1
|
Teng F, Zhang R, Wang Y, Li Q, Wang B, Chen H, Liu T, Liu Z, Meng J, Wang C, Dong S, Li Y. Machine Learning and Mendelian Randomization Reveal a Tumor Immune Cell Profile for Predicting Bladder Cancer Risk and Immunotherapy Outcomes. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:1141-1157. [PMID: 40122457 DOI: 10.1016/j.ajpath.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 03/25/2025]
Abstract
This study's objective was to develop predictive models for bladder cancer (BLCA) using tumor infiltrated immune cell (TIIC)-related genes. Multiple RNA expression data and scRNA-seq were downloaded from the TCGA and GEO databases. A tissue specificity index was calculated and a computational framework developed to identify TIIC signature scores based on three algorithms. Univariate Cox analysis was performed, and the TIIC-related model was generated by 20 machine learning algorithms. A significant correlation between TIIC signature score and survival status, tumor stage, and TNM staging system was found. Patients in the high-score BLCA group had more favorable survival outcomes and enhanced response to PD-L1 immunotherapy as compared to those in the low-score group. This TIIC model showed better performance in prognosing BLCA. Diverse frequencies of mutations were observed in human chromosomes across groups categorized by TIIC score. No statistically significant correlation was observed between noncancerous bladder conditions and BLCA when examining the single nucleotide polymorphisms (SNPs) associated with the genes in the prognostic model. However, a statistically significant association was found at the SNP sites of rs3763840. There was no significant association between bladder stones and BLCA, but there was a significant association on the SNP sites of rs3763840. A novel TIIC signature score was constructed for the prognosis and immunotherapy for BLCA, which offers direction for predicting overall survival of patients with BLCA.
Collapse
Affiliation(s)
- Fei Teng
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Renjie Zhang
- Department of Pathophysiology, Guangdong Medical University, Zhanjiang, China
| | - Yunyi Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian Li
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Bei Wang
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Huijing Chen
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Tongtong Liu
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Zehua Liu
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Jia Meng
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Ce Wang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Shilei Dong
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China.
| | - Yanhong Li
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China.
| |
Collapse
|
2
|
Hronova A, Pritulova E, Hejnova L, Novotny J. An Investigation of the RNA Modification m 6A and Its Regulatory Enzymes in Rat Brains Affected by Chronic Morphine Treatment and Withdrawal. Int J Mol Sci 2025; 26:4371. [PMID: 40362608 PMCID: PMC12072463 DOI: 10.3390/ijms26094371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
N6-methyladenosine (m6A) is one of the most prevalent methylated modifications of mRNA in eukaryotes. This reversible alteration can directly or indirectly influence biological functions, including RNA degradation, translation, and splicing. This study investigates the impact of chronic morphine administration and varying withdrawal durations (1 day, 1 week, 4 weeks, and 12 weeks) on the m6A modification levels in brain regions critical to addiction development and persistence. Our findings indicate that in the prefrontal cortex, the m6A levels and METTL3 expression decrease, accompanied by an increase in FTO and ALKBH5 expression, followed by fluctuating, but statistically insignificant changes in methylation-regulating enzymes over prolonged withdrawal. In the striatum, reductions in m6A levels and METTL3 expression are observed at 4 weeks of withdrawal, preceded by non-significant fluctuations in enzyme expression and the m6A modification levels. In contrast, no changes in the m6A modification levels or the expression of related enzymes are detected in the hippocampus and the cerebellum. Our data suggest that m6A modification and its regulatory enzymes undergo region-specific and time-dependent changes in response to chronic morphine exposure and subsequent withdrawal.
Collapse
Affiliation(s)
| | | | | | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic; (A.H.); (E.P.); (L.H.)
| |
Collapse
|
3
|
Qi J, Liu S, Wu B, Xue G. The METTL3/TGF-β1 signaling axis promotes osteosarcoma progression by inducing MSC differentiation into CAFs via m 6A modification. J Bone Oncol 2025; 51:100662. [PMID: 40034683 PMCID: PMC11875831 DOI: 10.1016/j.jbo.2025.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Osteosarcoma, a prevalent and aggressive skeletal malignancy, significantly impacts the prognosis of individuals, particularly young patients. Current treatments, including surgery and chemotherapy, often prove inadequate for advanced osteosarcoma with metastasis. This study investigates the role of the METTL3/TGF-β1 signaling axis in promoting osteosarcoma progression by inducing mesenchymal stem cells (MSCs) to differentiate into cancer-associated fibroblasts (CAFs). Utilizing co-culture technology, we demonstrated that osteosarcoma cells secrete TGF-β1, which is crucial for MSC differentiation into CAFs, as evidenced by the increased expression of CAF markers α-SMA, FSP-1, and FAP. Additionally, METTL3 was found to enhance the stability and expression of TGF-β1 mRNA through m6A modification, thereby facilitating the differentiation process of MSCs. In vivo xenograft experiments further confirmed that the METTL3/TGF-β1 axis significantly promotes tumor growth in osteosarcoma by mediating the differentiation of MSCs into CAFs. These findings provide new insights into the molecular mechanisms underlying osteosarcoma progression and highlight potential therapeutic targets for treating advanced stages of this malignancy.
Collapse
Affiliation(s)
- Jin Qi
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui Province, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), No. 2, Zhe Shan Xi Road, Wuhu, China
| | - Sihang Liu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui Province, China
| | - Baomin Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province (Anhui Medical University), Hefei 230032, Anhui Province, China
| | - Gang Xue
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, Anhui Province, China
| |
Collapse
|
4
|
Naveed M, Mughal MS, Aziz T, Makhdoom SI, Jamil H, Ali Khan A, Al-Hoshani N, Al-Joufi FA, Tahir Kassim RM, Alwethaynani MS. Exploration of mRNA-modifying METTL3 oncogene as momentous prognostic biomarker responsible for colorectal cancer development. Open Med (Wars) 2025; 20:20251167. [PMID: 40177651 PMCID: PMC11964186 DOI: 10.1515/med-2025-1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Background Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide, emphasizing the need for improved prognostic biomarkers. Recent studies have identified the mRNA-modifying METTL3 oncogene as a potential biomarker in CRC progression. Objective This study aimed to investigate the expression patterns of METTL3 in CRC, assess its association with clinical outcomes, identify interacting proteins and biological pathways, and explore its correlation with immune cell infiltration. Methods Comprehensive analyses were conducted using public datasets, including transcriptome profiles from The Cancer Genome Atlas and the GSE103512 dataset. Protein-protein interaction (PPI) networks, pathway enrichment, and immune infiltration analyses were performed to elucidate METTL3's role in CRC progression. Results METTL3 expression was significantly higher in CRC tissues compared to normal tissues (p < 0.001). Mutations in METTL3 were detected in approximately 6% of CRC cases, with fusion events involving the SRPK2 gene. PPI analysis identified ten interacting proteins, including METTL4, EIF3H, RBM15B1, CBLL1, WTAP, NCBP1, RBM15, ZC3H13, METTL14, and KIAA1429. METTL3 expression showed a positive correlation with METTL4, METTL14, NCBP1, and WTAP expression (R > 0.5, p < 0.001). Higher METTL3 expression was associated with immunosuppressive phenotypes, such as increased infiltration of tumor-associated macrophages, regulatory T cells, and cancer-associated fibroblasts (p < 0.001). Pathway enrichment analysis revealed METTL3's involvement in crucial pathways, including the cell cycle and renal cell carcinoma (p < 0.01). Gene ontology analysis highlighted its role in mRNA and RNA-related processes. Conclusion The study supports the potential of METTL3 as a prognostic biomarker in CRC and highlights its involvement in immune modulation and cancer progression. These findings lay the groundwork for future studies aimed at developing targeted therapies and improving patient outcomes.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Muhammad Saad Mughal
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Tariq Aziz
- Laboratory of Animal Health Food Hygiene and Quality, University of Ioannina, Arta, 47132, Greece
| | - Syeda Izma Makhdoom
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Hamza Jamil
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara, 18800, Pakistan
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Fakhria A. Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Aljouf, Saudi Arabia
| | | | - Maher S. Alwethaynani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Zhang X, Bai Y, Shang L, Wang Y, Yao W, Wu S. METTL3-Mediated m6A Methylation Stabilizes IFI27 to Drive Esophageal Squamous Cell Carcinoma Progression Through an IGF2BP2-Dependent Mechanism. J Biochem Mol Toxicol 2025; 39:e70167. [PMID: 39987518 DOI: 10.1002/jbt.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025]
Abstract
Dysregulation of m6A modification has emerged as a vital factor in the development of esophageal squamous cell carcinoma (ESCC). Here, we sought to explore the critical role of m6A methylation mediated by the m6A methyltransferase METTL3 in ESCC. Protein expression analysis was performed by immunohistochemistry and immunoblot assays. The mRNA levels of METTL3 and IFI27 were detected by quantitative PCR. Cell sphere formation potential, migration, invasiveness, apoptosis, proliferation and viability were assessed by standard sphere formation, wound healing, transwell, flow cytometry, EdU and CCK-8 assays, respectively. The impact of METTL3 or IGF2BP2 on IFI27 mRNA was evaluated by methylated RNA immunoprecipitation (MeRIP), RIP or mRNA stability analysis. Xenograft assays were used to detect the in vivo function of METTL3. Elevated levels of METTL3 were observed in ESCC tumors and cells, and these increased levels were associated with the declined prognosis of ESCC. MELLT3 depletion impeded ESCC cell growth, invasiveness, migration, and sphere formation, and induced cell apoptosis in vitro. Elevated IFI27 expression was positively correlated with METTL3 levels in ESCC. Moreover, METTL3 mediated m6A methylation of IFI27 mRNA to stabilize the mRNA. The m6A reader IGF2BP2 also affected m6A methylation and expression of IFI27 mRNA. Additionally, IFI27 re-expression had a counteracting impact on the effects of METTL3 deficiency on in vitro ESCC cell behaviors and in vivo KYSE30 xenograft growth. Our findings demonstrate that METTL3-mediated IFI27 mRNA m6A methylation drives ESCC development through an IGF2BP2-dependent mechanism. Blocking the METTL3/IFI27 axis may be effective for preventing ESCC.
Collapse
Affiliation(s)
- Xinhua Zhang
- Department of thoracic surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Yu Bai
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Linlin Shang
- Zhengzhou University People's Hospital, Medical School, Zhengzhou, Henan, China
| | - Yinghao Wang
- Henan University, Medical school, Kaifeng, Henan, China
| | - Wenjian Yao
- Department of thoracic surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Sen Wu
- Department of thoracic surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Shen J, Ding Y. Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review). Mol Med Rep 2025; 31:75. [PMID: 39886962 PMCID: PMC11795254 DOI: 10.3892/mmr.2025.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/07/2024] [Indexed: 02/01/2025] Open
Abstract
Insulin‑like growth factor 2 mRNA binding protein 2 (IGF2BP2) is an RNA binding protein that functions as an N6‑methyladenosine reader. It regulates various biological processes in human cancers by affecting the stability and expression of target RNA transcripts, including coding RNAs and non‑coding RNAs (ncRNAs). Numerous studies have shown that IGF2BP2 expression is aberrantly increased in various types of cancer and plays multifaceted roles in the development and progression of human cancers. In the present review, the clinical importance of IGF2BP2 is summarized and its involvement in the regulation of biological processes, including proliferation, metastasis, chemoresistance, metabolism, tumor immunity, stemness and cell death, in human cancers is discussed. The chemical compounds that have been developed as IGF2BP2 inhibitors are also detailed. As ncRNAs are now important potential therapeutic agents for cancer treatment, the microRNAs that have been reported to directly target and inhibit IGF2BP2 expression in cancers are also described. In summary, by reviewing the latest literature, the present study aimed to highlight the clinical importance and physiological functions of IGF2BP2 in human cancer, with a focus on the great potential of IGF2BP2 as a target for inhibitor development. The present review may inspire new ideas for future studies on IGF2BP2, which may serve as a specific therapeutic target in cancer.
Collapse
Affiliation(s)
- Jianan Shen
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Youxiang Ding
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
7
|
Yang P, Wang H, Meng L, Kou Y, Bu J, Li M. Methylase METTL3 regulates oxidative stress-induced osteoblast apoptosis through Wnt/β-catenin signaling pathway. J Mol Histol 2025; 56:86. [PMID: 39928245 DOI: 10.1007/s10735-025-10358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/18/2025] [Indexed: 02/11/2025]
Abstract
The latest research shows that the imbalance of reactive oxygen species (ROS) leads to oxidative stress-induced osteoblast apoptosis, which is an important factor in the development of osteoporosis. Methyltransferase like 3 (METTL3) is the most widely known methyltransferase, which has a marked effect on the cells of oxidative stress reaction. However, the precise mechanism through which METTL3 mediates oxidative stress-induced osteoblast apoptosis remains uncleared. An ovariectomized (OVX) rat model was established and histochemical staining were used to evaluate bone mass and the expression of METTL3. The oxidative stress state of bone tissue and the expression of METTL3 were detected by RT-PCR. The reactive oxygen species (ROS) levels were detected by DCFH-DA staining. Cell death and apoptosis were detected by CCK8, Hoechst PI double dyeing and TUNEL staining. The mitochondrial membrane potential was detected by JC-1 fluorescent staining. The expression of N6-methyladenosine, the protein levels of cell apoptosis and Wnt/β-catenin signal were detected by RT-PCR and western blot. We demonstrated that METTL3 was highly expressed in OVX-induced osteoporosis, and it inhibited oxidative stress-induced apoptosis of MC3T3-E1 cells by downregulating the ROS-mediated activation of the Wnt/β-catenin signaling pathway in osteoblasts. In addition, under oxidative stress, ROS accumulation further inhibited METTL3 expression and activated the Wnt/β-catenin signaling pathway, which ultimately led to apoptosis of MC3T3-E1 cells. This study investigated the important role of METTL3 in oxidative stress-induced osteoblast apoptosis. It may be a new therapeutic target for osteoporosis from the perspective of oxidative stress.
