1
|
Yang KF, Zhang JY, Feng M, Yao K, Liu YY, Zhou MS, Jia H. Secretase promotes AD progression: simultaneously cleave Notch and APP. Front Aging Neurosci 2024; 16:1445470. [PMID: 39634655 PMCID: PMC11615878 DOI: 10.3389/fnagi.2024.1445470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) involves complex pathological mechanisms. Secretases include membrane protein extracellular structural domain proteases and intramembrane proteases that cleave the topology to type I or type II. Secretases can effectively regulate the activation of Notch and amyloid precursor protein (APP), key factors in the progression of AD and cancer. This article systematically summarizes the intracellular localization, cleavage sites and products, and biological functions of six subtypes of secretases (α-secretase, β-secretase, γ-secretase, δ-secretase, ε-secretase, and η-secretase), and for the first time, elucidates the commonalities and differences between these subtypes of secretases. We found that each subtype of secretase primarily cleaves APP and Notch as substrates, regulating Aβ levels through APP cleavage to impact the progression of AD, while also cleaving Notch receptors to affect cancer progression. Finally, we review the chemical structures, indications, and research stages of various secretase inhibitors, emphasizing the promising development of secretase inhibitors in the fields of cancer and AD.
Collapse
Affiliation(s)
- Ke-Fan Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Jing-Yi Zhang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Mei Feng
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Kuo Yao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Yue-Yang Liu
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Ming-Sheng Zhou
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Hui Jia
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Fanqiao M, Chen X, Ren X, Li L, Wu T. CD7 CAR T bridging to allo-HSCT in R/R T-ALL: A case report. Pediatr Transplant 2024; 28:e14367. [PMID: 35860981 DOI: 10.1111/petr.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Refractory/relapsed T-cell acute lymphoblastic leukemia (R/R T-ALL) is a hematological malignancy with a poor prognosis. The current treatment strategy has not benefited most patients, and the treatment methods are still being explored. CASE PRESENTATION An 8-year-old boy with R/R T-ALL achieved CR after multiple chemotherapies, followed by the first allo-HSCT. Unfortunately, 1 year and 3 months later, he relapsed. After recurrence, the patient underwent multiple chemotherapies, but the NOTCH1 gene and MRD were still positive. FCM and immunohistochemistry revealed abnormally high expression of CD7, so we considered bridging the second allo-HSCT after CD7 CAR T-cells treatment. The patient has low toxic and side effects and is still in CR, findings from this case report have more important therapeutic significance for R/R T-ALL. CONCLUSION In conclusion, CD7 CAR T-cells bridging to allo-HSCT is a safe and effective approach for R/R T-ALL, resulting in durable CR and longer survival.
Collapse
Affiliation(s)
- Meng Fanqiao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, China
| | - Xiuqiong Chen
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Wu
- Department of Bone Marrow Transplantation, Beijing Boren Hospital, Beijing, China
| |
Collapse
|
3
|
Ghahramani Almanghadim H, Karimi B, Poursalehi N, Sanavandi M, Atefi Pourfardin S, Ghaedi K. The biological role of lncRNAs in the acute lymphocytic leukemia: An updated review. Gene 2024; 898:148074. [PMID: 38104953 DOI: 10.1016/j.gene.2023.148074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The cause of leukemia, a common malignancy of the hematological system, is unknown. The structure of long non-coding RNAs (lncRNAs) is similar to mRNA but no ability to encode proteins. Numerous malignancies, including different forms of leukemia, are linked to Lnc-RNAs. It is verified that the carcinogenesis and growth of a variety of human malignancies are significantly influenced by aberrant lncRNA expression. The body of evidence linking various types of lncRNAs to the etiology of leukemia has dramatically increased during the past ten years. Some lncRNAs are therefore anticipated to function as novel therapeutic targets, diagnostic biomarkers, and clinical outcome predictions. Additionally, these lncRNAs may provide new therapeutic options and insight into the pathophysiology of diseases, particularly leukemia. Thus, this review outlines the present comprehension of leukemia-associated lncRNAs.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Negareh Poursalehi
- Department of Medical Biotechnology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., 81746-73441 Isfahan, Iran.
