
rapid biotechnological and bioinformatic advances may facilitate the
diagnosis of a rare disease, an interdisciplinary exchange is often required
to raise the suspicion of a rare disease. It is important to recognize that
the phenotype of rare inner ear diseases can vary greatly not only in
non-syndromic but also in syndromic hearing disorders. Finally, it becomes
clear that the phenotype of the individual rare diseases cannot be
determined exclusively by classical genetics even in monogenetic
disorders.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover.,Deutsche Forschungsgemeinschaft Exzellenzcluster"Hearing4all" - EXC 2177/1 - Project ID 390895286
| | - Anja Giesemann
- Institut für Neuroradiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover
| |
Collapse
|
12
|
Miwa T. Protective Effects of N 1-Methylnicotinamide Against High-Fat Diet- and Age-Induced Hearing Loss via Moderate Overexpression of Sirtuin 1 Protein. Front Cell Neurosci 2021; 15:634868. [PMID: 33889076 PMCID: PMC8055820 DOI: 10.3389/fncel.2021.634868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related hearing loss (ARHL) is the most common form of hearing loss and the predominant neurodegenerative disease associated with aging. Sirtuin 1 (SIRT1) is associated with the most complex physiological processes, including metabolism, cancer onset, and aging. SIRT1 protein levels are enhanced by the conversion of nicotinamide to N1-methylnicotinamide (MNAM), independent of its mRNA levels. Moreover, MNAM has implications in increased longevity achieved through its mitohormetic effects. Nicotinamide N-methyltransferase (Nnmt) is an enzyme involved in MNAM metabolism, and its level increases under caloric restriction (CR) conditions. The CR condition has implications in delaying ARHL onset. In this study, we aimed to determine the relationship between diet, hearing function, SIRT1 and SIRT3 expression levels in the inner ear, and cochlear morphology. Mice fed with a high-fat diet (HFD), HFD + 1% MNAM, and low-fat diet (LFD) were monitored for age-related auditory-evoked brainstem responses, and changes in cochlear histology, metabolism, and protein and mRNA expressions were analyzed. Our results revealed that the HFD- and aging-mediated downregulated expression of SIRT1 and SIRT3 promoted hearing loss that was obfuscated by MNAM supplementation-induced upregulated expression of cochlear SIRT1 and SIRT3. Thus, our results suggest that MNAM can be used as a therapeutic agent for preventing ARHL.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology and Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan.,Department of Otolaryngology and Head and Neck Surgery, Graduate of School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Lipid nanoparticles-encapsulated brain-derived neurotrophic factor mRNA delivered through the round window niche in the cochleae of guinea pigs. Exp Brain Res 2020; 239:425-433. [PMID: 33215262 DOI: 10.1007/s00221-020-05970-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/21/2020] [Indexed: 01/10/2023]
Abstract
The treatment of sensorineural hearing loss (SNHL) may be achieved via the application of a cochlear implant (CI) that allows the electrical stimulation of spiral ganglion neurons (SGNs). Nevertheless, the efficacy of CIs is limited by the degeneration of SGNs following SNHL. Although the application of exogenous neurotrophic factors has been reported to decrease SGN degeneration, non-invasive targeted drug delivery systems are required to achieve effective results. In this study, an SS-cleavable proton-activated lipid-like material [ssPalm; a neutral lipid nanoparticle (LNP)], was loaded with mRNA, and the efficacy of this material as a delivery system was investigated. Our results showed that LNPssPalm carrying brain-derived neurotrophic factor (BDNF) mRNA was suitable for the treatment of inner ear diseases, preventing the degeneration of SGNs. In conclusion, this modern nanotechnology-based bioconjugation system, LNPssPalm, is a potential non-invasive targeted therapy allowing the delivering biomaterials to specific structures within the inner ear for the treatment of SHNL.