Collapse
Affiliation(s)
- Panpan Yang
- Department of Dental Implant, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Center of Osteoporosis and Bone Mineral Research, Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - He Wang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
- Center of Osteoporosis and Bone Mineral Research, Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Lingxiao Meng
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
- Center of Osteoporosis and Bone Mineral Research, Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuying Kou
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Center of Osteoporosis and Bone Mineral Research, Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jie Bu
- Department of Stomatology, Jining Medical University, Jining, 272000, China.
- Center of Osteoporosis and Bone Mineral Research, Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China.
- Center of Osteoporosis and Bone Mineral Research, Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
8
|
Tan Z, Tian L, Luo Y, Ai K, Zhang X, Yuan H, Zhou J, Ye G, Yang S, Zhong M, Li G, Wang Y. Preventing postsurgical colorectal cancer relapse: A hemostatic hydrogel loaded with METTL3 inhibitor for CAR-NK cell therapy. Bioact Mater 2025; 44:236-255. [PMID: 39497707 PMCID: PMC11532749 DOI: 10.1016/j.bioactmat.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
Colorectal cancer (CRC) recurrence post-surgery remains a major challenge. While Chimeric Antigen Receptor (CAR)-engineered natural killer (NK) cells hold immense therapeutic potential, their intratumoral infiltration ability remains limited, hampering efficacy. Building upon prior research suggesting that chemokines like C-X-C motif chemokine ligand 9 (CXCL9) and C-X-C motif chemokine ligand 10 (CXCL10) recruit CAR-NK cells, we hypothesized that tumor cell m6A methylation, regulated by Methyltransferase-like 3 (METTL3), influences chemokine secretion. This study aims to elucidate the underlying mechanisms and improve METTL3 inhibition efficiency. We designed an adhesive hemostasis hydrogel loaded with STM2457, a METTL3 inhibitor, aimed at sustained release in the acidic tumor microenvironment. In vitro, the hydrogel promoted CAR-NK cell recruitment and tumor killing via sustained METTL3 inhibition. The hydrogel's Schiff base bonds further enabled intestinal adhesion and hemostasis in an incomplete tumor resection model of CRC. Combining the hydrogel with CAR-NK cell therapy significantly reduced CRC recurrence in vivo. Overall, our study reveals the crucial role of METTL3 in CRC recurrence and proposes a promising, multimodal strategy using STM2457-loaded hydrogel and CAR-NK cells for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Zilin Tan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Liangjie Tian
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai, 200127, China
| | - Kexin Ai
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuehua Zhang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haitao Yuan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jinfan Zhou
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guangyao Ye
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai, 200127, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai, 200127, China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai, 200127, China
| | - Gaohua Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yanan Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| |
Collapse
|
9
|
Heydari S, Peymani M, Hashemi M, Ghaedi K, Entezari M. Potential prognostic and predictive biomarkers: METTL5, METTL7A, and METTL7B expression in gastrointestinal cancers. Mol Biol Rep 2025; 52:151. [PMID: 39847131 DOI: 10.1007/s11033-024-10207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/29/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND The methyltransferase gene family is known for its diverse biological functions and critical role in tumorigenesis. This study aimed to identify these family genes in common gastrointestinal (GI) cancers using comprehensive methodologies. METHODS Gene identification involved analysis of scientific literature and insights from The Cancer Genome Atlas (TCGA) database. RNA sequencing (RNA-seq) data for colon, gastric, pancreatic, esophageal, and liver cancers were collected, processed, and normalized. Differential expression analysis was conducted using R software with the Limma package. Additionally, real-time PCR analysis was performed on 30 tumor and 30 normal tissue samples from patients with colon and gastric cancer. Pathway analysis was conducted via the EnrichR web tool, while survival analysis used Cox regression methods, and biomarker potential was assessed with the pROC package. Prognostic significance was evaluated by examining associations between gene expression, patient survival, and recurrence rates. The study also investigated diagnostic potential through receiver operating characteristic (ROC) analysis, and assessed how small molecules affect gene expression, with implications for drug resistance and sensitivity, analyzed via CCLE and GDSC datasets. RESULTS Findings revealed METTL5 overexpression in colon, liver, esophagus, and pancreas cancers, while METTL7A was underexpressed in gastric, esophagus, liver, and colon cancers. METTL7B expression varied, being higher in gastric and esophagus cancers but lower in liver and colon cancers. Enrichment analysis identified pathways related to these genes, and survival analysis associated altered METTL7A and METTL5 expressions with poor prognosis and higher recurrence rates. CONCLUSIONS These findings suggest that METTL genes could serve as predictive biomarkers in GI cancers, offering potential implications for patient prognosis and treatment response.
Collapse
Affiliation(s)
- Soraya Heydari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Wang Q, Li M, Chen C, Xu L, Fu Y, Xu J, Shu C, Wang B, Wang Z, Chen C, Song T, Wang S. Glucose homeostasis controls N-acetyltransferase 10-mediated ac4C modification of HK2 to drive gastric tumorigenesis. Theranostics 2025; 15:2428-2450. [PMID: 39990211 PMCID: PMC11840738 DOI: 10.7150/thno.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/06/2025] [Indexed: 02/25/2025] Open
Abstract
Rationale: Abnormal metabolic states contribute to a variety of diseases, including cancer. RNA modifications have diverse biological functions and are implicated in cancer development, including gastric cancer (GC). However, the direct relationship between glucose homeostasis and 4-acetylcytosine (ac4C) modification in GC remains unclear. Methods: The prognostic value of RNA acetyltransferase NAT10 expression was evaluated in a human GC cohort. Additionally, preoperative PET/CT data from GC patients and Micro-PET/CT imaging of mice were employed to assess the relationship between NAT10 and glucose metabolism. The biological role of NAT10 in GC was investigated through various experiments, including GC xenografts, organoids, and a conditional knockout (cKO) mouse model. The underlying mechanisms were examined using dot blotting, immunofluorescence staining, co-immunoprecipitation, and high-throughput sequencing, among other techniques. Results: Glucose deprivation activates the autophagy-lysosome pathway, leading to the degradation of NAT10 by enhancing its interaction with the sequestosome 1 (SQSTM1)/microtubule-associated protein 1 light chain 3 alpha (LC3) complex, ultimately resulting in a reduction of ac4C modification. Furthermore, the levels of ac4C and NAT10 are elevated in GC tissues and correlate with poor prognosis. A strong correlation exists between NAT10 levels and 18F-FDG uptake in GC patients. Furthermore, NAT10 drives glycolytic metabolism and gastric carcinogenesis in vitro and in vivo. Mechanistically, NAT10 stimulates ac4C modification at the intersection of the coding sequence (CDS) and 3' untranslated region (3'UTR) of hexokinase 2 (HK2) mRNA, enhancing its stability and activating the glycolytic pathway, thereby driving gastric tumorigenesis. Conclusion: Our findings highlight the critical crosstalk between glucose homeostasis and the ac4C epitranscriptome in gastric carcinogenesis. This finding offers a potential strategy of targeting NAT10/HK2 axis for the treatment of GC patients, especially those with highly active glucose metabolism.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University; MOE Innovation Center for Basic Research in Tumor Immunotherapy; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
| | - Mengmeng Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Chen Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University; MOE Innovation Center for Basic Research in Tumor Immunotherapy; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
| | - Lei Xu
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yao Fu
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiawen Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University; MOE Innovation Center for Basic Research in Tumor Immunotherapy; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
| | - Zhangding Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University; MOE Innovation Center for Basic Research in Tumor Immunotherapy; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
| | - Changyu Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Song
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University; MOE Innovation Center for Basic Research in Tumor Immunotherapy; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Cheng B, Ma J, Tang N, Liu R, Peng P, Wang K. Non-canonical function of PHGDH promotes HCC metastasis by interacting with METTL3. Cell Oncol (Dordr) 2024; 47:2427-2438. [PMID: 39695045 DOI: 10.1007/s13402-024-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
PURPOSE Phosphoglycerate dehydrogenase (PHGDH), a pivotal enzyme in serine synthesis, plays a key role in the malignant progression of tumors through both its metabolic activity and moonlight functions. This study aims to elucidate the non-canonical function of PHGDH in promoting hepatocellular carcinoma (HCC) metastasis through its interaction with methyltransferase-like 3 (METTL3), potentially uncovering a novel therapeutic target. METHODS Western blot was used to study PHGDH expression changes under anoikis and cellular functional assays were employed to assess its role in HCC metastasis. PHGDH-METTL3 interactions were explored using GST pull-down, Co-immunoprecipitation and immunofluorescence assays. Protein stability and ubiquitination assays were performed to understand PHGDH's impact on METTL3. Flow cytometry, cellular assays and nude mice model were used to confirm PHGDH's effects on anoikis resistance and HCC metastasis in vitro and in vivo. RESULTS PHGDH is upregulated under anoikis conditions, thereby enhancing the metastatic potential of HCC cells. By interacting with METTL3, PHGDH prevents its ubiquitin-dependent degradation, resulting in higher METTL3 protein levels. This interaction upregulates epithelial-mesenchymal transition related genes, contributing to anoikis resistance and HCC metastasis. Nude mice model confirms that PHGDH's interaction with METTL3 is crucial for driving HCC metastasis. CONCLUSION Our research presents the first evidence that PHGDH promotes HCC metastasis by interacting with METTL3. The PHGDH-METTL3 axis may serve as a potential clinical therapeutic target, offering new insights into the multifaceted roles of PHGDH in HCC metastasis.
Collapse
Affiliation(s)
- Bin Cheng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jing Ma
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rui Liu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Pai Peng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Kai Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Yu X, Fu B, Sun T, Sun X. Causal relationship between diabetes mellitus and lung cancer: a two-sample Mendelian randomization and mediation analysis. Front Genet 2024; 15:1449881. [PMID: 39655224 PMCID: PMC11625780 DOI: 10.3389/fgene.2024.1449881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Background Diabetes mellitus (DM) is the common comorbidity with lung cancer (LC), and metabolic disorders have been identified as significant contributors to the pathogenesis of both DM and LC. The causality between diabetes mellitus and lung cancer is still controversial. Hence, the causal effects of DM on the risk of LC was systemically investigated, and the mediating role of blood metabolites in this relationship was further explored. Methods This study utilized a comprehensive Mendelian randomization (MR) analysis to investigate the association between diabetes mellitus and lung cancer. The inverse variance weighted method was employed as the principle approach. MR Egger and weighted median were complementary calculations for MR assessment. A two-step MR analysis was performed to evaluate the mediating effects of blood metabolites as potential intermediate factors. Simultaneously, sensitivity analyses were performed to confirm the lack of horizontal pleiotropy and heterogeneity. Results The two-sample MR analysis illustrated the overall effect of type 1 diabetes mellitus (T1DM) on lung squamous cell carcinoma (LUSC) (OR: 1.040, 95% CI: 1.010-1.072, p = 0.009). No causal connection was found between T2DM and the subtypes of lung cancer. Two-step MR identified two candidate mediators partially mediating the total effect of T1DM on LUSC, including glutamine conjugate of C6H10O2 levels (17.22%) and 2-hydroxyoctanoate levels (5.85%). Conclusion Our findings supported a potentially causal effect of T1DM against LUSC, and shed light on the importance of metabolites as risk factors in understanding this relationship.