| |
Collapse
|
4
|
Jeha S. Relapsed/Refractory T- Acute Lymphoblastic Leukemia - Current Options and Future Directions. Indian J Pediatr 2024; 91:168-175. [PMID: 37642889 DOI: 10.1007/s12098-023-04745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. The T-cell subtype (T-ALL) accounts for 10-15% of pediatric ALL cases and has been historically associated with outcomes inferior to those of B-cell ALL (B-ALL). The prognosis of T-ALL has significantly improved with contemporary intensive pediatric regimens. However, most children with relapsed T-ALL have dismal outcomes and fewer therapeutic salvage options than those available for B-ALL. After demonstrating efficacy in relapsed T-ALL, nelarabine is being increasingly incorporated into frontline T-ALL regimens. The development of genomic sequencing has led to the identification of new T-ALL subgroups and potential targeted therapeutic approaches which could improve patients' outcomes and reduce the toxicity associated with current therapy. Immunotherapy and cellular therapy regimens are also under early investigation in T-cell malignancies. This review outlines the clinical and biological characteristics of T-ALL and provides an overview of novel treatment options for refractory and relapsed T-ALL.
Collapse
Affiliation(s)
- Sima Jeha
- Departments of Global Pediatric Medicine and Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38103, USA.
| |
Collapse
|
5
|
Cao L, Ruiz Buendía GA, Fournier N, Liu Y, Armand F, Hamelin R, Pavlou M, Radtke F. Resistance mechanism to Notch inhibition and combination therapy in human T-cell acute lymphoblastic leukemia. Blood Adv 2023; 7:6240-6252. [PMID: 37358480 PMCID: PMC10589794 DOI: 10.1182/bloodadvances.2023010380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023] Open
Abstract
Gain-of-function mutations in NOTCH1 are among the most frequent genetic alterations in T-cell acute lymphoblastic leukemia (T-ALL), highlighting the Notch signaling pathway as a promising therapeutic target for personalized medicine. Yet, a major limitation for long-term success of targeted therapy is relapse due to tumor heterogeneity or acquired resistance. Thus, we performed a genome-wide CRISPR-Cas9 screen to identify prospective resistance mechanisms to pharmacological NOTCH inhibitors and novel targeted combination therapies to efficiently combat T-ALL. Mutational loss of phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) causes resistance to Notch inhibition. PIK3R1 deficiency leads to increased PI3K/AKT signaling, which regulates cell cycle and the spliceosome machinery, both at the transcriptional and posttranslational level. Moreover, several therapeutic combinations have been identified, in which simultaneous targeting of the cyclin-dependent kinases 4 and 6 (CDK4/6) and NOTCH proved to be the most efficacious in T-ALL xenotransplantation models.
Collapse
Affiliation(s)
- Linlin Cao
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Gustavo A. Ruiz Buendía
- Translational Data Science, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Nadine Fournier
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland
- Translational Data Science, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Yuanlong Liu
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Florence Armand
- Proteomics Core Facility, École Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
| | - Romain Hamelin
- Proteomics Core Facility, École Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
| | - Maria Pavlou
- Proteomics Core Facility, École Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland
| |
Collapse
|
6
|
Vandersmissen C, Prieto C, Gielen O, Jacobs K, Nittner D, Maertens J, Segers H, Cools J. Combination therapy of a PSEN1-selective γ-secretase inhibitor with dexamethasone and an XPO1 inhibitor to target T-cell acute lymphoblastic leukemia. Haematologica 2023; 108:2507-2512. [PMID: 36700404 PMCID: PMC10483366 DOI: 10.3324/haematol.2022.282144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Charlien Vandersmissen
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven
| | - Cristina Prieto
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven
| | - Olga Gielen
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven
| | - Kris Jacobs
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven
| | | | - Johan Maertens
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium; Department of Hematology, UZ Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven
| | - Heidi Segers
- Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Department of Pediatric Oncology, UZ Leuven, Leuven
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Leuven, Belgium; Center for Cancer biology, VIB, Leuven, Belgium; Leuvens Kanker Instituut (LKI), KU Leuven - UZ Leuven, Leuven.
