1
|
Mazumder H, Lin HY, Baddoo M, Gałan W, Polania-Villanueva D, Hicks C, Otohinoyi D, Peruzzi F, Madeja Z, Belancio VP, Flemington EK, Reiss K, Rak M. Human endogenous retroviruses (HERVs) associated with glioblastoma risk and prognosis. Cancer Gene Ther 2025:10.1038/s41417-024-00868-3. [PMID: 40389618 DOI: 10.1038/s41417-024-00868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/01/2024] [Accepted: 12/05/2024] [Indexed: 05/21/2025]
Abstract
Emerging evidence suggests expression from human endogenous retrovirus (HERV) loci likely contributes to, or is a biomarker of, glioblastoma multiforme (GBM) disease progression. However, the relationship between HERV expression and GBM malignant phenotype is unclear. Applying several in silico analyses based on data from The Cancer Genome Atlas (TCGA), we derived a locus-specific HERV transcriptome for glioma that revealed 211 HERVs significantly dysregulated in the comparisons of GBM vs. normal brain (NB), GBM vs. low-grade glioma (LGG), and LGG vs. NB. Our analysis supported development of a unique HERV scoring algorithm that segregated GBM, LGG, and NB. Interestingly, lower HERV scores showed correlation with lower survival in GBM. However, HERV scores were less robust in predicting LGG survival or LGG progression to GBM. Functional prediction analysis linked the 211 HERV loci with 18 voltage-gated potassium channel genes. The functional link between dysregulated HERVs and specific potassium channel genes may contribute to better understanding of GBM pathogenesis, disease progression, and possibly drug resistance.
Collapse
Affiliation(s)
- Harun Mazumder
- Biostatistics Program, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, LA, USA
| | - Hui-Yi Lin
- Biostatistics Program, Louisiana State University Health Sciences Center, School of Public Health, New Orleans, LA, USA
- Louisiana Cancer Research Center, New Orleans, LA, USA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane Health Sciences Center, New Orleans, LA, USA
| | | | - Diana Polania-Villanueva
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Chindo Hicks
- Department of Genetics and the Bioinformatics and Genomics Program, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - David Otohinoyi
- Department of Genetics and the Bioinformatics and Genomics Program, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Francesca Peruzzi
- Louisiana Cancer Research Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Medicine, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Zbigniew Madeja
- Department of Cell Biology, Jagiellonian University in Kraków, Faculty of Biochemistry, Biophysics and Biotechnology, Kraków, Poland
| | - Victoria P Belancio
- Louisiana Cancer Research Center, New Orleans, LA, USA
- Tulane Cancer Center, Tulane Health Sciences Center, New Orleans, LA, USA
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erik K Flemington
- Louisiana Cancer Research Center, New Orleans, LA, USA
- Tulane Cancer Center, Tulane Health Sciences Center, New Orleans, LA, USA
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Krzysztof Reiss
- Louisiana Cancer Research Center, New Orleans, LA, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Monika Rak
- Louisiana Cancer Research Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Department of Cell Biology, Jagiellonian University in Kraków, Faculty of Biochemistry, Biophysics and Biotechnology, Kraków, Poland.
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
2
|
Yin P, Xu J, Liu Y, Wang S, Liu T, Tang X, Hong N. T2-weighted magnetic resonance imaging radiogenomic features for the prediction of neoadjuvant chemotherapy response in patients with osteosarcoma. Acta Radiol 2025:2841851251337849. [PMID: 40375792 DOI: 10.1177/02841851251337849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
BackgroundOsteosarcoma (OS) is the most common primary malignant bone tumor. Exploring quantitative parameters that reflect the outcome of neoadjuvant chemotherapy (NACT) in patients with OS can help advance the treatment of patients.PurposeTo explore the role of T2-weighted (T2W) magnetic resonance imaging (MRI) radiogenomic features in characterizing changes in patients with OS and on NACT.Material and MethodsA total of 21 patients with OS were examined retrospectively and divided into a poor-response group (n = 13) and a good-response group (n = 8). A total of 98 radiomic features and 31 gene expression profiles were analyzed for each patient. Age, sex, alkaline phosphatase, pathologic type, tumor size, and tumor location were also analyzed. Comparisons between the good- and poor-response groups were made using the t-test, Mann-Whitney U test, or Fisher's exact test. The relationships between radiomic features and gene expression profiles were conducted using Spearman's correlative analyses.ResultsStatistical differences in 19 radiomics features and glutathione-s-transferase 1 were found between the good- and poor-response groups (P < 0.05). The receiver operating characteristic curve showed that four NGTDM busyness features had the best performance in predicting the NACT of patients with OS, with an area under the curve of 0.788, sensitivity of 0.750, and specificity of 0.923. Correlation analysis showed that the HLA_I, CD274, GSTP1, and CCND3 were significantly correlated with one or more radiomics features (P < 0.05).ConclusionThe T2W MRI radiogenomic features can be used as biomarkers for the early response evaluation of NACT in OS. This is the first study to analyze the association of T2 radiogenomic features with NACT in patients with OS to assist in the assessment of NACT.
Collapse
Affiliation(s)
- Ping Yin
- Department of Radiology, Peking University People's Hospital, Beijing, PR China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, PR China
| | - Ying Liu
- Department of Radiology, Peking University People's Hospital, Beijing, PR China
| | - Sicong Wang
- MR Research China, GE Healthcare, Beijing, PR China
| | - Tao Liu
- Department of Radiology, Peking University People's Hospital, Beijing, PR China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, PR China
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, Beijing, PR China
| |
Collapse
|
3
|
Jiang M, Li J, Wei J, Yang X, Wang W. Advances in neoantigen-based immunotherapy for head and neck squamous cell carcinoma: a comprehensive review. Front Oncol 2025; 15:1593048. [PMID: 40444094 PMCID: PMC12119297 DOI: 10.3389/fonc.2025.1593048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/17/2025] [Indexed: 06/02/2025] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC), ranking among the six most prevalent malignancies worldwide, is characterized by significant heterogeneity. Conventional monotherapeutic approaches, including surgical intervention, radiotherapy, and chemotherapy, often fail to achieve complete tumor cell elimination, consequently leading to disease recurrence and metastatic progression. In this context, personalized immunotherapeutic strategies, particularly cancer vaccines and immune checkpoint inhibitors, have emerged as promising therapeutic modalities for patients with recurrent/metastatic (R/M) HNSCC. Neoantigens, which exhibit selective expression in tumor tissues while remaining absent in normal tissues, have garnered considerable attention as novel targets for HNSCC personalized immunotherapy. However, the marked heterogeneity of HNSCC, coupled with patient-specific HLA variations, necessitates precise technical identification and evaluation of neoantigens at the individual level-a significant contemporary challenge. This comprehensive review systematically explores the landscape of neoantigen-based immunotherapy in HNSCC, including neoantigen sources, screening strategies, identification methods, and their clinical applications. Additionally, it evaluates the therapeutic potential of combining neoantigen-based approaches with other immunotherapeutic modalities, particularly immune checkpoint inhibitors, providing valuable insights for future clinical practice and research directions in HNSCC treatment.