Collapse
Affiliation(s)
| | | | | | - Xu Sun
- Department of Integrated Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
13
|
Yang Q, Li X. Pan-cancer analysis of ADAR1 with its prognostic relevance in low-grade glioma. Immunobiology 2024; 229:152855. [PMID: 39340957 DOI: 10.1016/j.imbio.2024.152855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
ADAR1, known as the primary enzyme for adenosine-to-inosine RNA editing, has recently been implicated in cancer development through both RNA editing-dependent and -independent pathways. These discoveries suggest that ADAR1's functions may extend beyond our current understanding. A pan-cancer analysis offers a unique opportunity to identify both common and distinct mechanisms across various cancers, thereby advancing personalized medicine. Low-grade glioma (LGG), characterized by a diverse group of tumor cells, presents a challenge in risk stratification, leading to significant variations in treatment approaches. Recently discovered molecular alterations in LGG have helped to refine the stratification of of these tumors and offered novel targets for predicting likely outcomes. This study aims to provide a detailed analysis of ADAR mRNA across multiple cancers, emphasizing its prognostic significance in LGG. We observed inconsistent mRNA and consistent protein expression patterns of ADAR1/ADAR in pan-cancer analyses that across tumor types. ADAR mRNA expression did not always correlate with ADAR1 protein expression. Nevertheless, the transcript levels correlated significantly with genetic alterations, tumor mutation burden, microsatellite instability, overall survival, recurrence-free survival, immune marker presence, immune infiltration, and the survival of patients undergoing immunotherapy in select cancers. Furthermore, ADAR and its top 50 associated genes were primarily involved in mRNA-related events, as identified through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Utilizing the Cox proportional hazards model, we developed a 3-gene signature (ADAR, HNRNPK, and SMG7), which effectively stratified patients into high- and low-risk groups, with high-risk patients exhibiting poorer overall survival, higher tumor grades, and a greater number of non-codeletions. Overall, this signature was inversely related to immune infiltration across cancers. Transcription factor SPI1 and miR-206, potential upstream regulators of the signature genes, were closely linked to patient survival in LGG. The promoter regions of these genes were hypermethylated, further associating them with patient outcomes. Additionally, these genes displayed consistent drug susceptibility patterns. In conclusion, our findings reveal multiple aspects of ADAR1's role in cancer and underscore its prognostic value in LGG, offering insights into potential therapeutic targets and strategies.
Collapse
Affiliation(s)
- Qin Yang
- Puai Medical College, Shaoyang University, Shaoyang, Hunan, China.
| | - Xin Li
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Zhang H, Han B, Tian S, Gong Y, Liu L. ZNF740 facilitates the malignant progression of hepatocellular carcinoma via the METTL3/HIF‑1A signaling axis. Int J Oncol 2024; 65:105. [PMID: 39301659 PMCID: PMC11436261 DOI: 10.3892/ijo.2024.5693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/11/2024] [Indexed: 09/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer‑related death, and efficient treatments to facilitate recovery and enhance long‑term outcomes are lacking. Zinc finger proteins (ZNFs), known as the largest group of transcription factors, have gained interest for their roles in HCC by stimulating the transcription of well‑known tumor‑causing genes. However, the specific roles and molecular mechanisms of ZNF740 in HCC remain unknown. The present study performed bioinformatics analysis and RNA‑sequencing analysis of differentially expressed genes in HCC, detected ZNF740 expression levels in HCC using reverse transcription‑quantitative PCR, western blotting and immunohistochemistry, and explored the effects of ZNF740 on the progression of liver cancer in vitro and in vivo using cellular functionality assays and cell‑derived xenografts. In addition, a dual‑luciferase reporter assay was performed to analyze the binding of ZNF740 with the METTL3 promoter. Furthermore, cell functionality experiments were performed to analyze whether ZNF740 promotes the proliferation of liver cancer cells in a METTL3‑dependent manner. Bioinformatics and immunoprecipitation assays were further used to analyze the molecular mechanism of ZNF740 in liver cancer. The present study demonstrated that ZNF740 expression was upregulated in HCC. Mechanistically, overexpressed ZNF740 interacted with the methyltransferase‑like 3 (METTL3) promoter and increased METTL3 expression, leading to the stabilization of hypoxia‑inducible factor‑1A (HIF1A) mRNA in an N6‑methyladenosine/YTH N6‑methyladenosine RNA‑binding protein 1‑dependent manner. Eventually, the ZNF740/METTL3/HIF1A signaling axis may facilitate the proliferation, invasion and metastasis of liver cancer via METTL3/HIF‑1A signaling. The present findings revealed the important role of ZNF740 and suggested a potential therapeutic approach that might improve clinical therapies for liver cancer.
Collapse
Affiliation(s)
- Hao Zhang
- College of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Bing Han
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - She Tian
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Yongjun Gong
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Li Liu
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| |
Collapse
|
15
|
Wang K, Shen K, Wang J, Yang K, Zhu J, Chen Y, Liu X, He Y, Zhu X, Zhan Q, Shi T, Li R. BUB1 potentiates gastric cancer proliferation and metastasis by activating TRAF6/NF-κB/FGF18 through m6A modification. Life Sci 2024; 353:122916. [PMID: 39025206 DOI: 10.1016/j.lfs.2024.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
AIMS Gastric cancer (GC) is one of the most common malignant tumors of the digestive system. High expression of the mitotic kinase BUB1 has been shown to be associated with the development of many cancers, but the role of BUB1 in GC is still unclear. The current study aimed to investigate the role of BUB1 in GC. MATERIALS AND METHODS BUB1 inhibitor, siRNA or BUB1 overexpression plasmid-mediated functional studies were performed in vitro and in vivo to explore the oncogenic role of BUB1 in GC. The expression of BUB1 and FGF18 in GC tumor samples was determined by IHC staining. RNA-seq, Western blot, MeRIP-qPCR and Co-IP assays were used to investigate the molecular mechanisms by which BUB1 regulates GC progression. KEY FINDINGS Knockdown of BUB1 significantly inhibited the proliferation and metastasis of GC cells in vitro and in vivo. Moreover, overexpression of BUB1 significantly promoted the proliferation, migration and invasion of GC cells. High expression of BUB1 and FGF18 in GC tissues predicted poor prognosis in GC patients. Mechanistically, BUB1 interacted with METTL3 and induced m6A modification of TRAF6 mRNA, further activating the NF-κB/FGF18 axis in GC cells. SIGNIFICANCE Our results confirmed that BUB1 acts as a positive regulator of GC cell proliferation and metastasis by activating the TRAF6/NF-κB/FGF18 pathway through METTL3-mediated m6A methylation. Targeting the BUB1/METTL3/TRAF6/NF-κB/FGF18 axis might be a novel diagnostic and therapeutic strategy in GC.
Collapse
Affiliation(s)
- Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Gastroenterology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, China
| | - Xin Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin He
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingchao Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Qin Zhan
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Rui Li
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Zhu L, Zhang H, Zhang X, Xia L. RNA m6A methylation regulators in sepsis. Mol Cell Biochem 2024; 479:2165-2180. [PMID: 37659034 DOI: 10.1007/s11010-023-04841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
N6-methyladenosine (m6A) modification is a class of epitope modifications that has received significant attention in recent years, particularly in relation to its role in various diseases, including sepsis. Epigenetic research has increasingly focused on m6A modifications, which is influenced by the dynamic regulation of three protein types: ‟Writers" (such as METTL3/METTL14/WTAP)-responsible for m6A modification; ‟Erasers" (FTO and ALKBH5)-involved in m6A de-modification; and ‟Readers" (YTHDC1/2, YTHDF1/2/3)-responsible for m6A recognition. Sepsis, a severe and fatal infectious disease, has garnered attention regarding the crucial effect of m6A modifications on its development. In this review, we attempted to summarize the recent studies on the involvement of m6A and its regulators in sepsis, as well as the significance of m6A modifications and their regulators in the development of novel drugs and clinical treatment. The potential value of m6A modifications and modulators in the diagnosis, treatment, and prognosis of sepsis has also been discussed.
Collapse
Affiliation(s)
- Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, 250031, People's Republic of China.
| | - Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
17
|
Nian Z, Deng M, Ye L, Tong X, Xu Y, Xu Y, Chen R, Wang Y, Mao F, Xu C, Lu R, Mao Y, Xu H, Shen X, Xue X, Guo G. RNA epigenetic modifications in digestive tract cancers: Friends or foes. Pharmacol Res 2024; 206:107280. [PMID: 38914382 DOI: 10.1016/j.phrs.2024.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Digestive tract cancers are among the most common malignancies worldwide and have high incidence and mortality rates. Thus, the discovery of more effective diagnostic and therapeutic targets is urgently required. The development of technologies to accurately detect RNA modification has led to the identification of numerous RNA chemical modifications in humans (epitranscriptomics) that are involved in the occurrence and development of digestive tract cancers. RNA modifications can cooperatively regulate gene expression to facilitate normal physiological functions of the digestive system. However, the dysfunction of relevant RNA-modifying enzymes ("writers," "erasers," and "readers") can lead to the development of digestive tract cancers. Consequently, targeting dysregulated enzyme activity could represent a potent therapeutic strategy for the treatment of digestive tract cancers. In this review, we summarize the most widely studied roles and mechanisms of RNA modifications (m6A, m1A, m5C, m7G, A-to-I editing, pseudouridine [Ψ]) in relation to digestive tract cancers, highlight the crosstalk between RNA modifications, and discuss their roles in the interactions between the digestive system and microbiota during carcinogenesis. The clinical significance of novel therapeutic methods based on RNA-modifying enzymes is also discussed. This review will help guide future research into digestive tract cancers that are resistant to current therapeutics.
Collapse
Affiliation(s)
- Zekai Nian
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Ming Deng
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yixi Xu
- School of public administration, Hangzhou Normal University, Hangzhou, China
| | - Yiliu Xu
- Research Center of Fluid Machinery Engineering & Technology, Jiangsu University, Zhenjiang, China
| | - Ruoyao Chen
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yulin Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Feiyang Mao
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Chenyv Xu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruonan Lu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yicheng Mao
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Hanlu Xu
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
18
|
Zang Y, Tian Z, Wang D, Li Y, Zhang W, Ma C, Liao Z, Gao W, Qian L, Xu X, Jia J, Liu Z. METTL3-mediated N 6-methyladenosine modification of STAT5A promotes gastric cancer progression by regulating KLF4. Oncogene 2024; 43:2338-2354. [PMID: 38879589 PMCID: PMC11271408 DOI: 10.1038/s41388-024-03085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/21/2024]
Abstract
N6-methyladenosine (m6A) is the predominant post-transcriptional RNA modification in eukaryotes and plays a pivotal regulatory role in various aspects of RNA fate determination, such as mRNA stability, alternative splicing, and translation. Dysregulation of the critical m6A methyltransferase METTL3 is implicated in tumorigenesis and development. Here, this work showed that METTL3 is upregulated in gastric cancer tissues and is associated with poor prognosis. METTL3 methylates the A2318 site within the coding sequence (CDS) region of STAT5A. IGF2BP2 recognizes and binds METTL3-mediated m6A modification of STAT5A through its GXXG motif in the KH3 and KH4 domains, leading to increased stability of STAT5A mRNA. In addition, both METTL3 and IGF2BP2 are positively correlated with STAT5A in human gastric cancer tissue samples. Helicobacter pylori infection increased the expression level of METTL3 in gastric cancer cells, thereby leading to the upregulation of STAT5A. Functional studies indicated that STAT5A overexpression markedly enhances the proliferation and migration of GC cells, whereas STAT5A knockdown has inhibitory effects. Further nude mouse experiments showed that STAT5A knockdown effectively inhibits the growth and metastasis of gastric cancer in vivo. Moreover, as a transcription factor, STAT5A represses KLF4 transcription by binding to its promoter region. The overexpression of KLF4 can counteract the oncogenic impact of STAT5A. Overall, this study highlights the crucial role of m6A in gastric cancer and provides potential therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Yichen Zang
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhuangfei Tian
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dandan Wang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaxuan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhui Zhang
- School of Clinical Medicine, Qingdao University, Qingdao, China
| | - Cunying Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenzhi Liao
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenrong Gao
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lilin Qian
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xia Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jihui Jia
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhifang Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
19
|
Gong Y, Luo G, Zhang S, Chen Y, Hu Y. Transcriptome sequencing analysis reveals miR-30c-5p promotes ferroptosis in cervical cancer and inhibits growth and metastasis of cervical cancer xenografts by targeting the METTL3/KRAS axis. Cell Signal 2024; 117:111068. [PMID: 38286198 DOI: 10.1016/j.cellsig.2024.111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Cervical cancer is the most common malignant tumor in the female reproductive system worldwide, and its molecular mechanisms remain complex and poorly understood. Various techniques, including transcriptome sequencing, RT-qPCR, ELISA, immunofluorescence, Western blot, CCK-8 assay, Transwell assay, and xenograft models, were employed to investigate gene/miRNA expression, cellular proliferation, migration, and the interactions between miR-30c-5p, METTL3, and KRAS. Our transcriptome sequencing results demonstrated a significant downregulation of miR-30c-5p in cervical cancer cells. Further investigations using RNA pull-down, dual-luciferase reporter assay, Me-RIP, and PAR-CLIP confirmed METTL3 as one of the downstream targets of miR-30c-5p, while KRAS was identified as an iron-death suppressor gene susceptible to m6A modification. Notably, our Me-RIP analysis demonstrated the involvement of METTL3 in m6A modification of KRAS. In vitro experiments revealed that miR-30c-5p facilitated ferroptosis in cervical cancer cells by inhibiting the METTL3/KRAS axis, thus suppressing proliferation and migration. Additionally, in vivo studies demonstrated that miR-30c-5p repressed the growth and metastasis of cervical cancer xenografts through the inhibition of the METTL3/KRAS axis. Overall, this study highlights the critical role of miR-30c-5p in modulating cervical cancer progression by targeting the METTL3/KRAS axis, providing new insights into the molecular mechanisms underlying cervical cancer growth and metastasis.