| |
Collapse
|
7
|
Huang YH, Wan CL, Dai HP, Xue SL. Targeted therapy and immunotherapy for T cell acute lymphoblastic leukemia/lymphoma. Ann Hematol 2023; 102:2001-2013. [PMID: 37227492 DOI: 10.1007/s00277-023-05286-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
T cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) is an aggressive malignancy of progenitor T cells. Despite significant improvements in survival of T-ALL/LBL over the past decades, treatment of relapsed and refractory T-ALL (R/R T-ALL/LBL) remains extremely challenging. The prognosis of R/R T-ALL/LBL patients who are intolerant to intensive chemotherapy remains poor. Therefore, innovative approaches are needed to further improve the survival of R/R T-ALL/LBL patients. With the widespread use of next-generation sequencing in T-ALL/LBL, a range of new therapeutic targets such as NOTCH1 inhibitors, JAK-STAT inhibitors, and tyrosine kinase inhibitors have been identified. These findings led to pre-clinical studies and clinical trials of molecular targeted therapy in T-ALL/LBL. Furthermore, immunotherapies such as CD7 CAR T cell therapy and CD5 CAR T cell therapy have shown profound response rate in R/R T-ALL/LBL. Here, we review the progress of targeted therapies and immunotherapies for T-ALL/LBL, and look at the future directions and challenges for the further use of these therapies in T-ALL/LBL.
Collapse
Affiliation(s)
- Yuan-Hong Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Chao-Ling Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
8
|
Kwanten B, Deconick T, Walker C, Wang F, Landesman Y, Daelemans D. E3 ubiquitin ligase ASB8 promotes selinexor-induced proteasomal degradation of XPO1. Biomed Pharmacother 2023; 160:114305. [PMID: 36731340 DOI: 10.1016/j.biopha.2023.114305] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Selinexor (KPT-330), a small-molecule inhibitor of exportin-1 (XPO1, CRM1) with potent anticancer activity, has recently been granted FDA approval for treatment of relapsed/refractory multiple myeloma and diffuse large B-cell lymphoma (DLBCL), with a number of additional indications currently under clinical investigation. Since selinexor has often demonstrated synergy when used in combination with other drugs, notably bortezomib and dexamethasone, a more comprehensive approach to uncover new beneficial interactions would be of great value. Moreover, stratifying patients, personalizing therapeutics and improving clinical outcomes requires a better understanding of the genetic vulnerabilities and resistance mechanisms underlying drug response. Here, we used CRISPR-Cas9 loss-of-function chemogenetic screening to identify drug-gene interactions with selinexor in chronic myeloid leukemia, multiple myeloma and DLBCL cell lines. We identified the TGFβ-SMAD4 pathway as an important mediator of resistance to selinexor in multiple myeloma cells. Moreover, higher activity of this pathway correlated with prolonged progression-free survival in multiple myeloma patients treated with selinexor, indicating that the TGFβ-SMAD4 pathway is a potential biomarker predictive of therapeutic outcome. In addition, we identified ASB8 (ankyrin repeat and SOCS box containing 8) as a shared modulator of selinexor sensitivity across all tested cancer types, with both ASB8 knockout and overexpression resulting in selinexor hypersensitivity. Mechanistically, we showed that ASB8 promotes selinexor-induced proteasomal degradation of XPO1. This study provides insight into the genetic factors that influence response to selinexor treatment and could support both the development of predictive biomarkers as well as new drug combinations.