Collapse
Affiliation(s)
- Manzhu Jiang
- College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Jiefu Li
- Guangzhou National Laboratory, Guangzhou, China
| | - Jianhua Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Xuerong Yang
- College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Weiqi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
4
|
Strum S, Andersen MH, Svane IM, Siu LL, Weber JS. State-Of-The-Art Advancements on Cancer Vaccines and Biomarkers. Am Soc Clin Oncol Educ Book 2024; 44:e438592. [PMID: 38669611 DOI: 10.1200/edbk_438592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The origins of cancer vaccines date back to the 1800s. Since then, there have been significant efforts to generate vaccines against solid and hematologic malignancies using a variety of platforms. To date, these efforts have generally been met with minimal success. However, in the era of improved methods and technological advancements, supported by compelling preclinical and clinical data, a wave of renewed interest in the field offers the promise of discovering field-changing paradigms in the management of established and resected disease using cancer vaccines. These include novel approaches to personalized neoantigen vaccine development, as well as innovative immune-modulatory vaccines (IMVs) that facilitate activation of antiregulatory T cells to limit immunosuppression caused by regulatory immune cells. This article will introduce some of the limitations that have affected cancer vaccine development over the past several decades, followed by an introduction to the latest advancements in neoantigen vaccine and IMV therapy, and then conclude with a discussion of some of the newest technologies and progress that are occurring across the cancer vaccine space. Cancer vaccines are among the most promising frontiers for breakthrough innovations and strategies poised to make a measurable impact in the ongoing fight against cancer.
Collapse
Affiliation(s)
- Scott Strum
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY
| |
Collapse
|
5
|
Zou C, Huang R, Lin T, Wang Y, Tu J, Zhang L, Wang B, Huang J, Zhao Z, Xie X, Huang G, Wang K, Yin J, Shen J. Age-dependent molecular variations in osteosarcoma: implications for precision oncology across pediatric, adolescent, and adult patients. Front Oncol 2024; 14:1382276. [PMID: 38841159 PMCID: PMC11150704 DOI: 10.3389/fonc.2024.1382276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/19/2024] [Indexed: 06/07/2024] Open
Abstract
Background Osteosarcoma is a leading subtype of bone tumor affecting adolescents and adults. Comparative molecular characterization among different age groups, especially in pediatric, adolescents and adults, is scarce. Methods We collected samples from 194 osteosarcoma patients, encompassing pediatric, adolescent, and adult cohorts. Genomic analyses were conducted to reveal prevalent mutations and compare molecular features in pediatric, adolescent, and adult patients. Results Samples from 194 osteosarcoma patients across pediatric to adult ages were analyzed, revealing key mutations such as TP53, FLCN, NCOR1, and others. Children and adolescents showed more gene amplifications and HRD mutations, while adults had a greater Tumor Mutational Burden (TMB). Mutations in those over 15 were mainly in cell cycle and PI3K/mTOR pathways, while under 15s had more in cell cycle and angiogenesis with higher VEGFA, CCND3, TFEB mutations. CNV patterns varied with age: VEGFA and XPO5 amplifications more in under 25s, and CDKN2A/B deletions in over 25s. Genetic alterations in genes like MCL1 and MYC were associated with poor prognosis, with VEGFA mutations also indicating worse outcomes. 58% of patients had actionable mutations, suggesting opportunities for targeted therapies. Age-specific patterns were observed, with Multi-TKI mutations more common in younger patients and CDK4/6 inhibitor mutations in adults, highlighting the need for personalized treatment approaches in osteosarcoma. In a small group of patients with VEGFR amplification, postoperative treatment with multi-kinase inhibitors resulted in a PR in 3 of 13 cases, especially in patients under 15. A significant case involved a 13-year-old with a notable tumor size reduction achieving PR, even with other genetic alterations present in some patients with PD. Conclusion This study delineates the molecular differences among pediatric, adolescent, and adult osteosarcoma patients at the genomic level, emphasizing the necessity for precision diagnostics and treatment strategies, and may offer novel prognostic biomarkers for patients with osteosarcoma. These findings provide a significant scientific foundation for the development of individualized treatment approaches tailored to patients of different age groups.
Collapse
Affiliation(s)
- Changye Zou
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Renxuan Huang
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiao Lin
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Jian Tu
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Bo Wang
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Zhiqiang Zhao
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gang Huang
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Junqiang Yin
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Xing P, Liu H, Xiao W, Zhang G, Zhang C, Liao Z, Li T, Yang J. The fusion gene LRP1-SNRNP25 drives invasion and migration by activating the pJNK/37LRP/MMP2 signaling pathway in osteosarcoma. Cell Death Discov 2024; 10:198. [PMID: 38678020 PMCID: PMC11055890 DOI: 10.1038/s41420-024-01962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Through transcriptome sequencing, we previously identified a new osteosarcoma-specific, frequent fusion gene, LRP1-SNRNP25, and found that it played an important role in tumor cell invasion and migration. However, the specific mechanism remains unclear. In this article, whole-genome sequencing further confirmed that the LRP1-SNRNP25 fusion gene is formed by fusion of LRP1 exon 8 and SNRNP25 exon 2. In vitro, scratch and Transwell assays demonstrated that the migration and invasion abilities of LRP1-SNRNP25-overexpressing osteosarcoma cells were significantly increased. To explore the molecular mechanism of the LRP1-SNRNP25 fusion in affecting osteosarcoma cell migration and invasion, we evaluated the migration and invasion-related molecular signaling pathways by western blotting. Some migration- and invasion-related genes, including pJNK and MMP2, were upregulated. Coimmunoprecipitation-mass spectrometry showed that 37LRP can interact with pJNK. Western blotting confirmed that LRP1-SNRNP25 overexpression upregulates 37LRP protein expression. Immunofluorescence staining showed the intracellular colocalization of LRP1-SNRNP25 with pJNK and 37LRP proteins and that LRP1-SNRNP25 expression increased the pJNK and 37LRP levels. Coimmunoprecipitation (co-IP) confirmed that LRP1-SNRNP25 interacted with pJNK and 37LRP proteins. The pJNK inhibitor SP600125 dose-dependently decreased the pJNK/37LRP/MMP2 levels. After siRNA-mediated 37LRP knockdown, the MMP2 protein level decreased. These two experiments proved the upstream/downstream relationship among pJNK, 37LRP, and MMP2, with pJNK the farthest upstream and MMP2 the farthest downstream. These results proved that the LRP1-SNRNP25 fusion gene exerts biological effects through the pJNK/37LRP/MMP2 signaling pathway. In vivo, LRP1-SNRNP25 promoted osteosarcoma cell growth. Tumor growth was significantly inhibited after SP600125 treatment. Immunohistochemical analysis showed that the pJNK, MMP2, and Ki-67 protein levels were significantly increased in tumor tissues of LRP1-SNRNP25-overexpressing cell-injected nude mice. Furthermore, lung and liver metastasis were more prevalent in these mice. In a word, LRP1-SNRNP25 promotes invasion, migration, and metastasis via pJNK/37LRP/MMP2 pathway. LRP1-SNRNP25 is a potential therapeutic target for LRP1-SNRNP25-positive osteosarcoma.