Collapse
Affiliation(s)
- Yangmei Gong
- The First Affiliated Hospital, Center for a combination of Obstetrics and Gynecology & Reproductive medicine, Henyang Medical School, University of South China, Hengyang 421001, China
| | - Guifang Luo
- The First Affiliated Hospital, Center for a combination of Obstetrics and Gynecology & Reproductive medicine, Henyang Medical School, University of South China, Hengyang 421001, China
| | - Shufen Zhang
- The First Affiliated Hospital, Center for a combination of Obstetrics and Gynecology & Reproductive medicine, Henyang Medical School, University of South China, Hengyang 421001, China
| | - Yijing Chen
- The First Affiliated Hospital, Center for a combination of Obstetrics and Gynecology & Reproductive medicine, Henyang Medical School, University of South China, Hengyang 421001, China
| | - Yi Hu
- The First Affiliated Hospital, Center for a combination of Obstetrics and Gynecology & Reproductive medicine, Henyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
20
|
Li J, Yang F, Wang Z, Zheng S, Zhang S, Wang C, He B, Wang J, Wang H. METTL16-mediated N6-methyladenosine modification of Soga1 enables proper chromosome segregation and chromosomal stability in colorectal cancer. Cell Prolif 2024; 57:e13590. [PMID: 38084791 PMCID: PMC11056707 DOI: 10.1111/cpr.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 04/30/2024] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification in mammalian messenger RNAs and is associated with numerous biological processes. However, its role in chromosomal instability remains to be established. Here, we report that an RNA m6A methyltransferase, METTL16, plays an indispensable role in the progression of chromosome segregation and is required to preserve chromosome stability in colorectal cancer (CRC) cells. Depletion or inhibition of the methyltransferase activity of METTL16 results in abnormal kinetochore-microtubule attachment during mitosis, leading to delayed mitosis, lagging chromosomes, chromosome mis-segregation and chromosomal instability. Mechanistically, METTL16 exerts its oncogenic effects by enhancing the expression of suppressor of glucose by autophagy 1 (Soga1) in an m6A-dependent manner. CDK1 phosphorylates Soga1, thereby triggering its direct interaction with the polo box domain of PLK1. This interaction facilitates PLK1 activation and promotes mitotic progression. Therefore, targeting the METTL16-Soga1 pathway may provide a potential treatment strategy against CRC because of its essential role in maintaining chromosomal stability.
Collapse
Affiliation(s)
- Jimin Li
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| | - Fang Yang
- Department of Clinical LaboratoryThe First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College)WuhuChina
| | - Zeyu Wang
- Graduate School, Bengbu Medical CollegeBengbuChina
| | - Siqing Zheng
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Shuang Zhang
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| | - Chen Wang
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| | - Bing He
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| | - Jia‐Bei Wang
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHeifeiChina
| | - Hao Wang
- Department of Laboratory MedicineThe Affiliated Anhui Provincial Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
21
|
Ke J, Zhang CJ, Wang LZ, Xie FS, Wu HY, Li T, Bian CW, Wu RL. Lipopolysaccharide promotes cancer cell migration and invasion through METTL3/PI3K/AKT signaling in human cholangiocarcinoma. Heliyon 2024; 10:e29683. [PMID: 38681552 PMCID: PMC11053196 DOI: 10.1016/j.heliyon.2024.e29683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose As a major structural component of the outer membrane of Gram-negative bacteria, lipopolysaccharide (LPS) has been detected in the blood circulation and tissues in patients with chronic diseases and cancers, which plays a critical role in the tumor formation and progression. However, the biological role of LPS in human intrahepatic cholangiocarcinoma remains unclear. The aims of this study were to investigate the role of LPS in the malignant progression of intrahepatic cholangiocarcinoma. Methods The cell migration and invasion capacities of cholangiocarcinoma cell lines were evaluated by Boyden chamber assays. Expression levels of the key molecules involved in the PI3K/AKT signaling and METTL3 were detected by qPCR and western blot. The molecular mechanism by which LPS promotes the malignant behaviors was investigated by using siRNAs, plasmids and small molecule inhibitors. Results In vitro experiments showed that exogenous LPS treatment promoted cell migration and invasion capacities in both QBC939 and HUCCT1 cell lines, while did not affect cell proliferation and apoptosis. Mechanistically, exogenous LPS treatment had been proved to induce the increased expression of METTL3 and activate the downstream PI3K/AKTsignaling pathway. In addition, suppression of METTL3 expression reduced cell proliferation, migration and invasion capacities in both cell lines. Furthermore, inhibition of METTL3 expression or inhibition of PI3K/AKT signaling decreased LPS-induced cell migration and invasion capacities. Moreover, knockdown of METTL3 or inhibition of METTL3 significantly inhibited LPS-induced activation of the PI3K/AKT signaling. Conclusion In general, these results suggest that the LPS-METTL3-PI3K/AKT signal axis promotes cell migration and invasion in ICC, which contributes to a reduced overall survival in patients with ICC. It may broaden the horizon of cancer therapy with potential therapeutic targets.
Collapse
Affiliation(s)
- Jing Ke
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chang-jiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lian-zi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Feng-shuo Xie
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Yu Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cong-Wen Bian
- Department of General Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruo-Lin Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Gao Y, Wu R, Pei Z, Ke C, Zeng D, Li X, Zhang Y. Cell cycle associated protein 1 associates with immune infiltration and ferroptosis in gastrointestinal cancer. Heliyon 2024; 10:e28794. [PMID: 38586390 PMCID: PMC10998105 DOI: 10.1016/j.heliyon.2024.e28794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Background Cell Cycle-Associated Protein 1 (CAPRIN1) play an important role in cell proliferation, oxidative stress, and inflammatory response. Nonetheless, its role in tumor immunity and ferroptosis is largely unknown in gastrointestinal cancer patients. Methods Through comprehensive bioinformatics, we investigate CAPRIN1 expression patterns and its role in diagnosis, functional signaling pathways, tumor immune infiltration and ferroptosis of different gastrointestinal cancer subtypes. Besides, immunohistochemistry (IHC) and immune blot were used to validate our esophagus cancer clinical data. The ferroptotic features of CAPRIN1 in vitro were assessed through knockdown assays in esophagus cancer cells. Results CAPRIN1 expression was significantly upregulated, correlated with poor prognosis, and served as an independent risk factor for most gastrointestinal cancer. Moreover, CAPRIN1 overexpression positively correlated with gene markers of most infiltrating immune cells, and immune checkpoints. CAPRIN1 knockdown significantly decreased the protein level of major histocompatibility complex class I molecules. We also identified a link between CAPRIN1 and ferroptosis-related genes in gastrointestinal cancer. Knockdown of CAPRIN1 significantly increased the production of lipid reactive oxygen species and malondialdehyde. Inhibition of CAPRIN1 expression promoted ferroptotic cell death induced by RAS-selective lethal 3 and erastin in human esophagus cancer cells. Conclusion Collectively, our results demonstrate that CAPRIN1 is aberrantly expressed in gastrointestinal cancer, is associated with poor prognosis, and could potentially influence immune infiltration and ferroptosis.
Collapse
Affiliation(s)
- Yan Gao
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Ruimin Wu
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhijun Pei
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Changbin Ke
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Daobing Zeng
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaohui Li
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
23
|
Miao T, Qiu Y, Chen J, Li P, Li H, Zhou W, Shen W. METTL3 knockdown suppresses RA-FLS activation through m 6A-YTHDC2-mediated regulation of AMIGO2. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167112. [PMID: 38432455 DOI: 10.1016/j.bbadis.2024.167112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The dysregulation of N6-methyladenosine (m6A) on mRNAs is involved in the pathogenesis of rheumatoid arthritis (RA). Methyltransferase-like 3 (METTL3), serving as a central m6A methyltransferase, is highly expressed in macrophages, synovial tissues and RA fibroblast-like synoviocytes (RA-FLS) of RA patients. However, METTL3-mediated m6A modification on target mRNAs and the molecular mechanisms involved in RA-FLS remain poorly defined. Our research demonstrated that METTL3 knockdown decreased the proliferation, migratory and invasive abilities of RA-FLS. Notably, we identified the adhesion molecule with Ig like domain 2 (AMIGO2) as a probable downstream target of both METTL3 and YTH Domain Containing 2 (YTHDC2) in RA-FLS. We revealed that AMIGO2 augmented the activation of RA-FLS and can potentially reverse the phenotypic effects induced by the knockdown of either METTL3 or YTHDC2. Mechanistically, METTL3 knockdown decreased m6A modification in the 5'-untranslated region (5'UTR) of AMIGO2 mRNA, which diminished its interaction with YTHDC2 in RA-FLS. Our findings unveiled that silencing of METTL3 inhibited the proliferation and aggressive behaviors of RA-FLS by downregulating AMIGO2 expression in an m6A-YTHDC2 dependent mechanism, thereby underscoring the pivotal role of the METTL3-m6A-YTHDC2-AMIGO2 axis in modulating RA-FLS phenotypes.
Collapse
Affiliation(s)
- Tingyu Miao
- Department of Cell Biology, School of Medicine, Yangzhou University, Yangzhou 215000, China
| | - Yue Qiu
- Department of Cell Biology, School of Medicine, Yangzhou University, Yangzhou 215000, China
| | - Jing Chen
- Department of Cell Biology, School of Medicine, Yangzhou University, Yangzhou 215000, China
| | - Peifen Li
- Department of Cell Biology, School of Medicine, Yangzhou University, Yangzhou 215000, China
| | - Huanan Li
- Department of Cell Biology, School of Medicine, Yangzhou University, Yangzhou 215000, China.
| | - Wei Zhou
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou 215000, China.
| | - Weigan Shen
- Department of Cell Biology, School of Medicine, Yangzhou University, Yangzhou 215000, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 215000, China.
| |
Collapse
|
24
|
Sang A, Zhang J, Zhang M, Xu D, Xuan R, Wang S, Song X, Li X. METTL4 mediated-N6-methyladenosine promotes acute lung injury by activating ferroptosis in alveolar epithelial cells. Free Radic Biol Med 2024; 213:90-101. [PMID: 38224757 DOI: 10.1016/j.freeradbiomed.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Sepsis-induced acute lung injury has been deemed to be an life-threatening pulmonary dysfunction caused by a dysregulated host response to infection. The modification of N6-Methyladenosine (m6A) is implicated in several biological processes, including mitochondrial transcription and ferroptosis. Ferroptosis is an iron-dependent type of programed cell death, which plays a role in sepsis-induced acute lung injury (ALI). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulator of intracellular oxidative homeostasis, linked to ferroptosis resistance. This research aims to explore the effect of m6A in ferroptosis in sepsis-induced ALI. First, we found a time-dependent dynamic alteration on pulmonary methylation level during sepsis-induced ALI. We identified METTL4 as a differentially expressed gene in ALI mice using m6A sequencing and RNA-sequencing, and revealed the methylation of several ferroptosis related genes (Nrf2). Thus, we generated METTL4 deficiency mice and found that METTL4 knockdown alleviated ferroptosis, as evidenced by lipid ROS, MDA, Fe2+, as well as alterations in GPX4 and SLC7A11 protein expression. Consistently, we found that METTL4 silencing could decrease ferroptosis sensitivity in LPS-induced TC-1 cells. Furthermore, both the dual-luciferase reporter assay and rescue experiments indicated that METTL4 mediated the N6-methyladenosine of Nrf2 3'UTR, then YTHDF2 binded with the m6A site, promoting the degradation of Nrf2. In conclusion, we revealed that METTL4 promoted alveolar epithelial cells ferroptosis in sepsis-induced lung injury via N6-methyladenosine of Nrf2, which might provide a novel approach to therapeutic strategies for sepsis-induced ALI.
Collapse
Affiliation(s)
- Aming Sang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China, 430071; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China, 430071; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China, 430071
| | - Jing Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China, 430071; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China, 430071; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China, 430071
| | - Mi Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China, 430071; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China, 430071; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China, 430071
| | - Dawei Xu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China, 430071
| | - Rui Xuan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China, 430071
| | - Shun Wang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China, 430071.
| | - Xuemin Song
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China, 430071; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China, 430071; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China, 430071.
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China, 430071; Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, China, 430071; Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan, China, 430071.
| |
Collapse
|
25
|
Xiong J, Lian W, Zhao R, Gao K. METTL3/ MALAT1/ELAVL1 Axis Promotes Tumor Growth in Ovarian Cancer. Onco Targets Ther 2024; 17:85-97. [PMID: 38348427 PMCID: PMC10860502 DOI: 10.2147/ott.s431810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
Background Studies increasingly recognize the role of N6-methyladenosine (m6A) modification in cancer occurrence and development. METTL3 is a core catalytic subunit of m6A-modified methyltransferases complex, but its regulatory mechanism in ovarian cancer (OC) is not clear. Methods In this study, GEPIA 2.0 database was applied for expression analysis, survival analysis and correlation analysis for OC. Additionally, in vitro and in vivo assays were conducted to explore regulatory mechanisms of METTL3 in OC. Results We found that METTL3 and MALAT1 were significantly overexpressed in OC tissues and cells compared to normal ovarian tissues and cells. The proliferation rate of OC cells was reduced significantly after knocking down the expression of METTL3 or MALAT1. Subsequently, MALAT1 as oncogene was found to interact with METTL3 and was upregulated in OC tissues and cells. Silencing MALAT1 inhibited OC cell proliferation. Further studies indicated that METTL3 enhanced the stability of MALAT1 by promoting the m6A modification of MALAT1 and that ELAVL1 as a downstream binding protein significantly up-regulated MALAT1 expression. Conclusion In conclusion, METTL3 was a carcinogenic molecule that promoted the occurrence of OC. The potential mechanism of the carcinogenic effect of METTL3 was realized by enhancing the m6A modification of MALAT1 mRNA through RNA binding protein ELAVL1.