Collapse
|
14
|
Protective Effects of Adiponectin against Cobalt Chloride-Induced Apoptosis of Smooth Muscle Cells via cAMP/PKA Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7169348. [PMID: 33102590 PMCID: PMC7576343 DOI: 10.1155/2020/7169348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
Adiponectin (APN) is an adipokine secreted from adipose tissue and exhibits biological functions such as microcirculation-regulating, hearing-protective, and antiapoptotic. However, the effect of APN on the apoptosis of spiral arterial smooth muscle cells (SMCs) under hypoxic conditions in vitro is not clear. We used cobalt chloride (CoCl2) to simulate chemical hypoxia in vitro, and the SMCs were pretreated with APN and then stimulated with CoCl2. The viability of cells and apoptosis were assessed by CCK-8 and flow cytometry, respectively. Superoxide dismutase (SOD) activity, malondialdehyde (MDA) levels, cAMP level, and the activity of PKA were detected by ELISA. Protein expression and localization were studied by Western blot and immunofluorescence analysis. In the present study, we found that APN exhibits antiapoptosis effects. CoCl2 exhibited decreased cell viability, increased apoptosis and MDA levels, and decreased SOD activity in a concentration-dependent manner, compared with the control group. Moreover, CoCl2 upregulated the expression levels of Bax and cleaved caspase-3 and then downregulated Bcl-2 levels in a time-dependent manner. Compared with the CoCl2 group, the group pretreated with APN had increased cell viability, SOD activity, PKA activity, cAMP level, and PKA expression, but decreased MDA levels and apoptosis. Lastly, the protective effect of APN was blocked by cAMP inhibitor SQ22536 and PKA inhibitor H 89. These results showed that APN protected SMCs against CoCl2-induced hypoxic injury via the cAMP/PKA signaling pathway.
Collapse
|
15
|
Liu D, Zhang P, Wei X, Deng Y, Liu W, Guo D, Liu J, Xu B, Huang C, Huang J, Lin J, Liu S, Xue Y, Zhang H. Elevated Serum Tsukushi Levels in Patients With Hyperthyroidism. Front Endocrinol (Lausanne) 2020; 11:580097. [PMID: 33117292 PMCID: PMC7553082 DOI: 10.3389/fendo.2020.580097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Tsukushi (TSK) is a secreted hepatokine recently identified as playing an important role in modulating glucose and lipid metabolism, and systemic energy homeostasis. However, information is not available regarding the association between circulating TSK and hyperthyroidism in humans. Methods: We measured serum TSK levels in 180 patients with hyperthyroidism and 82 healthy controls recruited from the clinic. Of them, 46 hyperthyroid patients received thionamide treatment for 3 months. Results: Hyperthyroid patients had higher levels of circulating TSK than healthy controls [186.67 (133.63-280.59) ng/ml vs. 97.27 (77.87-146.96) ng/ml, P < 0.001]. Subjects with higher level of serum free triiodothyronine (T3) and free thyroxine (T4) had higher levels of circulating TSK. In addition, serum TSK levels markedly declined with the improvement of thyroid function after thionamide treatment. In multivariable linear regression analyses, circulating TSK concentrations were significantly associated with serum free T3, free T4, thyroid stimulating hormone, thyrotropin receptor antibody, total cholesterol, low-density lipoprotein cholesterol (LDL-cholesterol), high-density lipoprotein cholesterol (HDL-cholesterol), and basal metabolic rate (all P < 0.01), adjusting for age, gender, smoking, and body mass index (BMI). Importantly, circulating TSK was significantly associated with risks of hyperthyroidism in multivariable logistic regression analyses, adjusting for age, gender, smoking, BMI, fasting glucose, LDL-cholesterol, and insulin resistance (HOMA-IR) [OR (95% CI), 1.012(1.005-1.019), P = 0.001]. Conclusion: These findings indicate that circulating TSK concentrations are independently associated with hyperthyroidism, suggesting that circulating TSK may be a predictive factor of hyperthyroidism and can be used for therapeutic monitoring.
Collapse
|