Collapse
Affiliation(s)
- Bert Kwanten
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium
| | - Tine Deconick
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium
| | | | - Feng Wang
- Karyopharm Therapeutics, Newton, MA 02459, USA
| | | | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium.
| |
Collapse
|
9
|
Zhao C, Ma B, Yang Z, Li O, Liu S, Pan L, Gong W, Dong P, Shu Y. Inhibition of XPO1 impairs cholangiocarcinoma cell proliferation by triggering p53 intranuclear accumulation. Cancer Med 2023; 12:5751-5763. [PMID: 36200270 PMCID: PMC10028126 DOI: 10.1002/cam4.5322] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND XPO1 mediates the nuclear export of several proteins, mainly tumor suppressors. KPT-330 (Selinexor) is a selective inhibitor of XPO1 that has demonstrated good therapeutic effects in hematologic cancers. METHODS We used TCGA and GTEx pan-cancer database to evaluate XPO1 mRNA expression in various tumors. Cell proliferation assay and colony formation assay were used to analyze the in vitro antitumor effects of XPO1 inhibitor KPT-330. Western blot was performed to explore the specific mechanisms. RESULTS We found that XPO1 was highly expressed across a range of cancers and associated with poor prognosis in hepatobiliary and pancreatic tumors. We revealed that the XPO1 inhibitor KPT-330 triggered the nuclear accumulation of the p53 protein and significantly disrupted the proliferation of cholangiocarcinoma cells. Mechanistically, the XPO1 inhibitor, KPT-330, reduced BIRC6 expression by inhibiting the PI3K/AKT pathway to decrease p53 degradation and improve its stability. CONCLUSION Therefore, XPO1 may be a potential therapeutic target in cholangiocarcinoma, mediated by its effects on KPT-330.
Collapse
Affiliation(s)
- Cheng Zhao
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ben Ma
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Zi‐yi Yang
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ou Li
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Shi‐lei Liu
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Li‐jia Pan
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Wei Gong
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Ping Dong
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| | - Yi‐jun Shu
- Laboratory of General Surgery and Department of General SurgeryXinhua Hospital affiliated with Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Biliary Tract Disease ResearchShanghaiChina
| |
Collapse
|
10
|
Qi HZ, Xu J, Yang QQ, Lin R, Wang ZX, Zhao K, Wang Q, Zhou X, Fan ZP, Huang F, Xu N, Xuan L, Jin H, Sun J, Gale RP, Zhou HS, Liu QF. Effect of pediatric- versus adult-type chemotherapy regimens on outcomes of allogeneic hematopoietic stem cell transplants for adult T-cell acute lymphoblastic leukemia in first complete remission. Bone Marrow Transplant 2022; 57:1704-1711. [PMID: 36042299 DOI: 10.1038/s41409-022-01796-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022]
Abstract
The optimal chemotherapy regimen pre-transplantation for adult T-cell acute lymphoblastic leukemia (T-ALL) patients remains unknown. Here, we compared the transplant outcomes in 127 subjects receiving pediatric- (N = 57) or adult-type (N = 70) regimens pre-transplant. The corresponding 3-year cumulative incidences of relapse (CIR) was 7% (95% CI: 3-11%) and 29% (95% CI: 23-35%; P = 0.02), leukemia-free survivals (LFS) was 86% (95% CI: 81-91%) and 57% (95% CI: 51-63%; P = 0.003), overall survivals (OS) was 88% (95% CI: 84-92%) and 58% (95% CI: 52-64%; P = 0.002), the 1-year NRM was 4% (95% CI: 1-7%) and 9% (95% CI: 4-14%; P = 0.40). Multivariate analysis showed that pediatric-type regimen was associated with lower CIR (Hazard Ratio [HR] = 0.31 [95% CI: 0.09-1.00]; P = 0.05), better LFS (HR = 0.34 [95% CI: 0.15-0.78]; P = 0.01) and OS (HR = 0.30 [95% CI: 0.13-0.72]; P = 0.01). Our results suggested that adult T-ALL patients undergoing allo-HSCT might benefit from pediatric-type chemotherapy.
Collapse
Affiliation(s)
- Han-Zhou Qi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian-Qian Yang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Xiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Ping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Robert Peter Gale
- Hematology Research Centre, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, UK
| | - Hong-Sheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qi-Fa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 518] [Impact Index Per Article: 172.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|