Collapse
Affiliation(s)
- Jian Xiong
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wenqin Lian
- Department of Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Rui Zhao
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Kefei Gao
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
26
|
Jiang J, Song B, Meng J, Zhou J. Tissue-specific RNA methylation prediction from gene expression data using sparse regression models. Comput Biol Med 2024; 169:107892. [PMID: 38171264 DOI: 10.1016/j.compbiomed.2023.107892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
N6-methyladenosine (m6A) is a highly prevalent and conserved post-transcriptional modification observed in mRNA and long non-coding RNA (lncRNA). Identifying potential m6A sites within RNA sequences is crucial for unraveling the potential influence of the epitranscriptome on biological processes. In this study, we introduce Exp2RM, a novel approach that formulates single-site-based tissue-specific elastic net models for predicting tissue-specific methylation levels utilizing gene expression data. The resulting ensemble model demonstrates robust predictive performance for tissue-specific methylation levels, with an average R-squared value of 0.496 and a median R-squared value of 0.482 across all 22 human tissues. Since methylation distribution varies among tissues, we trained the model to incorporate similar patterns, significantly improves accuracy with the median R-squared value increasing to 0.728. Additonally, functional analysis reveals Exp2RM's ability to capture coefficient genes in relevant biological processes. This study emphasizes the importance of tissue-specific methylation distribution in enhancing prediction accuracy and provides insights into the functional implications of methylation sites.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, United Kingdom
| | - Bowen Song
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China; AI University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, United Kingdom
| | - Jingxian Zhou
- School of AI and Advanced Computing, Xi'an Jiaotong-Liverpool University Entrepreneur College (Taicang), Taicang, Suzhou, Jiangsu Province, 215400, China; Department of Computer Science, University of Liverpool, L69 7ZB, Liverpool, United Kingdom.
| |
Collapse
|
27
|
Hu J, Chen K, Hong F, Gao G, Dai X, Yin H. METTL3 facilitates stemness properties and tumorigenicity of cancer stem cells in hepatocellular carcinoma through the SOCS3/JAK2/STAT3 signaling pathway. Cancer Gene Ther 2024; 31:228-236. [PMID: 38030810 DOI: 10.1038/s41417-023-00697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Liver cancer stem cells (LCSCs) contribute to tumor recurrence and cancer cell proliferation in patients with hepatocellular carcinoma (HCC). METTL3-catalyzed m6A modification is relevant to the cancer stem cell (CSC) phenotype, including LCSCs. LCSCs were isolated from MHCC-97H and HepG2 cells through flow cytometry. UALCAN data were used to analyze the expression of METTL3 in liver hepatocellular carcinoma (LIHC) tissues. Loss- and gain-of-function experiments were utilized to assess the biological effects of METTL3 and SOCS3 on the proliferation and stemness phenotypes in vitro and in vivo. The mechanisms underlying the impact of METTL3 were explored using qPCR, MeRIP-qPCR, dual-luciferase reporter, and western blot assays. METTL3 was significantly upregulated in LIHC tissues according to the UALCAN database. METTL3 was highly expressed in LIHC and was significantly correlated with individual cancer stage, tumor grade and lymph node metastasis. Patients with low METTL3 expression had a longer overall survival time based on the data from UALCAN. In addition, the level of METTL3 was enhanced in LCSCs and decreased in non-LCSCs compared to HCC cells. Moreover, overexpression of METTL3 stimulated the proliferation and stemness of LCSCs in vitro and in vivo, while loss of METTL3 impeded it. Bioinformatics analysis combined with validation experiments determined that m6A was modified by METTL3-targeting SOCS3 mRNA. METTL3 had side effects regarding the stability of SOCS3 mRNA. SOCS3 overexpression impaired and SOCS3 depletion facilitated the development of LCSCs via the JAK2/STAT3 pathway. Furthermore, METTL3 depletion suppressed proliferation and stemness in LCSCs, which was restored by SOCS3 knockdown or colivelin treatment. We discovered that METTL3 facilitated the stemness and tumorigenicity of LCSCs by modifying SOCS3 mRNA with m6A.
Collapse
Affiliation(s)
- Jingjing Hu
- Department of Ultrasonography, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Ke Chen
- Ningbo City College of Vocational Technology, 315100, Ningbo, Zhejiang Province, P. R. China
| | - Fangfang Hong
- Department of Ultrasonography, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Guosheng Gao
- Clinical Laboratory, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Xiaoyu Dai
- Department of Anorectal Surgery, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China
| | - Hua Yin
- Department of Ultrasonography, Ningbo No. 2 Hospital, 315010, Ningbo, Zhejiang Province, P. R. China.
| |
Collapse
|
28
|
Yang Z, Hao J, Qiu M, Liu R, Mei H, Zhang Q, Gao Z, Pang W, Liu J, Pan W, Wang H, Gao M. The METTL3/miR-196a Axis Predicts Poor Prognosis in Non-small Cell Lung Cancer. J Cancer 2024; 15:1603-1612. [PMID: 38370374 PMCID: PMC10869973 DOI: 10.7150/jca.92968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Background: METTL3 accelerates m6A modification to influence cancer progression including non-small cell lung cancer (NSCLC). To illustrate the role and underlying mechanism of METTL3 mediated miR-196a upregulation in NSCLC. Method: The global level of m6A modification was detected by qPCR, western blot and immumohistochemical staining. The TCGA, GEPIA, CPTAC and TIMER databases were used to explore the expression change of METTL3, miR-196a and GAS7 in NSCLC patients. Kaplan-Meier analysis was performed to analyze the prognostic value of miR-196a. NSCLC cells overexpressed or knockdown miR-196a were constructed and used for CCK8, colony formation assay, western blot and immunofluorescence in vitro. The effect of miR-196a on tumor growth was investigated in vivo. Result: We found that METTL3 mediated miR-196a were notably enhancive in NSCLC tissues and in NSCLC cells, which is markedly positively related with the serious TNM stage, the large tumor size, the distant metastasis, and the poor prognosis in patients of NSCLC. Further investigation showed that up-regulated miR-196a promoted cell viability and cell autophagy, while down-regulation of miR-196a revealed opposite results in H1299 and A549 cells. In terms of mechanism, we found that miR-196a interacted with GAS7. In addition, GAS7 expression in NSCLC patients may be positively related with the infiltration of immune cell subsets in tumor microenvironment (TME). Conclusion: The axis of METTL3-miR-196a-GAS7 might be a target for molecular targeted therapy, a potential and novel diagnostic marker for NSCLC patients.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Jie Hao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Minghan Qiu
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Ruxue Liu
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Hanwei Mei
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Qiaonan Zhang
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Zhanhua Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Wenwen Pang
- Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Jing Liu
- Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Wenjie Pan
- Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Huaqing Wang
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Ming Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| |
Collapse
|
29
|
Meng W, Xiao H, Zhao R, Chen J, Wang Y, Mei P, Li H, Liao Y. METTL3 drives NSCLC metastasis by enhancing CYP19A1 translation and oestrogen synthesis. Cell Biosci 2024; 14:10. [PMID: 38238831 PMCID: PMC10795463 DOI: 10.1186/s13578-024-01194-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND METTL3 plays a significant role as a catalytic enzyme in mediating N6-methyladenosine (m6A) modification, and its importance in tumour progression has been extensively studied in recent years. However, the precise involvement of METTL3 in the regulation of translation in non-small cell lung cancer (NSCLC) remains unclear. RESULTS Here we discovered by clinical investigation that METTL3 expression is correlated with NSCLC metastasis. Ablation of METTL3 in NSCLC cells inhibits invasion and metastasis in vitro and in vivo. Subsequently, through translatomics data mining and experimental validation, we demonstrated that METTL3 enhances the translation of aromatase (CYP19A1), a key enzyme in oestrogen synthesis, thereby promoting oestrogen production and mediating the invasion and metastasis of NSCLC. Mechanistically, METTL3 interacts with translation initiation factors and binds to CYP19A1 mRNA, thus enhancing the translation efficiency of CYP19A1 in an m6A-dependent manner. Pharmacological inhibition of METTL3 enzymatic activity or translation initiation factor eIF4E abolishes CYP19A1 protein synthesis. CONCLUSIONS Our findings indicate the crucial role of METTL3-mediated translation regulation in NSCLC and reveal the significance of METTL3/eIF4E/CYP19A1 signaling as a promising therapeutic target for anti-metastatic strategies against NSCLC.
Collapse
Affiliation(s)
- Wangyang Meng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Han Xiao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaping Chen
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peiyuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
30
|
Wang D, Zhang Y, Li Q, Zhang A, Xu J, Li Y, Li W, Tang L, Yang F, Meng J. N6-methyladenosine (m6A) in cancer therapeutic resistance: Potential mechanisms and clinical implications. Biomed Pharmacother 2023; 167:115477. [PMID: 37696088 DOI: 10.1016/j.biopha.2023.115477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Cancer therapy resistance (CTR) is the development of cancer resistance to multiple therapeutic strategies, which severely affects clinical response and leads to cancer progression, recurrence, and metastasis. N6-methyladenosine (m6A) has been identified as the most common, abundant, and conserved internal transcriptional alterations of RNA modifications, regulating RNA splicing, translation, stabilization, degradation, and gene expression, and is involved in the development and progression of a variety of diseases, including cancer. Recent studies have shown that m6A modifications play a critical role in both cancer development and progression, especially in reversing CTR. Although m6A modifications have great potential in CTR, the specific molecular mechanisms are not fully elucidated. In this review, we summarize the potential molecular mechanisms of m6A modification in CTR. In addition, we update recent advances in natural products from Traditional Chinese Medicines (TCM) and small-molecule lead compounds targeting m6A modifications, and discuss the great potential and clinical implications of these inhibitors targeting m6A regulators and combinations with other therapies to improve clinical efficacy and overcome CTR.
Collapse
Affiliation(s)
- Dong Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingxuan Xu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wen Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Tang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Fan Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jingyan Meng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
31
|
Meng H, Li J, Sun H, Lin Y, Xu H, Zhang N. The transcription factor ATF2 promotes gastric cancer progression by activating the METTL3/cyclin D1 pathway. Drug Dev Res 2023; 84:1325-1334. [PMID: 37421203 DOI: 10.1002/ddr.22092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Globally, gastric cancer (GC) is a major cause of cancer death. This study is aimed at investigating the biological functions of activating transcription factor 2 (ATF2) and the underlying mechanism in GC. In the present work, GEPIA, UALCAN, Human Protein Atlas and StarBase databases were adopted to analyze ATF2 expression characteristics in GC tissues and normal gastric tissues, and its relationships with tumor grade and patients' survival time. Quantitative real-time polymerase chain reaction (qRT-PCR) method was employed to examine ATF2 mRNA expression in normal gastric tissues, GC tissues, and GC cell lines. Cell counting kit-8 (CCK-8) and EdU assays were utilized for detecting GC cell proliferation. Cell apoptosis was detected by flow cytometry. PROMO database was applied to predict the binding site of ATF2 with the METTL3 promoter region. The binding relationship between ATF2 and the METTL3 promoter region was verified through dual-luciferase reporter gene assay and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay. Western blot was performed to evaluate the effect of ATF2 on METTL3 expression. METTL3-related signaling pathways were predicted using Gene Set Enrichment Analysis (GSEA) in the LinkedOmics database. It was found that, ATF2 level was elevated in GC tissues and cell lines in comparison with normal tissues and correlated with short patients' survival time. ATF2 overexpression facilitated GC cell growth and suppressed the apoptosis, whereas ATF2 knockdown suppressed GC cell proliferation and facilitated the apoptosis. ATF2 bound to the METTL3 promoter region, and ATF2 overexpression promoted the transcription of METTL3, and ATF2 knockdown restrained the transcription of METTL3. METTL3 was associated with cell cycle progression, and ATF2 overexpression enhanced cyclin D1 expression, and METTL3 knockdown reduced cyclin D1 expression. In summary, ATF2 facilitates GC cell proliferation and suppresses the apoptosis via activating the METTL3/cyclin D1 signaling pathway, and ATF2 is promising to be an anti-drug target for GC.