Collapse
Affiliation(s)
- Peipei Xing
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Haotian Liu
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Wanyi Xiao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Gengpu Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Zhichao Liao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Ting Li
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China.
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, PR China.
| |
Collapse
|
7
|
Casuso A, Benavente BP, Leal Y, Carrera-Naipil C, Valenzuela-Muñoz V, Gallardo-Escárate C. Sex-Biased Transcription Expression of Vitellogenins Reveals Fusion Gene and MicroRNA Regulation in the Sea Louse Caligus rogercresseyi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:243-260. [PMID: 38294574 DOI: 10.1007/s10126-024-10291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
The caligid ectoparasite, Caligus rogercresseyi, is one of the main concerns in the Chilean salmon industry. The molecular mechanisms displayed by the parasite during the reproductive process represent an opportunity for developing novel control strategies. Vitellogenin is a multifunctional protein recognized as a critical player in several crustaceans' biological processes, including reproduction, embryonic development, and immune response. This study aimed to characterize the C. rogercresseyi vitellogenins, including discovering novel transcripts and regulatory mechanisms associated with microRNAs. Herein, vitellogenin genes were identified by homology analysis using the reference sea louse genome, transcriptome database, and arthropods vitellogenin-protein database. The validation of expression transcripts was conducted by RNA nanopore sequencing technology. Moreover, fusion gene profiling, miRNA target analysis, and functional validation were performed using luciferase assay. Six putative vitellogenin genes were identified in the C. rogercresseyi genome with high homology with other copepods vitellogenins. Furthermore, miR-996 showed a putative role in regulating the Cr_Vitellogenin1 gene, which is highly expressed in females. Moreover, vitellogenin-fusion genes were identified in adult stages and highly regulated in males, demonstrating sex-related expression patterns. In females, the identified fusion genes merged with several non-vitellogenin genes involved in biological processes of ribosome assembly, BMP signaling pathway, and biosynthetic processes. This study reports the genome array of vitellogenins in C. rogercresseyi for the first time, revealing the putative role of fusion genes and miRNA regulation in sea lice biology.
Collapse
Affiliation(s)
- Antonio Casuso
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Bárbara P Benavente
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Yeny Leal
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Crisleri Carrera-Naipil
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile.
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
8
|
Hirose T, Ikegami M, Kojima S, Yoshida A, Endo M, Shimada E, Kanahori M, Oyama R, Matsumoto Y, Nakashima Y, Kawai A, Mano H, Kohsaka S. Extensive analysis of 59 sarcoma-related fusion genes identified pazopanib as a potential inhibitor to COL1A1-PDGFB fusion gene. Cancer Sci 2023; 114:4089-4100. [PMID: 37592448 PMCID: PMC10551592 DOI: 10.1111/cas.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023] Open
Abstract
Sarcomas are malignant mesenchymal tumors that are extremely rare and divergent. Fusion genes are involved in approximately 30% of sarcomas as driver oncogenes; however, their detailed functions are not fully understood. In this study, we determined the functional significance of 59 sarcoma-related fusion genes. The transforming potential and drug sensitivities of these fusion genes were evaluated using a focus formation assay (FFA) and the mixed-all-nominated-in-one (MANO) method, respectively. The transcriptome was also examined using RNA sequencing of 3T3 cells transduced with each fusion gene. Approximately half (28/59, 47%) of the fusion genes exhibited transformation in the FFA assay, which was classified into five types based on the resulting phenotype. The sensitivity to 12 drugs including multityrosine kinase inhibitors was assessed using the MANO method and pazopanib was found to be more effective against cells expressing the COL1A1-PDGFB fusion gene compared with the others. The downstream MAPK/AKT pathway was suppressed at the protein level following pazopanib treatment. The fusion genes were classified into four subgroups by cluster analysis of the gene expression data and gene set enrichment analysis. In summary, the oncogenicity and drug sensitivity of 59 fusion genes were simultaneously evaluated using a high-throughput strategy. Pazopanib was selected as a candidate drug for sarcomas harboring the COL1A1-PDGFB fusion gene. This assessment could be useful as a screening platform and provides a database to evaluate customized therapy for fusion gene-associated sarcomas.
Collapse
Affiliation(s)
- Takeshi Hirose
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masachika Ikegami
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Shinya Kojima
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Akihiko Yoshida
- Department of Diagnostic PathologyNational Cancer Center HospitalTokyoJapan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Eijiro Shimada
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masaya Kanahori
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ryunosuke Oyama
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Akira Kawai
- Department of Musculoskeletal OncologyNational Cancer Center HospitalTokyoJapan
| | - Hiroyuki Mano
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| | - Shinji Kohsaka
- Division of Cellular SignalingNational Cancer Center Research InstituteTokyoJapan
| |
Collapse
|
9
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
10
|
Saleban M, Harris EL, Poulter JA. D-Type Cyclins in Development and Disease. Genes (Basel) 2023; 14:1445. [PMID: 37510349 PMCID: PMC10378862 DOI: 10.3390/genes14071445] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
D-type cyclins encode G1/S cell cycle checkpoint proteins, which play a crucial role in defining cell cycle exit and progression. Precise control of cell cycle exit is vital during embryonic development, with defects in the pathways regulating intracellular D-type cyclins resulting in abnormal initiation of stem cell differentiation in a variety of different organ systems. Furthermore, stabilisation of D-type cyclins is observed in a wide range of disorders characterized by cellular over-proliferation, including cancers and overgrowth disorders. In this review, we will summarize and compare the roles played by each D-type cyclin during development and provide examples of how their intracellular dysregulation can be an underlying cause of disease.
Collapse
Affiliation(s)
- Mostafa Saleban
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Erica L Harris
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - James A Poulter
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
11
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 404] [Impact Index Per Article: 202.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
12
|
Aepala MR, Peiris MN, Jiang Z, Yang W, Meyer AN, Donoghue DJ. Nefarious NTRK oncogenic fusions in pediatric sarcomas: Too many to Trk. Cytokine Growth Factor Rev 2022; 68:93-106. [PMID: 36153202 DOI: 10.1016/j.cytogfr.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
Neurotrophic Tyrosine Receptor Kinase (NTRK) genes undergo chromosomal translocations to create novel open reading frames coding for oncogenic fusion proteins; the N-terminal portion, donated by various partner genes, becomes fused to the tyrosine kinase domain of either NTRK1, NTRK2, or NTRK3. NTRK fusion proteins have been identified as driver oncogenes in a wide variety of tumors over the past three decades, including Pediatric Gliomas, Papillary Thyroid Carcinoma, Spitzoid Neoplasms, Glioblastoma, and additional tumors. Importantly, NTRK fusions function as drivers of pediatric sarcomas, accounting for approximately 15% of childhood cancers including Infantile Fibrosarcoma (IFS), a subset of pediatric soft tissue sarcoma (STS). While tyrosine kinase inhibitors (TKIs), such as larotrectinib and entrectinib, have demonstrated profound results against NTRK fusion-positive cancers, acquired resistance to these TKIs has resulted in the formation of gatekeeper, solvent-front, and compound mutations. We present a comprehensive compilation of oncogenic fusions involving NTRKs focusing specifically on pediatric STS, examining their biological signaling pathways and mechanisms of activation. The importance of an obligatory dimerization or multimerization domain, invariably donated by the N-terminal fusion partner, is discussed using characteristic fusions that occur in pediatric sarcomas. In addition, examples are presented of oncogenic fusion proteins in which the N-terminal partners may contribute additional biological activities beyond an oligomerization domain. Lastly, therapeutic approaches to the treatment of pediatric sarcoma will be presented, using first generation and second-generation agents such as selitrectinib and repotrectinib.