Collapse
Affiliation(s)
- Hong Meng
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jing Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Huapeng Sun
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yanxin Lin
- Xinjiang Medical University, Urumchi, China
| | - Haisheng Xu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Na Zhang
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
32
|
Xu L, Shi Z, Pan Z, Wu R. METTL3 promotes hyperoxia-induced pyroptosis in neonatal bronchopulmonary dysplasia by inhibiting ATG8-mediated autophagy. Clinics (Sao Paulo) 2023; 78:100253. [PMID: 37478627 PMCID: PMC10387564 DOI: 10.1016/j.clinsp.2023.100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023] Open
Abstract
OBJECTIVES N6-Methyladenosine (m6A) modification plays a vital role in lung disorders. However, the potential of m6A in neonatal Bronchopulmonary Dysplasia (BPD) has not been reported. This study aimed to investigate the roles of METTL3 in BPD. METHODS BPD models were established by hyperoxia in vivo and in vitro. Histological analysis was determined using HE staining. Gene expression was determined using Western blotting, qRT-PCR, and immunofluorescence. The release of IL-1β and IL-18 was detected using ELISA. The m6A sites of ATG8 were predicted by SCRAPM and verified by MeRIP assay. The location of GSDMD and ATG8 was determined by FISH assay. The interaction between ATG8 and GSDMD was detected using Coimmunoprecipitation (Co-IP). Cell pyroptosis was determined using flow cytometry and TUNEL assays. RESULTS METTL3 was overexpressed in BPD, which was accompanied by an increase in m6A levels. Interestingly, METTL3 suppressed hyperoxia-mediated damage and pyroptosis in BEAS-2B cells and promoted cell autophagy. METTL3-mediated m6A modification of ATG8 suppressed its expression and disrupted the interaction between ATG8 and GSDMD. However, autophagy inhibition induced pyroptosis in BEAS-2B cells. In vivo assays showed that METTL3-mediated autophagy inhibition induced a decrease in the radial alveolar count and an increase in the mean linear intercept and promoted cell pyroptosis. CONCLUSION In conclusion, METTL3-mediated cell pyroptosis promotes BPD by regulating the m6A modification of ATG8. This may provide new insight into the development of BPD.
Collapse
Affiliation(s)
- Lili Xu
- Huai'an Maternity and Child Healthcare Hospital, Yangzhou University Medical College, Neonatal Medical Center, Huai'an, China
| | - Zhan Shi
- Huai'an Maternity and Child Healthcare Hospital, Yangzhou University Medical College, Neonatal Medical Center, Huai'an, China
| | - Zhaojun Pan
- Huai'an Maternity and Child Healthcare Hospital, Yangzhou University Medical College, Neonatal Medical Center, Huai'an, China
| | - Rong Wu
- Huai'an Maternity and Child Healthcare Hospital, Yangzhou University Medical College, Neonatal Medical Center, Huai'an, China.
| |
Collapse
|
33
|
Zhang Z, Fu J, Zhang Y, Qin X, Wang Y, Xing C. METTL3 regulates N6-methyladenosine modification of ANGPTL3 mRNA and potentiates malignant progression of stomach adenocarcinoma. BMC Gastroenterol 2023; 23:217. [PMID: 37344779 PMCID: PMC10283274 DOI: 10.1186/s12876-023-02844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is associated with mammalian mRNA biogenesis, decay, translation and metabolism, and also contributes greatly to gastrointestinal tumor formation and development. Therefore, the specific mechanisms and signaling pathways mediated by methyltransferase-like 3 (METTL3), which catalyzes the formation of m6A chemical labeling in stomach adenocarcinoma (STAD), are still worth exploring. METHODS Quantitative real-time PCR (qRT-PCR) was constructed to detect the expression of METTL3 in gastric cancer cell lines and patient tissues. The biological function of METTL3 was investigated in vitro/in vivo by Cell Counting Kit-8, colony formation assay, Transwell assay and nude mouse tumorigenesis assay. Based on the LinkedOmics database, the genes co-expressed with METTL3 in the TCGA STAD cohort were analyzed to clarify the downstream targets of METTL3. Methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) and RNA stability analysis were employed to explore the mechanism of METTL3 in gastric cancer progression. RESULTS We analyzed TCGA data and found that METTL3 was frequently elevated in STAD, and demonstrated that METTL3 was present at high levels in clinical STAD tissues and cells. High METTL3 expression was more likely to have advanced TNM tumors and distant metastasis. On the other hand, METTL3 silencing effectively impeded the higher oncogenic capacity of AGS and HGC27 cells in vivo and in vitro, as reflected by slowed cell growth and diminished migration and invasion capacities. Continued mining of the TCGA dataset identified the co-expression of angiopoietin-like 3 (ANGPTL3) and METTL3 in STAD. Lower level of ANGPTL3 was related to increased level of METTL3 in STAD samples and shorter survival times in STAD patients. ANGPTL3 enrichment limited the growth and metastasis of STAD cells. Besides, ANGPTL3 mRNA levels could be decreased by METTL3-dominated m6A modifications, a result derived from a combination of MeRIP-qPCR and RNA half-life experiments. Importantly, the inhibitory effect of METTL3 silencing on cancer could be reversed to some extent by ANGPTL3 inhibition. CONCLUSIONS Overall, our findings suggested that METTL3 functioned an oncogenic role in STAD by reducing ANGPTL3 expression in an m6A-dependent manner. The discovery of the METTL3-ANGPTL3 axis and its effect on STAD tumor growth will contribute to further studies on the mechanisms of gastric adenocarcinoma development.
Collapse
Affiliation(s)
- Zhijin Zhang
- Department of General Surgery, the Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jun Fu
- Department of General Surgery, Shanghai Eighth People Hospital, Shanghai, 200235, China
| | - Yuhao Zhang
- Department of General Surgery, Shanghai Eighth People Hospital, Shanghai, 200235, China
| | - Xianju Qin
- Department of General Surgery, Shanghai Eighth People Hospital, Shanghai, 200235, China
| | - Yuexia Wang
- Department of General Surgery, Shanghai Eighth People Hospital, Shanghai, 200235, China
| | - Chungen Xing
- Department of General Surgery, the Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
34
|
Wei W, Zhang ZY, Shi B, Cai Y, Zhang HS, Sun CL, Fei YF, Zhong W, Zhang S, Wang C, He B, Jiang GM, Wang H. METTL16 promotes glycolytic metabolism reprogramming and colorectal cancer progression. J Exp Clin Cancer Res 2023; 42:151. [PMID: 37340443 PMCID: PMC10280857 DOI: 10.1186/s13046-023-02732-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Glycolysis is the key hallmark of cancer and maintains malignant tumor initiation and progression. The role of N6-methyladenosine (m6A) modification in glycolysis is largely unknown. This study explored the biological function of m6A methyltransferase METTL16 in glycolytic metabolism and revealed a new mechanism for the progression of Colorectal cancer (CRC). METHODS The expression and prognostic value of METTL16 was evaluated using bioinformatics and immunohistochemistry (IHC) assays. The biological functions of METTL16 in CRC progression was analyzed in vivo and in vitro. Glycolytic metabolism assays were used to verify the biological function of METTL16 and Suppressor of glucose by autophagy (SOGA1). The protein/RNA stability, RNA immunoprecipitation (RIP), Co-immunoprecipitation (Co-IP) and RNA pull-down assays were used to explore the potential molecular mechanisms. RESULTS SOGA1 is a direct downstream target of METTL16 and involved in METTL16 mediated glycolysis and CRC progression. METTL16 significantly enhances SOGA1 expression and mRNA stability via binding the "reader" protein insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1). Subsequently, SOGA1 promotes AMP-activated protein kinase (AMPK) complex ubiquitination, inhibits its expression and phosphorylation, thus upregulates pyruvate dehydrogenase kinase 4 (PDK4), a crucial protein controlling glucose metabolism. Moreover, Yin Yang 1 (YY1) can transcriptionally inhibit the expression of METTL16 in CRC cells by directly binding to its promoter. Clinical data showed that METTL16 expression is positively correlated to SOGA1 and PDK4, and is associated with poor prognosis of CRC patients. CONCLUSIONS Our findings suggest that METTL16/SOGA1/PDK4 axis might be promising therapeutic targets for CRC.
Collapse
Affiliation(s)
- Wei Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Zhong-Yuan Zhang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bin Shi
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yike Cai
- Center for Certification and Evaluation, Guangdong Drug Administration, Guangzhou, China
| | - Hou-Shun Zhang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chun-Lei Sun
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yun-Fei Fei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Wen Zhong
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Chen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Bing He
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
35
|
Tavakolian S, Iranshahi M, Faghihloo E. The Evaluation of HERV-K np9, rec, gag Expression in Isolated Human Peripheral Blood Mononuclear Cell (PBMC) of Gastric and Colon Cancer. Adv Biomed Res 2023; 12:131. [PMID: 37434925 PMCID: PMC10331531 DOI: 10.4103/abr.abr_288_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 07/13/2023] Open
Abstract
Background In the current age of diagnostic approaches in cancer, countless efforts have been allocated to identify novel and efficient biomarkers to detect cancer in its early stages. We focused on evaluating the correlation between the progression of gastrointestinal cancer, a leading cause of cancer death worldwide, and human endogenous retrovirus (HERV). Materials and Methods In this study, we conducted a study on the peripheral blood mononuclear cells (PBMC) gathered from gastric and colon cancer patients. We focused on HERV-K rec, np9, gag expression analysis by quantitative real-time PCR, after extraction of RNA and synthesizing cDNA. Results Unlike np9 whose expression increased significantly in the colon and gastric cancers, the mRNA level of the rec gene declined in both cancers. Moreover, our data illustrated that the over-expression of the gag gene was only observed in colon cancerous cells rather than gastric malignancy. Conclusions Overall, given the correlation between the expression level of HERV-associated genes and gastrointestinal cancer, our study suggests that these genes could be considered beneficial markers for cancer diagnosis. However, researchers should conduct studies in future articles on whether these genes can be employed as biomarkers in gastrointestinal cancer.
Collapse
Affiliation(s)
- Shaian Tavakolian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Iranshahi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Xia A, Yue Q, Zhu M, Xu J, Liu S, Wu Y, Wang Z, Xu Z, An H, Wang Q, Wang S, Sun B. The cancer-testis lncRNA LINC01977 promotes HCC progression by interacting with RBM39 to prevent Notch2 ubiquitination. Cell Death Discov 2023; 9:169. [PMID: 37198207 PMCID: PMC10192213 DOI: 10.1038/s41420-023-01459-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Cancer-testis genes are involved in the occurrence and development of cancer, but the role of cancer-testis-associated lncRNAs (CT-lncRNAs) in hepatocellular carcinoma (HCC) remains to be explored. Here, we discovered a novel CT-lncRNA, LINC01977, based on the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases. LINC01977 was exclusively expressed in testes and highly expressed in HCC. High LINC01977 levels correlated with poorer overall survival (OS) in individuals with HCC. Functional assays showed that LINC01977 promoted HCC growth and metastasis in vitro and in vivo. Mechanistically, LINC01977 directly bound to RBM39 to promote the further entry of Notch2 into the nucleus, thereby preventing the ubiquitination and degradation of Notch2. Furthermore, the RNA binding protein IGF2BP2, one of the m6A modification readers, enhanced the stability of LINC01977, resulting in its high level in HCC. Therefore, the data suggest that LINC01977 interacts with RBM39 and promotes the progression of HCC by inhibiting Notch2 ubiquitination and degradation, indicating that LINC01977 may be a potential biomarker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Anliang Xia
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Yue
- Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, China
| | - Mingming Zhu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianbo Xu
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Siyuan Liu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yue Wu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhu Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongda An
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, China.
| |
Collapse
|
37
|
Fang Z, Zhang S, Luo H, Jiang D, Huo B, Zhong X, Feng X, Cheng W, Chen Y, Feng G, Wu X, Zhao F, Yi X. Methyltransferase-like 3 suppresses phenotypic switching of vascular smooth muscle cells by activating autophagosome formation. Cell Prolif 2023; 56:e13386. [PMID: 36564367 PMCID: PMC10068948 DOI: 10.1111/cpr.13386] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022] Open
Abstract
Prevention of neointima formation is the key to improving long-term outcomes after stenting or coronary artery bypass grafting. RNA N6 -methyladenosine (m6 A) methylation has been reported to be involved in the development of various cardiovascular diseases, but whether it has a regulatory effect on neointima formation is unknown. Herein, we revealed that methyltransferase-like 3 (METTL3), the major methyltransferase of m6 A methylation, was downregulated during vascular smooth muscle cell (VSMC) proliferation and neointima formation. Knockdown of METTL3 facilitated, while overexpression of METTL3 suppressed the proliferation of human aortic smooth muscle cells (HASMCs) by arresting HASMCs at G2/M checkpoint and the phosphorylation of CDC2 (p-CDC2) was inactivated by METTL3. On the other hand, the migration and synthetic phenotype of HASMCs were enhanced by METTL3 knockdown, but inhibited by METTL3 overexpression. The protein levels of matrix metalloproteinase 2 (MMP2), MMP7 and MMP9 were reduced, while the expression level of tissue inhibitor of metalloproteinase 3 was increased in HASMCs with METTL3 overexpression. Moreover, METTL3 promoted the autophagosome formation by upregulating the expression of ATG5 (autophagy-related 5) and ATG7. Knockdown of either ATG5 or ATG7 largely reversed the regulatory effects of METTL3 overexpression on phenotypic switching of HASMCs, as evidenced by increased proliferation and migration, and predisposed to synthetic phenotype. These results indicate that METTL3 inhibits the phenotypic switching of VSMCs by positively regulating ATG5-mediated and ATG7-mediated autophagosome formation. Thus, enhancing the level of RNA m6 A or the formation of autophagosomes is the promising strategy to delay neointima formation.