Collapse
Affiliation(s)
- Megha R Aepala
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Malalage N Peiris
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Zian Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Wei Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA; UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, USA.
| |
Collapse
|
13
|
Chen Y, Tan S, Fu J. Modified Metabolism and Response to UV Radiation: Gene Expression Variations Along an Elevational Gradient in the Asiatic Toad (Bufo gargarizans). J Mol Evol 2022; 90:389-399. [PMID: 36029325 DOI: 10.1007/s00239-022-10070-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
High-elevation adaptation provides an excellent system for examining adaptive evolution, and adaptive variations may manifest at gene expression or any other phenotypic levels. We examined gene expression profiles of Asiatic toads (Bufo gargarizans) along an elevational gradient from both wild and common-garden acclimated populations. Asiatic toads originated from high altitudes have distinctive gene expression patterns. We identified 18 fixed differentially expressed genes (DEGs), which are different in both wild and acclimated samples, and 1217 plastic DEGs, which are different among wild samples. The expression levels of most genes were linearly correlated with altitude gradient and down-regulated in high-altitude populations. Expression variations of several genes associated with metabolic process are fixed, and we also identified a co-expression module that is significantly different between acclimated populations and has functions related to DNA repair. The differential expression of the vast majority genes, however, are due to phenotypic plasticity, revealing the highly plastic nature of gene expression variations. Expression modification of some specific genes related to metabolism and response to UV radiation play crucial role in adaptation to high altitude for Asiatic toads. Common-garden experiments are essential for evaluating adaptive evolution of natural populations.
Collapse
Affiliation(s)
- Ying Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
- The University of Chinese Academy of Science, Beijing, China.
| | - Song Tan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- The University of Chinese Academy of Science, Beijing, China
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
14
|
Nie JH, Yang T, Li H, Ye HS, Zhong GQ, Li TT, Zhang C, Huang WH, Xiao J, Li Z, He JL, Du BL, Zhang Y, Liu J. Identification of GPC3 mutation and upregulation in a multidrug resistant osteosarcoma and its spheroids as therapeutic target. J Bone Oncol 2021; 30:100391. [PMID: 34611509 PMCID: PMC8476350 DOI: 10.1016/j.jbo.2021.100391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 11/15/2022] Open
Abstract
GPC3 mutation in primary osteosarcoma becomes abundant in its metastasis. Mutant GPC3 is over-produced in metastatic spheroids with multidrug resistance. Anti-GPC3 antibody effectively commits metastatic spheroids to apoptosis. GPC3 would be a promising therapeutic target of osteosarcomas.
Background Drug resistance and the lack of molecular therapeutic target are the main challenges in the management of osteosarcomas (OSs). Identification of novel genetic alteration(s) related with OS recurrence and chemotherapeutic resistance would be of scientific and clinical significance. Methods To identify potential genetic alterations related with OS recurrence and chemotherapeutic resistance, the biopsies of a 20-year-old male osteosarcoma patient were collected at primary site (p-OS) and from its metastatic tumor (m-OS) formed after 5 months of adjuvant chemotherapy. Both OS specimens were subjected to cancer-targeted next generation sequencing (NGS) and their cell suspensions were cultured under three-dimensional condition to establish spheroid therapeutic model. Transcript-oriented Sanger sequencing for GPC3, the detected mutated gene, was performed on RNA samples of p-OS and m-OS tissues and spheroids. The effects of anti-GPC3 antibody and its combination with cisplatin on m-OS spheroids were elucidated. Results NGS revealed 4 mutations (GPC3, SOX10, MDM4 and MAPK8) and 6 amplifications (MDM2, CDK4, CCND3, RUNX2, GLI1 and FRS2) in p-OS, and 3 mutations (GPC3, SOX10 and EGF) and 10 amplifications (CDK4, CCND3, MDM2, RUNX2, GLI1, FRS2, CARD11, RAC1, SLC16A7 and PMS2) in m-OS. Among those alterations, the mutation abundance of GPC3 was the highest (56.49%) in p-OS and showed 1.54 times increase in m-OS. GPC3 transcript-oriented Sanger sequencing confirmed the mutation at 1046 in Exon 4, and immunohistochemical staining showed increased GPC3 production in m-OS tissues and its spheroids. EdU cell proliferation and Calcein/PI cell viability assays revealed that of the anti-OS first line drugs (doxorubicin, cisplatin, methotrexate, ifosfamide and carboplatin), 10 μM carboplatin exerted the best inhibitory effects on the p-OS but not the m-OS spheroids. 2 μg/mL anti-GPC3 antibody effectively committed m-OS spheroids to death by itself (76.43%) or in combination with cisplatin (92.93%). Conclusion This study demonstrates increased abundance and up-regulated expression of mutant GPC3 in metastatic osteosarcoma and its spheroids with multidrug resistance. As GPC3-targeting therapy has been used to treat hepatocellular carcinomas and it is also effective to OS PDSs, GPC3 would be a novel prognostic parameter and therapeutic target of osteosarcomas.