Collapse
Affiliation(s)
- Ze‐Min Fang
- Division of Cardiothoracic and Vascular SurgerySino‐Swiss Heart‐Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Shu‐Min Zhang
- Cardiac Rehabilitation CenterFuwai Hospital CAMS&PUMCBeijingChina
| | - Hanshen Luo
- Division of Cardiothoracic and Vascular SurgerySino‐Swiss Heart‐Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ding‐Sheng Jiang
- Division of Cardiothoracic and Vascular SurgerySino‐Swiss Heart‐Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubeiChina
| | - Bo Huo
- Division of Cardiothoracic and Vascular SurgerySino‐Swiss Heart‐Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaoxuan Zhong
- Division of Cardiothoracic and Vascular SurgerySino‐Swiss Heart‐Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xin Feng
- Division of Cardiothoracic and Vascular SurgerySino‐Swiss Heart‐Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Wenlin Cheng
- Department of CardiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Yue Chen
- Division of Cardiothoracic and Vascular SurgerySino‐Swiss Heart‐Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Gaoke Feng
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xingliang Wu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Fang Zhao
- Department of CardiologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Xin Yi
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
38
|
Zhang Y, Zhang N. The role of RNA methyltransferase METTL3 in gynecologic cancers: Results and mechanisms. Front Pharmacol 2023; 14:1156629. [PMID: 37007040 PMCID: PMC10060645 DOI: 10.3389/fphar.2023.1156629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent mRNA modification in eukaryotes, and it is defined as the methylation of nitrogen atoms on the six adenine (A) bases of RNA in the presence of methyltransferases. Methyltransferase-like 3 (Mettl3), one of the components of m6A methyltransferase, plays a decisive catalytic role in m6A methylation. Recent studies have confirmed that m6A is associated with a wide spectrum of biological processes and it significantly affects disease progression and prognosis of patients with gynecologic tumors, in which the role of Mettl3 cannot be ignored. Mettl3 is involved in numerous pathophysiological functions, such as embryonic development, fat accumulation, and tumor progression. Moreover, Mettl3 may serve as a potential target for treating gynecologic malignancies, thus, it may benefit the patients and prolong survival. However, there is a need to further study the role and mechanism of Mettl3 in gynecologic malignancies. This paper reviews the recent progression on Mettl3 in gynecologic malignancies, hoping to provide a reference for further research.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- Department of Cancer Hospital, China Medical University, Shenyang, China
| | - Na Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- *Correspondence: Na Zhang,
| |
Collapse
|
39
|
Fang Y, Wu X, Gu Y, Shi R, Yu T, Pan Y, Zhang J, Jing X, Ma P, Shu Y. LINC00659 cooperated with ALKBH5 to accelerate gastric cancer progression by stabilising JAK1 mRNA in an m 6 A-YTHDF2-dependent manner. Clin Transl Med 2023; 13:e1205. [PMID: 36864711 PMCID: PMC9982078 DOI: 10.1002/ctm2.1205] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6 A) RNA modification is known as a common epigenetic regulation form in eukaryotic cells. Emerging studies show that m6 A in noncoding RNAs makes a difference, and the aberrant expression of m6 A-associated enzymes may cause diseases. The demethylase alkB homologue 5 (ALKBH5) plays diverse roles in different cancers, but its role during gastric cancer (GC) progression is not well known. METHODS The quantitative real-time polymerase chain reaction, immunohistochemistry staining and western blotting assays were used to detect ALKBH5 expression in GC tissues and human GC cell lines. The function assays in vitro and xenograft mouse model in vivo were used to investigate the effects of ALKBH5 during GC progression. RNA sequencing, MeRIP sequencing, RNA stability and luciferase reporter assays were performed to explore the potential molecular mechanisms involved in the function of ALKBH5. RNA binding protein immunoprecipitation sequencing (RIP-seq), RIP and RNA pull-down assays were performed to examine the influence of LINC00659 on the ALKBH5-JAK1 interaction. RESULTS ALKBH5 was highly expressed in GC samples and associated with aggressive clinical features and poor prognosis. ALKBH5 promoted the abilities of GC cell proliferation and metastasis in vitro and in vivo. The m6 A modification on JAK1 mRNA was removed by ALKBH5, which resulted in the upregulated expression of JAK1. LINC00659 facilitated ALKBH5 binding to and upregulated JAK1 mRNA depending on an m6 A-YTHDF2 manner. Silencing of ALKBH5 or LINC00659 disrupted GC tumourigenesis via the JAK1 axis. JAK1 upregulation activated the JAK1/STAT3 pathway in GC. CONCLUSION ALKBH5 promoted GC development via upregulated JAK1 mRNA expression mediated by LINC00659 in an m6 A-YTHDF2-dependent manner, and targeting ALKBH5 may be a promising therapeutic method for GC patients.
Collapse
Affiliation(s)
- Yuan Fang
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Xi Wu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Yunru Gu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Run Shi
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Tao Yu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Yutian Pan
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Jingxin Zhang
- Department of General SurgeryAffiliated People's Hospital of Jiangsu UniversityZhenjiang Clinic School of Nanjing Medical UniversityZhenjiangPeople's Republic of China
| | - Xinming Jing
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Pei Ma
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
| | - Yongqian Shu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingPeople's Republic of China
- Jiangsu Key Laboratory of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityNanjingPeople's Republic of China
| |
Collapse
|
40
|
Cheng H, Li L, Xue J, Ma J, Ge J. TNC Accelerates Hypoxia-Induced Cardiac Injury in a METTL3-Dependent Manner. Genes (Basel) 2023; 14:591. [PMID: 36980863 PMCID: PMC10048594 DOI: 10.3390/genes14030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cardiac fibrosis and cardiomyocyte apoptosis are reparative processes after myocardial infarction (MI), which results in cardiac remodeling and heart failure at last. Tenascin-C (TNC) consists of four distinct domains, which is a large multimodular glycoprotein of the extracellular matrix. It is also a key regulator of proliferation and apoptosis in cardiomyocytes. As a significant m6A regulator, METTL3 binds m6A sites in mRNA to control its degradation, maturation, stabilization, and translation. Whether METTL3 regulates the occurrence and development of myocardial infarction through the m6A modification of TNC mRNA deserves our study. Here, we have demonstrated that overexpression of METTL3 aggravated cardiac dysfunction and cardiac fibrosis after 4 weeks after MI. Moreover, we also demonstrated that TNC resulted in cardiac fibrosis and cardiomyocyte apoptosis after MI. Mechanistically, METTL3 led to enhanced m6A levels of TNC mRNA and promoted TNC mRNA stability. Then, we mutated one m6A site "A" to "T", and the binding ability of METTL3 was reduced. In conclusion, METTL3 is involved in cardiac fibrosis and cardiomyocyte apoptosis by increasing m6A levels of TNC mRNA and may be a promising target for the therapy of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Linnan Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junqiang Xue
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Jianying Ma
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
41
|
Li L, Wang B, Zhou X, Ding H, Sun C, Wang Y, Zhang F, Zhao J. METTL3-mediated long non-coding RNA MIR99AHG methylation targets miR-4660 to promote bone marrow mesenchymal stem cell osteogenic differentiation. Cell Cycle 2023; 22:476-493. [PMID: 36369887 PMCID: PMC9879177 DOI: 10.1080/15384101.2022.2125751] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/15/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Whether long non-coding RNA Mir-99a-Let-7c Cluster Host Gene (LncRNA MIR99AHG) is involved in osteoporosis (OP) remains vague, so we hereby center on its implication. Old C57BL/6J mice were injected with the silencing lentivirus of MIR99AHG and subjected to microCT analysis and immunohistochemistry on osteogenic cells. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) with or without transfection was determined by alkaline phosphatase (ALP) and Alizarin Red S staining. Total N(6)-methyladenosine (m6A) on the bone marrow mesenchymal stem cells (BMSCs) was quantified. The potential methylation site and the complementary binding sites with candidate microRNA (miR) were predicted via bioinformatic analyses, with the latter being confirmed via dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assays. Quantitative real-time PCR and Western blot were used for quantification assays. MIR99AHG was decreased during the osteogenic differentiation of BMSCs, where increased Osterix (OSX), Collagen, Type I, Alpha 1 (Col1A1), Osteocalcin (OCN) and RUNX Family Transcription Factor 2 (RUNX2) as well as more color-stained areas were found. Also, silencing MIR99AHG relieved the OP in mice and reduced the loss of osteogenic cells. M6A methylation in undifferentiated BMSCs was low and MIR99AHG overexpression abolished the effects of overexpressed METTL3 on promoting osteogenic differentiation. MiR-4660, which was downregulated in BMSCs without differentiation but increased during osteogenic differentiation, could bind with MIR99AHG. Furthermore, miR-4660 promoted osteogenic differentiation and reversed the effects of overexpressed MIR99AHG. The present study demonstrated that METTL3-mediated LncRNA MIR99AHG methylation enhanced the osteogenic differentiation of BMSCs via targeting miR-4660.
Collapse
Affiliation(s)
- Lintao Li
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Beiyue Wang
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Xing Zhou
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Hao Ding
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Chang Sun
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Yicun Wang
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Fan Zhang
- Department of Orthopaedic, Changzheng Hospital, Navy Military Medical University, Shanghai, China
| | - Jianning Zhao
- Department of Orthopedic, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| |
Collapse
|
42
|
Bai Y, Li K, Peng J, Yi C. m 6A modification: a new avenue for anti-cancer therapy. LIFE MEDICINE 2023; 2:lnad008. [PMID: 39872957 PMCID: PMC11749794 DOI: 10.1093/lifemedi/lnad008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/21/2023] [Indexed: 01/30/2025]
Abstract
To date, over 170 different kinds of chemical modifications on RNAs have been identified, some of which are involved in multiple aspects of RNA fate, ranging from RNA processing, nuclear export, translation, and RNA decay. m6A, also known as N 6-methyladenosine, is a prominent internal RNA modification that is catalyzed primarily by the METTL3-METTL14-WTAP methyltransferase complex in higher eukaryotic mRNA and long noncoding RNA (lncRNA). In recent years, abnormal m6A modification has been linked to the occurrence, development, progression, and prognosis of the majority of cancers. In this review, we provide an update on the most recent m6A modification discoveries as well as the critical roles of m6A modification in cancer development and progression. We summarize the mechanisms of m6A involvement in cancer and list potential cancer therapy inhibitors that target m6A regulators such as "writer" METTL3 and "eraser" FTO.
Collapse
Affiliation(s)
- Yongtai Bai
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Kai Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
43
|
Shi J, Zhang Q, Yin X, Ye J, Gao S, Chen C, Yang Y, Wu B, Fu Y, Zhang H, Wang Z, Wang B, Zhu Y, Wu H, Yao Y, Xu G, Wang Q, Wang S, Zhang W. Stabilization of IGF2BP1 by USP10 promotes breast cancer metastasis via CPT1A in an m6A-dependent manner. Int J Biol Sci 2023; 19:449-464. [PMID: 36632454 PMCID: PMC9830507 DOI: 10.7150/ijbs.76798] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Metastasis leads to the vast majority of breast cancer mortality. Increasing evidence has shown that N6-methyladenosine (m6A) modification and its associated regulators play a pivotal role in breast cancer metastasis. Here, we showed that overexpression of the m6A reader IGF2BP1 was clinically correlated with metastasis in breast cancer patients. Moreover, IGF2BP1 promoted distant metastasis in vitro and in vivo. Mechanistically, we first identified USP10 as the IGF2BP1 deubiquitinase. USP10 can bind to, deubiquitinate, and stabilize IGF2BP1, resulting in its higher expression level in breast cancer. Furthermore, by MeRIP-seq and experimental verification, we found that IGF2BP1 directly recognized and bound to the m6A sites on CPT1A mRNA and enhanced its stability, which ultimately mediated IGF2BP1-induced breast cancer metastasis. In clinical samples, USP10 levels correlated with IGF2BP1 and CPT1A levels, and breast cancer patients with high levels of USP10, IGF2BP1, and CPT1A had the worst outcome. Therefore, these findings suggest that the USP10/IGF2BP1/CPT1A axis facilitates breast cancer metastasis, and this axis may be a promising prognostic biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jiajun Shi
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Qianyi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Xi Yin
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Jiahui Ye
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Shengqing Gao
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Chen Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Yaxuan Yang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Baojuan Wu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Yuping Fu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Hongmei Zhang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Zhangding Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Yun Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Hongyan Wu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Yongzhong Yao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, People's Republic of China
| | - Shouyu Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, Jiangsu Province, People's Republic of China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210000, Jiangsu Province, People's Republic of China
| | - Weijie Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, Jiangsu Province, People's Republic of China
| |
Collapse
|
44
|
Guo Y, Heng Y, Chen H, Huang Q, Wu C, Tao L, Zhou L. Prognostic Values of METTL3 and Its Roles in Tumor Immune Microenvironment in Pan-Cancer. J Clin Med 2022; 12:jcm12010155. [PMID: 36614956 PMCID: PMC9821157 DOI: 10.3390/jcm12010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Background: N6-methyladenosine (m6A) is among the most prevalent RNA modifications regulating RNA metabolism. The roles of methyltransferase-like 3 (METTL3), a core catalytic subunit, in various cancers remain unclear. Methods: The expression levels of METTL3 in pan-cancer were profiled and their prognostic values were examined. We assessed the relationships between METTL3 expression levels and tumor immune infiltration levels, immune checkpoint gene expression, immune neoantigens, tumor mutation burden, microsatellite instability, and DNA mismatch repair gene expression. Furthermore, a protein-protein interaction network was drawn, and gene set enrichment analysis was conducted to explore the functions of METTL3. Results: METTL3 expression levels were elevated in most cancers, with high expression associated with poorer overall and disease-free survival. METTL3 levels were significantly related to immune cell infiltration, tumor mutation burden, microsatellite instability, mismatch repair genes, and immune checkpoint gene levels. METTL3 was enriched in pathways related to RNA modification and metabolism and correlated with epithelial-mesenchymal transition. Conclusions: METTL3 serves as an oncogene in most cancer types and shows potential as a prognostic biomarker. Additionally, our comprehensive pan-cancer analysis suggested that METTL3 is involved in regulating the tumor immune microenvironments and epithelial-mesenchymal transition via modulating RNA modification and metabolism, making it a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Tao
- Correspondence: (L.T.); (L.Z.)
| | | |
Collapse
|
45
|
The novel m6A writer METTL5 as prognostic biomarker probably associating with the regulation of immune microenvironment in kidney cancer. Heliyon 2022; 8:e12078. [PMID: 36619469 PMCID: PMC9816671 DOI: 10.1016/j.heliyon.2022.e12078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Nowadays, among all urinary system cancers, the mortality of kidney cancer (KC) has risen to the first, and the incidence has been keeping on the third. Many recent studies have demonstrated that m6A modification regulated by the methyltransferases (writers) is closely related to the tumorigenesis of multiple cancers. In our previous study, we found that the methyltransferase METTL5 had a stronger association with the hazard ratio of KC more than most tumors, indicating its special function in carcinogenesis of KC. Until now, the expression, functions and mechanism of METTL5 in KC are still unclear. In this study, we analyzed the mRNA expression of METTL5 using the data sets from public databases, and revealed that the METTL5 expression was significantly up-regulated in tumor tissues of kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) compared to normal tissues. Also, the METTL5 expression was correlated with the tumor stage and grade, indicating the potential involvement of METTL5 in tumor progression. Additionally, the higher expression of METTL5 predicted poorer prognosis of KIRC and KIRP patients. Subsequently, we revealed that the functions of METTL5 in KIRC might be related to immune modulation, because its co-expressed gene were enriched in immune-relevant pathways including Th17 cell differentiation, Th1 and Th2 cell differentiation, and phosphatidylinositol 3-kinase activity. Next, we disclosed that the METTL5 expression was correlated to the microenvironment score and immune score of KIRC and KIRP, and associated with the infiltration ratios of 25 types of immune cells. Besides, we demonstrated a wide difference of the METTL5's effect on the survival of patients with high and low immune infiltration, further suggesting METTL5 might affect tumor development via modulating the immune microenvironment. The findings of our study provide a novel potential prognostic biomarker and immune drug target for KC.
Collapse
|
46
|
Feng N, Wang S, Liu C, Xu Z, Song Z, Li K, Yu Z. A network meta-analysis to evaluate the efficacy of traditional Chinese medicine on intestinal flora in patients with gastrointestinal cancer. Front Genet 2022; 13:1069780. [DOI: 10.3389/fgene.2022.1069780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose: Traditional Chinese medicine (TCM) can regulate intestinal flora so as to affect the occurrence, progression, and prognosis of gastrointestinal cancer. According to clinical studies, TCM oral administration, TCM external treatment, and TCM injections, can adjust intestinal flora disorders in patients with gastrointestinal cancer. This network meta-analysis aims to evaluate the effect of three treatments on the intestinal flora in gastrointestinal cancer patients.Methods: This meta-analysis was registered in PROSPERO (CRD42022332553). Six electronic databases, namely CNKI, Wanfang, CSTJ, PubMed, Cochrane Library, and EMBASE, were searched from their inception to 1 April 2022. We identified randomized controlled trials (RCT) used to compare the efficacy of three TCM treatment methods—oral administration, external therapy and injections—on the intestinal flora in gastrointestinal cancer patients. The main outcome indicators were Bifidobacteria, Lactobacilli, Escherichia coli, and Enterococci. Stata (15.1) and the Cochrane risk of bias assessment tool were employed.Results: We identified 20 eligible RCTs with a total of 1,774 patients. According to network meta-analysis results, TCM injection plus common treatment (CT) or oral administration of TCM plus CT was superior to CT alone for supporting Bifidobacterium. In supporting Lactobacillus, TCM injection plus CT demonstrated more obvious effect relative to oral administration of TCM plus CT; TCM injection plus CT was more effective than CT only; and oral administration of TCM plus CT was superior to CT only.The inhibitory effect of TCM injection plus CT on Escherichia coli was better compared with CT only. In terms of inhibiting Enterococci, oral administration of TCM plus CT was superior to CT only.The difference in efficacy among the above treatments was statistically significant. In the SUCRA probability ranking, TCM injection plus CT had the best ranking curve among the three treatments and was the most effective in supporting Bifidobacteria (Sucra = 90.08%), Lactobacilli (Sucra = 96.4%), and regulating Escherichia coli (Sucra = 86.1%) and Enterococci (Sucra = 87.1%).Conclusion: TCM injections plus CT is the most effective therapy in balancing the intestinal flora of gastrointestinal cancer patients. However, the current results deserve further validation through high-quality research.Systematic Review Registration: http://www.prisma-statement.org/, identifier 10.1136/bmj.n71.
Collapse
|
47
|
Zhang C, Dai D, Zhang W, Yang W, Guo Y, Wei Q. Role of m6A RNA methylation in the development of hepatitis B virus-associated hepatocellular carcinoma. J Gastroenterol Hepatol 2022; 37:2039-2050. [PMID: 36066844 DOI: 10.1111/jgh.15999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/10/2022] [Accepted: 09/03/2022] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver malignancy that can be developed from hepatitis B and cirrhosis. Many pathophysiological alterations, including hepatitis B virus (HBV) DNA integration, oxidative stress, cytokine release, telomerase homeostasis, mitochondrial damage, epigenetic modification, and tumor microenvironment, are involved in the biological process from hepatitis B to cirrhosis and HCC. N6-methyladenosine (m6A), as an epitranscriptomic modification of RNAs, can regulate the stability, splicing, degradation, transcription, and translation of downstream target RNAs in HBV and liver cancer cells. m6A regulators (writers, erasers, and readers) play an important role in the pathogenesis of HBV-associated HCC by regulating cell proliferation, apoptosis, migration, autophagy, differentiation, inflammation, angiogenesis, and tumor microenvironment. This review summarizes the current progress of m6A methylation in the molecular mechanisms, biological functions, and potential clinical implications of HBV-associated HCC.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongjun Dai
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wangjian Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjun Yang
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yinglu Guo
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Ma W, Wu T. RNA m6A modification in liver biology and its implication in hepatic diseases and carcinogenesis. Am J Physiol Cell Physiol 2022; 323:C1190-C1205. [PMID: 36036444 PMCID: PMC9576175 DOI: 10.1152/ajpcell.00214.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification in eukaryotic RNAs. This modification is regulated by three different factors (writers, erasers, and readers) and affects multiple aspects of RNA metabolism, including RNA splicing, nuclear export, translation, stability and decay. The m6A-mediated modification plays important roles in posttranscriptional regulation of gene expression and mediates a variety of cellular and biological processes. Accordingly, deregulation in m6A modification is closely related to the occurrence and development of human diseases. The liver is the largest digestive and metabolic organ in human and recent studies have shown that m6A modification is importantly implicated in liver cellular and physiological functions and in the pathogenesis of hepatic diseases and cancers. In the current review, we summarize the functions of m6A in RNA metabolism and its roles in liver cell biology and discuss its implication in hepatic diseases and carcinogenesis.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
49
|
Wang Q, Chen C, Xu X, Shu C, Cao C, Wang Z, Fu Y, Xu L, Xu K, Xu J, Xia A, Wang B, Xu G, Zou X, Su R, Kang W, Xue Y, Mo R, Sun B, Wang S. APAF1-Binding Long Noncoding RNA Promotes Tumor Growth and Multidrug Resistance in Gastric Cancer by Blocking Apoptosome Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201889. [PMID: 35975461 PMCID: PMC9534967 DOI: 10.1002/advs.202201889] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/13/2022] [Indexed: 05/29/2023]
Abstract
Chemotherapeutics remain the first choice for advanced gastric cancers (GCs). However, drug resistance and unavoidable severe toxicity lead to chemotherapy failure and poor prognosis. Long noncoding RNAs (lncRNAs) play critical roles in tumor progression in many cancers, including GC. Here, through RNA screening, an apoptotic protease-activating factor 1 (APAF1)-binding lncRNA (ABL) that is significantly elevated in cancerous GC tissues and an independent prognostic factor for GC patients is identified. Moreover, ABL overexpression inhibits GC cell apoptosis and promotes GC cell survival and multidrug resistance in GC xenograft and organoid models. Mechanistically, ABL directly binds to the RNA-binding protein IGF2BP1 via its KH1/2 domain, and then IGF2BP1 further recognizes the METTL3-mediated m6A modification on ABL, which maintains ABL stability. In addition, ABL can bind to the WD1/WD2 domain of APAF1, which competitively prevent cytochrome c from interacting with APAF1, blocking apoptosome assembly and caspase-9/3 activation; these events lead to resistance to cell death in GC cells. Intriguingly, targeting ABL using encapsulated liposomal siRNA can significantly enhance the sensitivity of GC cells to chemotherapy. Collectively, the results suggest that ABL can be a potential prognostic biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
| | - Chen Chen
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
| | - Xiao Xu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesCenter of Advanced Pharmaceuticals and BiomaterialsSchool of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210000China
| | - Chuanjun Shu
- Department of BioinformaticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing210000China
| | - Changchang Cao
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zhangding Wang
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Yao Fu
- Department of PathologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Lei Xu
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Kaiyue Xu
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Jiawen Xu
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
| | - Anliang Xia
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Bo Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Guifang Xu
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Xiaoping Zou
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Ruibao Su
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Wei Kang
- Department of Anatomical and Cellular PathologyInstitute of Digestive DiseaseState Key Laboratory of Digestive DiseaseState Key Laboratory of Translational OncologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongSAR999077China
| | - Yuanchao Xue
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Ran Mo
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesCenter of Advanced Pharmaceuticals and BiomaterialsSchool of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210000China
| | - Beicheng Sun
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
| | - Shouyu Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
- Center for Public Health ResearchMedical School of Nanjing UniversityNanjing210000China
| |
Collapse
|
50
|
Deng S, Gu J, Jiang Z, Cao Y, Mao F, Xue Y, Wang J, Dai K, Qin L, Liu K, Wu K, He Q, Cai K. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J Nanobiotechnology 2022; 20:415. [PMID: 36109734 PMCID: PMC9479390 DOI: 10.1186/s12951-022-01613-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
Gastrointestinal cancer (GIC) is a common malignant tumour of the digestive system that seriously threatens human health. Due to the unique organ structure of the gastrointestinal tract, endoscopic and MRI diagnoses of GIC in the clinic share the problem of low sensitivity. The ineffectiveness of drugs and high recurrence rates in surgical and drug therapies are the main factors that impact the curative effect in GIC patients. Therefore, there is an urgent need to improve diagnostic accuracies and treatment efficiencies. Nanotechnology is widely used in the diagnosis and treatment of GIC by virtue of its unique size advantages and extensive modifiability. In the diagnosis and treatment of clinical GIC, surface-enhanced Raman scattering (SERS) nanoparticles, electrochemical nanobiosensors and magnetic nanoparticles, intraoperative imaging nanoparticles, drug delivery systems and other multifunctional nanoparticles have successfully improved the diagnosis and treatment of GIC. It is important to further improve the coordinated development of nanotechnology and GIC diagnosis and treatment. Herein, starting from the clinical diagnosis and treatment of GIC, this review summarizes which nanotechnologies have been applied in clinical diagnosis and treatment of GIC in recent years, and which cannot be applied in clinical practice. We also point out which challenges must be overcome by nanotechnology in the development of the clinical diagnosis and treatment of GIC and discuss how to quickly and safely combine the latest nanotechnology developed in the laboratory with clinical applications. Finally, we hope that this review can provide valuable reference information for researchers who are conducting cross-research on GIC and nanotechnology.
Collapse
Affiliation(s)
- Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zhenxing Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yinghao Cao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jun Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Kun Dai
- Department of Neonatal Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Le Qin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qianyuan He
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|