Collapse
Key Words
- Anti-GPC3 targeted therapy
- CBP, carboplatin
- CDDP, cisplatin
- DOX, doxorubicin
- FFPE, formalin-fixed, paraffin- embedded
- GPC3 mutation
- GPC3-Ab, anti-GPC3 antibody
- Gene upregulation
- H/E, hematoxylin and eosin
- IHC, immunohistochemistry
- MA, mutation abundance
- MSS, microsatellite stable
- MTX, methotrexate
- Multidrug resistance
- NAC, neoadjuvant chemotherapy
- NGS, next generation sequencing
- Next generation sequencing
- OS, osteosarcoma
- Osteosarcoma
- PDS, patient-derived spheroids
- Patient-derived spheroids
- SNV, single-nucleotide variant
- m-OS, metastatic osteosarcoma
- p-OS, primary osteosarcoma
Collapse
Affiliation(s)
- Jun-Hua Nie
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Tao Yang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Hong Li
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Hai-Shan Ye
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Guo-Qing Zhong
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Ting-Ting Li
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Chi Zhang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Wen-Han Huang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Jin Xiao
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Zhi Li
- Department of Pathology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Jian-Li He
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Bo-Le Du
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Yu Zhang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Jia Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Wu H, Wang C, Liu Y, Yang C, Liang X, Zhang X, Li X. miR-138-5p suppresses glioblastoma cell viability and leads to cell cycle arrest by targeting cyclin D3. Oncol Lett 2020; 20:264. [PMID: 32989398 PMCID: PMC7517571 DOI: 10.3892/ol.2020.12127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Although malignant glioblastoma (GBM) treatment has significantly improved in the past few decades, the prognosis of GBM remains unsatisfactory. MicroRNA (miR)-138-5p has been reported as a tumor suppressor in several types of human cancer; however, little is known about the function of miR-138-5p in GBM. The present study aimed to investigate the role of miR-138-5p in GBM as well as the underlying molecular mechanisms. The present study performed bioinformatics analysis, reverse transcription-quantitative (RT-q)PCR, western blotting, cell viability assays, colony formation assays, invasion assays and cell cycle analysis to investigate the biological function of miR-138-5p in both patient tissues and cell lines. In addition, miR-138-5p targets in GBM were predicted using Gene Expression Omnibus website and further validated by a dual luciferase reporter gene assay. The results revealed that miR-138-5p expression levels in patients with GBM from a Gene Expression Omnibus dataset were significantly downregulated. RT-qPCR analysis of miR-138-5p expression levels also revealed similar results in GBM tissues and cell lines. The upregulation of miR-138-5p expression levels using a mimic significantly inhibited the cell viability, colony formation and the G0/G1 to S progression in GBM cell lines, suggesting that miR-138-5p may be a tumor suppressor. Moreover, miR-138-5p was discovered to directly target cyclin D3 (CCND3), a protein that serves an important role in the cell cycle, and inhibited its expression. Finally, silencing CCND3 using small interfering RNA suppressed the viability of GBM cells. In conclusion, the results of the present study suggested that miR-138-5p may function as a tumor suppressor in GBM by targeting CCND3, indicating that miR-138-5p may be a novel therapeutic target for patients with GBM.
Collapse
Affiliation(s)
- Henggang Wu
- Department of Neurosurgery, Wenrong Hospital of Hengdian, Jinhua, Zhejiang 322118, P.R. China
| | - Cheng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yajun Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Chao Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaolong Liang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xu Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
16
|
Heyer EE, Deveson IW, Wooi D, Selinger CI, Lyons RJ, Hayes VM, O'Toole SA, Ballinger ML, Gill D, Thomas DM, Mercer TR, Blackburn J. Diagnosis of fusion genes using targeted RNA sequencing. Nat Commun 2019; 10:1388. [PMID: 30918253 PMCID: PMC6437215 DOI: 10.1038/s41467-019-09374-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/22/2019] [Indexed: 01/05/2023] Open
Abstract
Fusion genes are a major cause of cancer. Their rapid and accurate diagnosis can inform clinical action, but current molecular diagnostic assays are restricted in resolution and throughput. Here, we show that targeted RNA sequencing (RNAseq) can overcome these limitations. First, we establish that fusion gene detection with targeted RNAseq is both sensitive and quantitative by optimising laboratory and bioinformatic variables using spike-in standards and cell lines. Next, we analyse a clinical patient cohort and improve the overall fusion gene diagnostic rate from 63% with conventional approaches to 76% with targeted RNAseq while demonstrating high concordance for patient samples with previous diagnoses. Finally, we show that targeted RNAseq offers additional advantages by simultaneously measuring gene expression levels and profiling the immune-receptor repertoire. We anticipate that targeted RNAseq will improve clinical fusion gene detection, and its increasing use will provide a deeper understanding of fusion gene biology. Rapid and accurate detection of fusion genes is important in cancer diagnostics. Here, the authors demonstrate that targeted RNA sequencing provides fast, sensitive and quantitative gene fusion detection and overcomes the limitations of approaches currently in clinical use.
Collapse
Affiliation(s)
- Erin E Heyer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Ira W Deveson
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia
| | - Danson Wooi
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia
| | - Christina I Selinger
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, 2050, NSW, Australia
| | - Ruth J Lyons
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Vanessa M Hayes
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia.,Faculty of Health Sciences, University of Limpopo, Turfloop Campus, Mankweng, 0727, South Africa.,School of Health Systems and Public Health, University of Pretoria, Pretoria, 0002, South Africa.,Central Clinical School, University of Sydney, Sydney, 2006, NSW, Australia
| | - Sandra A O'Toole
- St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, 2050, NSW, Australia.,Central Clinical School, University of Sydney, Sydney, 2006, NSW, Australia.,The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia.,Australian Clinical Labs, Sydney, 2010, NSW, Australia
| | - Mandy L Ballinger
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Devinder Gill
- Department of Haematology, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia
| | - David M Thomas
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia
| | - Tim R Mercer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia. .,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia. .,Altius Institute for Biomedical Sciences, Seattle, 98121, WA, USA.
| | - James Blackburn
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, 2010, NSW, Australia. .,St. Vincent's Clinical School, UNSW Australia, Sydney, 2031, NSW, Australia.
| |
Collapse
|
17
|
Shi JH, Hao YJ. DDX10 overexpression predicts worse prognosis in osteosarcoma and its deletion prohibits cell activities modulated by MAPK pathway. Biochem Biophys Res Commun 2019; 510:525-529. [PMID: 30738579 DOI: 10.1016/j.bbrc.2019.01.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/26/2019] [Indexed: 01/12/2023]
Abstract
Osteosarcoma (OS) is an invasive cancer in the skeletal system. The molecular mechanism of its etiology and pathogenesis are still not clear, so the effective treatment strategy of OS needs further research. First, we analyzed the expression level and prognostic ability of the RNA helicase DDX10 in OS patients based on the data obtained from GEO database. Next, we used CCK8 to test OS cell viability. Besides, we used wound-healing assay and transwell migration assay to detect cell migration of OS MG63 cell line. And the cell invasion was tested by transwell invasion assay. Moreover, we used QRT-PCR and western blot to analyze the mRNA and protein expression levels. We found that DDX10 was significantly over-expressed in OS patients and elevated level of DDX10 was associated with a poor prognosis. Silencing of DDX10 inhibited proliferation, invasion and migration of MG63 cells in vitro. Down-regulation of DDX10 inhibited MAPK signaling pathway. The expression of p-MEK and p-ERK were also decreased by silencing of DDX10. Therefore, Silencing of DDX10 inhibited proliferation, invasion and migration of MG63 cells, which might be regulated by suppression of MAPK pathway. In conclusion, our results unfold a novel area of studying for understanding how DDX10 functions in OS oncogenic and prognostic significance, accordingly implying a promising therapeutic target for OS treatment.
Collapse
Affiliation(s)
- Jian-Hui Shi
- Department of Orthopedics, Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, PR China
| | - Ying-Jie Hao
- Department of Orthopaedics, Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
18
|
Zhang Y, Yang F. Analyzing the disease module associated with osteosarcoma via a network- and pathway-based approach. Exp Ther Med 2018; 16:2584-2592. [PMID: 30210606 PMCID: PMC6122582 DOI: 10.3892/etm.2018.6506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is the most common type of primary malignant bone tumor observed in children and adolescents. The aim of the present study was to identify an osteosarcoma-related gene module (OSM) by looking for a dense module following the integration of signals from genome-wide association studies (GWAS) into the human protein-protein interaction (PPI) network. A dataset of somatic mutations in osteosarcoma was obtained from the dbGaP database and their testing P-values were incorporated into the PPI network from a recent study using the dmGWAS bioconductor package. An OSM containing 201 genes (OS genes) and 268 interactions, which were closely associated with immune response, intracellular signal transduction and cell activity was identified. Topological analysis of the OSM identified 11 genes, including APP, APPBP2, ATXN1, HSP90B1, IKZF1, KRTAP10-1, PAK1, PDPK1, SMAD4, SUZ12 and TP53 as potential diagnostic biomarkers for osteosarcoma. The overall survival analysis of osteosarcoma for those 11 genes based on a dataset from the Cancer Genome Atlas, identified APP, HSP90B1, SUZ12 and IKZF1 as osteosarcoma survival-related genes. The results of the present study should be helpful in understanding the diagnosis and treatment of osteosarcoma and its underlying mechanisms. In addition, the methodology used in the present study may be suitable for the analysis of other types of disease.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopaedic Microsurgery, Central Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| | - Fei Yang
- Department of Orthopedic Joint Surgery, Central Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| |
Collapse
|
19
|
Xie L, Yao Z, Zhang Y, Li D, Hu F, Liao Y, Zhou L, Zhou Y, Huang Z, He Z, Han L, Yang Y, Yang Z. Deep RNA sequencing reveals the dynamic regulation of miRNA, lncRNAs, and mRNAs in osteosarcoma tumorigenesis and pulmonary metastasis. Cell Death Dis 2018; 9:772. [PMID: 29991755 PMCID: PMC6039476 DOI: 10.1038/s41419-018-0813-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common pediatric malignant bone tumor, and occurrence of pulmonary metastasis generally causes a rapid and fatal outcome. Here we aimed to provide clues for exploring the mechanism of tumorigenesis and pulmonary metastasis for OS by comprehensive analysis of microRNA (miRNA), long non-coding RNA (lncRNA), and mRNA expression in primary OS and OS pulmonary metastasis. In this study, deep sequencing with samples from primary OS (n = 3), pulmonary metastatic OS (n = 3), and normal controls (n = 3) was conducted and differentially expressed miRNAs (DEmiRNAs), lncRNAs (DElncRNAs), and mRNAs (DEmRNAs) between primary OS and normal controls as well as pulmonary metastatic and primary OS were identified. A total of 65 DEmiRNAs, 233 DElncRNAs, and 1405 DEmRNAs were obtained between primary OS and normal controls; 48 DEmiRNAs, 50 DElncRNAs, and 307 DEmRNAs were obtained between pulmonary metastatic and primary OS. Then, the target DEmRNAs and DElncRNAs regulated by the same DEmiRNAs were searched and the OS tumorigenesis-related and OS pulmonary metastasis-related competing endogenous RNA (ceRNA) networks were constructed, respectively. Based on these ceRNA networks and Venn diagram analysis, we obtained 3 DEmiRNAs, 15 DElncRNAs, and 100 DEmRNAs, and eight target pairs including miR-223-5p/(CLSTN2, AC009951.1, LINC01705, AC090673.1), miR-378b/(ALX4, IGSF3, SULF1), and miR-323b-3p/TGFBR3 were involved in both tumorigenesis and pulmonary metastasis of OS. The TGF-β superfamily co-receptor TGFBR3, which is regulated by miR-323b-3p, acts as a tumor suppressor in OS tumorigenesis and acts as a tumor promoter in pulmonary metastatic OS via activation of the epithelial-mesenchymal transition (EMT) program.In conclusion, the OS transcriptome (miRNA, lncRNA, and mRNA) is dynamically regulated. These analyses might provide new clues to uncover the molecular mechanisms and signaling networks that contribute to OS progression, toward patient-tailored and novel-targeted treatments.
Collapse
MESH Headings
- Adolescent
- Adult
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Computational Biology
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Osteosarcoma/genetics
- Osteosarcoma/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, RNA/methods
- Young Adult
Collapse
Affiliation(s)
- Lin Xie
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Ya Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Dongqi Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Fengdi Hu
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Yedan Liao
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Ling Zhou
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Yonghong Zhou
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Zeyong Huang
- Medical School, Kunming University of Science and Technology, Kunming, 650504, Yunnan, China
| | - Zewei He
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Yihao Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China.
| |
Collapse
|
20
|
Agostini A, Brunetti M, Davidson B, Göran Tropé C, Heim S, Panagopoulos I, Micci F. Identification of novel cyclin gene fusion transcripts in endometrioid ovarian carcinomas. Int J Cancer 2018; 143:1379-1387. [PMID: 29633253 PMCID: PMC6099316 DOI: 10.1002/ijc.31418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
Formation of fusion genes is pathogenetically crucial in many solid tumors. They are particularly characteristic of several mesenchymal tumors, but may also be found in epithelial neoplasms. Ovarian carcinomas, too, may harbor fusion genes but only few of these were found to be recurrent with a rate ranging from 0.5 to 5%. Because most attempts to find specific and recurrent fusion transcripts in ovarian carcinomas focused exclusively on high‐grade serous carcinomas, the situation in the other carcinoma subgroups remains largely uninvestigated as far as fusion genes are concerned. We performed transcriptome sequencing on a series of 34 samples from ovarian tumors that included borderline, clear cell, mucinous, endometrioid, low‐grade and high‐grade serous carcinomas in search of fusion genes typical of these subtypes. We found a total of 24 novel fusion transcripts. The PCMTDI‐CCNL2 fusion transcript, which involves a member of the cyclin family, was found recurrently involved but only in endometrioid carcinomas (4 of 18 tumors; 22%). We also found three additional fusion transcripts involving genes belonging to the cyclin family: ANXA5‐CCNA2 and PDE4D‐CCNB1 were detected in two endometrioid carcinomas, whereas CCNY‐NRG4 was identified in a clear cell carcinoma. The recurrent involvement of CCNL2 in four fusions and of three other genes of the cyclin family in three additional transcripts hints that deregulation of cyclin genes is important in the pathogenesis of ovarian carcinomas in general but of endometrioid carcinomas particularly. What's new? Chimeric genes formed by fusion of previously separate genes are associated with many malignant tumors, but rare in ovarian cancer. Here the authors performed transcriptome sequencing of different types of ovarian tumors and identify novel fusion genes, involving cyclin genes, the master regulators of the cell cycle. As most of these fusions were found in ovarian cancer of the endometroid type, which represent about 10% of all ovarian cancers, the data point to a novel role of cyclin deregulation in this specific cancer subtype.
Collapse
Affiliation(s)
- Antonio Agostini
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Marta Brunetti
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ben Davidson
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Claes Göran Tropé
- Department of Gynecology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| |
Collapse
|
21
|
He Y, Ma J, Ye X. A support vector machine classifier for the prediction of osteosarcoma metastasis with high accuracy. Int J Mol Med 2017; 40:1357-1364. [PMID: 28901446 PMCID: PMC5627885 DOI: 10.3892/ijmm.2017.3126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/29/2017] [Indexed: 12/02/2022] Open
Abstract
In this study, gene expression profiles of osteosarcoma (OS) were analyzed to identify critical genes associated with metastasis. Five gene expression datasets were screened and downloaded from Gene Expression Omnibus (GEO). Following assessment by MetaQC, the dataset GSE9508 was excluded for poor quality. Subsequently, differentially expressed genes (DEGs) between metastatic and non-metastatic OS were identified using meta‑analysis. A protein-protein interaction (PPI) network was constructed with information from Human Protein Reference Database (HPRD) for the DEGs. Betweenness centrality (BC) was calculated for each node in the network and top featured genes ranked by BC were selected out to construct support vector machine (SVM) classifier using the training set GSE21257, which was then validated using the other three independent datasets. Pathway enrichment analysis was performed for the featured genes using Fisher's exact test. A total of 353 DEGs were identified and a PPI network including 164 nodes and 272 edges was then constructed. The top 64 featured genes ranked by BC were included in the SVM classifier. The SVM classifier exhibited high prediction accuracies in all of the 4 datasets, with accuracies of 100, 100, 92.6 and 100%, respectively. Further analysis of the featured genes revealed that 11 Gene Ontology (GO) biological pathways and 5 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly over-represented, including the regulation of cell proliferation, regulation of apoptosis, pathways in cancer, regulation of actin cytoskeleton and the TGF-β signaling pathway. On the whole, an SVM classifier with high prediction accuracy was constructed and validated, in which key genes associated with metastasis in OS were also revealed. These findings may promote the development of genetic diagnostic methods and may enhance our understanding of the molecular mechanisms underlying the metastasis of OS.
Collapse
Affiliation(s)
- Yunfei He
- Department of Orthopaedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai 200003
- Department of Orthopaedics, Lanzhou General Hospital of Lanzhou Military Command Region, Lanzhou, Gansu 730050, P.R. China
| | - Jun Ma
- Department of Orthopaedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai 200003
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai 200003
| |
Collapse
|
22
|
Abstract
Osteosarcoma is the predominant form of bone cancer, affecting mostly adolescents. Recent progress made in molecular genetic studies of osteosarcoma has changed our view on the cause of the disease and ongoing therapeutic approaches for patients. As we draw closer to gaining more complete catalogs of candidate cancer driver genes in common forms of cancer, the landscape of somatic mutations in osteosarcoma is emerging from its first phase. In this review, we summarize recent whole genome and/or whole exome genomic studies, and then put these findings in the context of genetic hallmarks of somatic mutations and mutational processes in human osteosarcoma. One of the lessons learned here is that the extent of somatic mutations and complexity of the osteosarcoma genome are similar to that of common forms of adult cancer. Thus, a much higher number of samples than those currently obtained are needed to complete the catalog of driver mutations in human osteosarcoma. In parallel, genetic studies in other species have revealed candidate driver genes and their roles in the genesis of osteosarcoma. This review also summarizes newly identified drivers in genetically engineered mouse models (GEMMs) and discusses our understanding of the impact of nature and number of drivers on tumor latency, subtypes, and metastatic potentials of osteosarcoma. It is becoming apparent that a synergistic team composed of three drivers (one 'first driver' and two 'synergistic drivers') may be required to generate an animal model that recapitulates aggressive osteosarcoma with a short latency. Finally, new cancer therapies are urgently needed to improve survival rate and quality of life for osteosarcoma patients. Several vulnerabilities in osteosarcoma are illustrated in this review to exemplify the opportunities for next generation molecularly targeted therapies. However, much work remains in order to complete our understanding of the somatic mutation basis of osteosarcoma, to develop reliable animal models of human disease, and to apply this information to guide new therapeutic approaches for reducing morbidity and mortality of this rare disease.
Collapse
Affiliation(s)
- Kirby Rickel
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Fang Fang
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jianning Tao
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
23
|
Yang T, Williams BO. Low-Density Lipoprotein Receptor-Related Proteins in Skeletal Development and Disease. Physiol Rev 2017; 97:1211-1228. [PMID: 28615463 DOI: 10.1152/physrev.00013.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
The identification of the low-density lipoprotein receptor (LDLR) provided a foundation for subsequent studies in lipoprotein metabolism, receptor-mediated endocytosis, and many other fundamental biological functions. The importance of the LDLR led to numerous studies that identified homologous molecules and ultimately resulted in the description of the LDL-receptor superfamily, a group of proteins that contain domains also found in the LDLR. Subsequent studies have revealed that members of the LDLR-related protein family play roles in regulating many aspects of signal transduction. This review is focused on the roles of selected members of this protein family in skeletal development and disease. We present background on the identification of this subgroup of receptors, discuss the phenotypes associated with alterations in their function in human patients and mouse models, and describe the current efforts to therapeutically target these proteins to treat human skeletal disease.
Collapse
Affiliation(s)
- Tao Yang
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Bart O Williams
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|
24
|
Lin YH, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL, Lee DF. Osteosarcoma: Molecular Pathogenesis and iPSC Modeling. Trends Mol Med 2017; 23:737-755. [PMID: 28735817 DOI: 10.1016/j.molmed.2017.06.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/17/2022]
Abstract
Rare hereditary disorders provide unequivocal evidence of the importance of genes in human disease pathogenesis. Familial syndromes that predispose to osteosarcomagenesis are invaluable in understanding the underlying genetics of this malignancy. Recently, patient-derived induced pluripotent stem cells (iPSCs) have been successfully utilized to model Li-Fraumeni syndrome (LFS)-associated bone malignancy, demonstrating that iPSCs can serve as an in vitro disease model to elucidate osteosarcoma etiology. We provide here an overview of osteosarcoma predisposition syndromes and review recently established iPSC disease models for these familial syndromes. Merging molecular information gathered from these models with the current knowledge of osteosarcoma biology will help us to gain a deeper understanding of the pathological mechanisms underlying osteosarcomagenesis and will potentially aid in the development of future patient therapies.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Brittany E Jewell
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Julian Gingold
- Women's Health Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; These authors contributed equally to this work
| | - Linchao Lu
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lisa L Wang
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Xing P, Liao Z, Ren Z, Zhao J, Song F, Wang G, Chen K, Yang J. Roles of low-density lipoprotein receptor-related protein 1 in tumors. CHINESE JOURNAL OF CANCER 2016; 35:6. [PMID: 26738504 PMCID: PMC4704379 DOI: 10.1186/s40880-015-0064-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023]
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1, also known as CD91), a multifunctional endocytic and cell signaling receptor, is widely expressed on the surface of multiple cell types such as hepatocytes, fibroblasts, neurons, astrocytes, macrophages, smooth muscle cells, and malignant cells. Emerging in vitro and in vivo evidence demonstrates that LRP1 is critically involved in many processes that drive tumorigenesis and tumor progression. For example, LRP1 not only promotes
tumor cell migration and invasion by regulating matrix metalloproteinase (MMP)-2 and MMP-9 expression and functions but also inhibits cell apoptosis by regulating the insulin receptor, the serine/threonine protein kinase signaling pathway, and the expression of Caspase-3. LRP1-mediated phosphorylation of the extracellular signal-regulated kinase pathway and c-jun N-terminal kinase are also involved in tumor cell proliferation and invasion. In addition, LRP1 has been shown to be down-regulated by microRNA-205 and methylation of LRP1 CpG islands. Furthermore, a novel fusion gene, LRP1-SNRNP25, promotes osteosarcoma cell invasion and migration. Only by understanding the mechanisms of these effects can we develop novel diagnostic and therapeutic strategies for cancers mediated by LRP1.
Collapse
Affiliation(s)
- Peipei Xing
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China. .,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China.
| | - Zhichao Liao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China. .,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China.
| | - Zhiwu Ren
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China. .,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China.
| | - Jun Zhao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China. .,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China.
| | - Fengju Song
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China. .,Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China.
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China. .,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China.
| | - Kexin Chen
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China. .,Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China.
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China. .,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 30060, P. R. China.
| |
Collapse
|
26
|
Van Gool B, Dedieu S, Emonard H, Roebroek AJM. The Matricellular Receptor LRP1 Forms an Interface for Signaling and Endocytosis in Modulation of the Extracellular Tumor Environment. Front Pharmacol 2015; 6:271. [PMID: 26617523 PMCID: PMC4639618 DOI: 10.3389/fphar.2015.00271] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
The membrane protein low-density lipoprotein receptor related-protein 1 (LRP1) has been attributed a role in cancer. However, its presumably often indirect involvement is far from understood. LRP1 has both endocytic and signaling activities. As a matricellular receptor it is involved in regulation, mostly by clearing, of various extracellular matrix degrading enzymes including matrix metalloproteinases, serine proteases, protease inhibitor complexes, and the endoglycosidase heparanase. Furthermore, by binding extracellular ligands including growth factors and subsequent intracellular interaction with scaffolding and adaptor proteins it is involved in regulation of various signaling cascades. LRP1 expression levels are often downregulated in cancer and some studies consider low LRP1 levels a poor prognostic factor. On the contrary, upregulation in brain cancers has been noted and clinical trials explore the use of LRP1 as cargo receptor to deliver cytotoxic agents. This mini-review focuses on LRP1's role in tumor growth and metastasis especially by modulation of the extracellular tumor environment. In relation to this role its diagnostic, prognostic and therapeutic potential will be discussed.
Collapse
Affiliation(s)
- Bart Van Gool
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics , KU Leuven, Leuven, Belgium
| | - Stéphane Dedieu
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Unité de Formation et de Recherche Sciences Exactes et Naturelles , Reims, France
| | - Hervé Emonard
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Unité de Formation et de Recherche Sciences Exactes et Naturelles , Reims, France
| | - Anton J M Roebroek
- Laboratory for Experimental Mouse Genetics, Department of Human Genetics , KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Chi Y, Huang S, Liu M, Guo L, Shen X, Wu J. Cyclin D3 predicts disease-free survival in breast cancer. Cancer Cell Int 2015; 15:89. [PMID: 26412984 PMCID: PMC4583737 DOI: 10.1186/s12935-015-0245-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/17/2015] [Indexed: 01/27/2023] Open
Abstract
Background Cyclin D3, which induces progression through the G1 phase of the cell cycle, is a regulator of Cyclin-dependent kinases 4 and 6. Previous studies revealed that abnormal expression of Cyclin D3 was found in many different cancers. However, the role of Cyclin D3 in breast cancer (BC) remains unknown. The aim of this study is to examine the expression pattern of Cyclin D3 in BC and to evaluate its biological role and clinical significance in prognosis prediction. The mechanism involved is also evaluated. Methods Immunohistochemical staining was used to detect the expression of Cyclin D3. qRT-PCR was used to detect the mRNA level of Cyclin D3 in BC tissues and BC cell lines. Transwell assay was used to examine the role of Cyclin D3 in the migration and invasion of BC cells. Mass Spectrometry was used to search for the interacting protein with Cyclin D3. Co-Immunoprecipitation assay and GST-Pull Down assay were used to validate the interaction of Cyclin D3 and its interaction protein. Results Through detecting Cyclin D3 expression in 243 breast cancer patients’ tissue array, we found Cyclin D3 expression was correlated with ER status (p = 0.000), PR status (p = 0.001), HER2 status (p = 0.002) and tumor differentiation (p = 0.045). The Kaplan–Meier survival curves indicated that the disease free survival (DFS) was significantly poor in high Cyclin D3 expression BC patients (p = 0.004). Furthermore, expression of Cyclin D3 was significantly associated with BC prognosis and was shown to be an independent prognostic marker in breast cancer (p = 0.028). By IHC staining and qPCR detection, Cyclin D3 expression was found to be down-regulated both in BC tissues and in BC cell lines compared with the corresponding normal controls. Further investigation showed Cyclin D3 was involved in the metastasis of BC cells and physically interacted with actin in vivo and in vitro. Conclusion Our studies revealed that Cyclin D3 was upregulated in breast cancer and represented a novel predictor of BC prognosis. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0245-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yayun Chi
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China
| | - Sheng Huang
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Mengying Liu
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Liang Guo
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xuxia Shen
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Jiong Wu
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
28
|
Yang JL. Investigation of osteosarcoma genomics and its impact on targeted therapy: an international collaboration to conquer human osteosarcoma. CHINESE JOURNAL OF CANCER 2014; 33:575-80. [PMID: 25418192 PMCID: PMC4308652 DOI: 10.5732/cjc.014.10209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Osteosarcoma is a genetically unstable malignancy that most frequently occurs in children and young adults. The lack of progress in managing this devastating disease in the clinic has prompted international researchers to collaborate to profile key genomic alterations that define osteosarcoma. A team of researchers and clinicians from China, Finland, and the United States investigated human osteosarcoma by integrating transcriptome sequencing (RNA-seq), high-density genome-wide array comparative genomic hybridization (aCGH), fluorescence in situ hybridization (FISH), reverse transcription-polymerase chain reaction (RT-PCR), Sanger sequencing, cell culture, and molecular biological approaches. Systematic analysis of genetic/genomic alterations and further functional studies have led to several important findings, including novel rearrangement hotspots, osteosarcoma-specific LRP1-SNRNP25 and KCNMB4-CCND3 fusion genes, VEGF and Wnt signaling pathway alterations, deletion of the WWOX gene, and amplification of the APEX1 and RUNX2 genes. Importantly, these genetic events associate significantly with pathogenesis, prognosis, progression, and therapeutic activity in osteosarcoma, suggesting their potential impact on improved managements of human osteosarcoma. This international initiative provides opportunities for developing new treatment modalities to conquer osteosarcoma.
Collapse
Affiliation(s)
- Ji-Long Yang
- Departments of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, P. R. China.
| |
Collapse
|